STOCHASTIC PIN-BALL

GEOFFREY R. GRIMMETT

ABSTRACT. A ball is propelled through a random environment of obstacles
off which it rebounds with perfect reflection. What is the behaviour of the
trajectory of the ball? We summarise known mathematical results concern-
ing this model, which we call ‘stochastic pin-ball’, and which is known also
as a ‘Lorentz lattice gas’ and a version of which is sometimes termed the
‘Ehrenfest wind—tree model’. The rigorous theory is more extensively de-
veloped if the environment is allowed to include a positive density of space
in which the ball behaves in the manner of a random walk. For a lattice
model of this type, one may employ arguments of percolation theory in order
to prove theorems concerning non-localisation, transience, and asymptotic
normality, under certain assumptions on the environment.

N

1. The origins of stochastic pin-ball

There is a modern version of the game of bagatelle involving a ball which is
propelled about an inclined plane and which suffers deflections as a result of
collisions with protruding nails. Modern pin-ball is an electrified version of
this game, with a variety of obstacles and with interaction with the player.
In a simplified stochastic model for the motion of the ball, we position
smooth obstacles about R? at random, and we then project a ball through
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the ensuing environment, requiring that the ball be reflected at the obstacles
on which it impacts. What can be said about the trajectory of the ball?

Such a mathematical model is often named after Hendrik Lorentz, fol-
lowing his 1905 papers [21] concerning the motion of an electron through a
field of massive particles. The ‘Lorentz lattice gas’ has generated consider-
able interest amongst physicists (see [8, 9, 10, 24, 26, 27]), but very little is
known about the rigorous mathematical theory. The apparent difficulty of
the problem is due to the fact that the model postulates a dynamical system
within a random environment; the asymptotic behaviour of the dynamical
system can be rather sensitive to small variations in the environment.

Lorentz’s exposition was developed by Ehrenfest [14], and a simple ver-
sion of the lattice gas model has become known as the ‘Ehrenfest wind-tree
model’, a title with a natural interpretation. Another modern interpreta-
tion of such a system is that of a ray of light shining through a medium of
mirrors: reflecting bodies are placed randomly in R?, and the trajectory of a
ray of light through the subsequent environment is studied. These interpre-
tations have as common requirement the definition of a probability measure
governing the dispositions and shapes of the obstacles (massive particles,
mirrors, trees, etc.). Once this is prescribed, then one seeks to categorise
the trajectory of the ball (electron, light ray, wind, etc.) using words of the
type ‘recurrent, transient, ergodic, (non-)localised, diffusive’.

Only fragmentary progress has been made with the required mathemat-
ics, and we summarise some of this in the following paragraphs.

1. Periodic pin-ball in R%. Circular obstacles are distributed about a finite
box of R? in the manner of a Poisson process, and the contents of the finite
box are copied periodically in a tiling of the plane R2. Subject to certain
assumptions, Bunimovitch and Sinai [3] have established a central limit
theorem for the trajectory of the ball. See [25] for related material.

2. Plane mirrors in R?. Plane two-sided mirrors of unit length are dis-
tributed as follows about R?: they are centred at points of a Poisson pro-
cess with intensity A, and their orientations are chosen independently and
randomly from a given countable set S having a certain property. We now
project light from the origin. Harris [19] has proved that the light is a.s.
localised (i.e., confined to a bounded region of R?) of A < A, and is non-
localised with strictly positive probability when A > A.. Here, \; is the
critical density of the continuum percolation system of mirrors, viewed as
unit rods. (Related results concerning continuum percolation may be found
in [22].)

3. Diagonal mirrors on Z?. TEach vertex of Z? is designated a mirror with
probability p and a crossing otherwise. Given that a vertex is a mirror,
it is designated a north-west (nw) mirror with probability 3 and a north-
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Fig. 1. A labyrinth of mirrors on the square lattice. The ray of light is reflected
by the mirrors, and it is a problem is to determine, for a given density of mirrors,
whether or not the light is a.s. restricted to a finite region.

east (ne) mirror otherwise. We now place small plane two-sided mirrors
at those vertices which have been designated mirrors, in the directions of
the designations (see Figure 1). Light is shone northwards (say) from the
origin, and we ask for properties of the ensuing trajectory.

It is trivial that light is non-localised if p = 0, and it is known but
non-trivial that light is a.s. localised if p = 1 (see [4, 15, 16]). The latter
statement is proved by a simple but beautiful argument from percolation
theory. Some partial progress for the case of general p has been made
recently by Quas [23], but mathematicians have no proof of the physicists’
conjecture ([10, 27]) that light is a.s. localised whenever p > 0.

4. Pin-ball with scatterers. Menshikov and Volkov [18] have proposed a
model in which the obstacles are augmented by zones in which the pin-ball
behaves in the manner of a random walk. In a lattice model, for example, a
positive density of vertices are designated random walk (rw) points. When
the ball arrives at a rw point, it chooses its exit direction uniformly at
random from those available. Not surprisingly, this additional randomness
provides a degree of flexibility in the environment which may be harnessed
by mathematicians. The subsequent theory for lattice pin-ball has been
developed in [2, 16], and is summarised in Sections 2—4 of this survey.

5. Rotator pin-ball. Ruijgrok and Cohen [24] have proposed a general study
of mirror and ‘rotator’ models. In a rotator model in R?, the direction of the
ball is rotated clockwise through an angle 6(x) when it arrives at a vertex
x; here, the 0(z) are independent, identically distributed random variables.
One may also allow a stochastic variation in the environment, in the sense
that the 6(x) may be allowed to vary randomly as time passes. See [4, 5]
for partial results.
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2. Generalised pin-ball

Our model for generalised pin-ball involves a random environment of reflect-
ing bodies distributed around the vertices of the d-dimensional cubic lattice
L. Each vertex is designated either a reflector (of a randomly chosen type)
or a ‘random walk point’. The interpretation of the term ‘random walk
point’ is as follows: when a ball impacts on such a point, then it departs in
a direction chosen randomly from the 2d available directions, this exit being
chosen independently of everything else. Such models were introduced in
[18] and have been studied further in [2, 16]. A similar model was proposed
in [7] in the context of train sets, together with an application to the design
of a computing machine.

There are many types of reflector, especially in three and more di-
mensions. The defining properties of a reflector p are that (i) to each
incoming direction wu there is assigned a unique outgoing direction p(u),
and (ii) the ball will retrace its path if the path’s direction is reversed.
Let I = {uq,us,...,uq} be the set of positive unit vectors of Z?, and let
I* = {ou; : a = £,1 < j < d}. A reflector is defined to be a map
p: It — It with the property that p(—p(u)) = —u for all w € I*t (this
condition is in response to the reversibility of light paths). We write R
for the set of all reflectors. One particular reflector is special, namely the
identity map satisfying p(u) = u for all u € I"; we call this the crossing,
and we denote it by +. Crossings do not deflect the ball.

A random labyrinth is defined as follows. Let p,« and p4 be non-negative
reals such that p +py+ < 1, and let m be a probability mass function on
the set R\{+} of ‘non-trivial’ reflectors (that is, 7(p) > 0 for p € R\{+}
and 3 e\ 7(p) =1). Let Z = (Z, sz € Z%) be a family of independent
random variables, taking values in R U {@}, with probabilities

Drw if =0,
P(Za: = ﬁ) = D+ 1fﬁ =+,
(1= prw —p)7(p) if B=p e R\{+}.

A vertex z is called a crossing it Z, = +, and a random walk (rw) point if
Zy= 0.

We now study admissible paths in the labyrinth Z. Consider a path in
¢ which visits (in order) the vertices xq, 71, ... ,T,; we allow the path to
revisit a given vertex more than once, and to traverse a given edge more
than once. This path is admissible if it conforms to the reflectors which it
meets, which is to say that

Tj41 — T = sz ({Ej — Ll,‘j_l) for allj such that ij 7é .
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If prw = 0, then very little is known about such systems except that
which has been summarised in Section 1. Henceforth, we assume that pyy >
0, and we define a ‘random walk in the labyrinth Z’. Let x be a rw point.
A walker starts at =, and flips a fair 2d-sided coin in order to determine the
direction of its first step. Henceforth, it is required to traverse admissible
paths only, and it flips the coin to determine its exit direction from any
rw point encountered. We write PZ for the law of the random walk in the
labyrinth Z, starting from a rw point z.

There is a natural equivalence relation on the set N of rw points of Z%,
namely x <> y if there exists an admissible path with endpoints = and y. Let
C, be the equivalence class containing the rw point . We may follow the
progress of a random walk starting at z by writing down (in order) the rw
points which it visits, say Xo (= x), X1, X2,.... Now, given Z, X = (X,,)
is an irreducible Markov chain on the countable state space C,; furthermore
it is reversible with respect to the measure p given by u(y) =1 for y € Cj.
We say that z is Z-localised if |C| < oo, and Z-non-localised otherwise. We
call Z localised if all rw points are Z-localised, and we call Z non-localised
otherwise. By a zero—one law, we have that P(Z is localised) equals either
Oorl.

We say that the rw point x is Z-recurrent if

PZ(Xy =z for some N > 1) =1,

and Z-transient otherwise. The labyrinth Z is called recurrent if all rw
points are Z-recurrent, and transient otherwise. By an appropriate zero
one law, we have that P(Z is recurrent) equals either 0 or 1.

We now state four problems concerning the random labyrinth Z. Only
partial information about these problems is known.

1. Decide when it is the case that

P(Z is localised) = 1.
2. If P(Z is non-localised) = 1, decide when it is the case that
IP’(O is Z-recurrent ‘ 0isarw point) =1.
3. Decide when it is the case that
IP’(POZ(|XH|2) ‘ 0isarw point) ~cn as n — 00
for some ¢ > 0. (Here, m(Y) denotes the mean of Y under the

measure m, and | - | denotes Euclidean distance.) There is also a
‘pointwise’, or ‘quenched’, version of this question.
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4. If P(Z is non-localised) = 1 and X, = 0, |Cy| = oo, decide when it
is the case that (X)) satisfies a central limit theorem, in the limit
as n — o0.

Problems 3 and 4 are versions of the ‘diffusivity’ problem discussed in
the physics literature (see, for example, [8, 9, 10, 24, 26, 27]). We note that
the mean-square displacement of |X,|? could (in principle) grow linearly
with n even when the walk is localised. In contrast, one cannot have a full
central limit theorem without non-localisation.

3. Non-localisation and recurrence

We concentrate in this section on the property of non-localisation for gen-
eralised pinball. Let p. = p.(L%) denote the critical probability of site
percolation on L¢; see [15] for an account of percolation theory.

Theorem 3.1. Let d > 2 and p.,, > 0.
(a) The number M of infinite equivalence classes of (N, <) satisfies

either P(M =0) =1 orP(M =1) = 1.
(b) There exists a strictly positive constant A = A(prw,d) such that
(3.1) P(Z is non-localised) = 1

if either 1 — pry — Py < A 07 Pryw > Pe.-

Part (a) is proved by adapting the scheme of Burton and Keane [6] who
proved the uniqueness of infinite clusters in percolation-type models. The
details may be found in [2]. As for part (b), two related but distinct proofs
have appeared in [16, 18]. The major difficulty is to prove non-localisation
under the assumption that the density 1 — pyw — py is small. Of greatest
value in the proofs of part (b) is the ‘block method’ of [18], which provides
a powerful tool for controlling the geometry of the labyrinth, and which is
useful for other problems too.

One may find cases of labyrinths which are localised, and also non-
localised labyrinths which fall outside the conditions of part (b) of Theorem
3.1. See [16, 18] for the latter.

We turn now to the question of determining whether a labyrinth is
transient or recurrent. For this problem, the most useful arguments appear
to be those related to certain corresponding electrical networks; see [13,
17]. One may use block arguments, referred to above, in order to compare
a random walk in a random labyrinth with a random walk on the infinite
cluster of a certain related percolation model. Another feasible approach
might be to employ the results of [1].
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Theorem 3.2. Let py, > 0.
(a) If d = 2, the labyrinth Z is P-a.s. recurrent.
(b) Let d > 3. There exists a strictly positive constant A = A(pyw,d)
such that: (3.1) holds, and in addition

P(Z is transient) = 1,

whenever either 1 — prw — p+ < A 0T Pryw > Pe-

Part (a) is a minor extension of Theorem 3 of [18], proved similarly.
The conclusion of part (b) has appeared in [16, 18] under the condition that
1 — prw — p+ < A; when pry > pc, the claim follows from the results and
arguments of [17, 18].

4. Central limit theorem

When p, > 0, the ball follows a type of random walk in a random environ-
ment, the environment being the rather rigid one provided by the pin-ball
table. Whenever the walk is non-localised, it is natural to seek a central
limit theorem (CLT) for its displacement after n units of time have elapsed.
The basic methodology of the theorem which follows is the CLT of Kipnis
and Varadhan [20], together with its application to percolation by DeMasi,
Ferrari, Goldstein, and Wick [11, 12]. Numerous complications arise in
applying such techniques in the present setting.

Suppose that the origin 0 is a rw point. As before, we consider the
sequence Xy (= 0), X1, Xo,... of rw points visited in sequence by a random
walk in Z beginning at the origin 0. For € > 0, we let

Xe(t) = 6X|_e*2tj for ¢ > 0,

and we are interested in the behaviour of the process X¢(-) in the limit as
€ | 0. We shall study X°€ under the probability measure Py, defined as the
measure P conditional on the event {0 is a rw point, and |Cy| = oo}.

Theorem 4.1. Let d > 2 and p. > 0. There exists a strictly positive
constant A = A(prw,d) such that the following holds whenever either 1 —

Prw — P+ < A OT Prw > Pct
(a) P(0 is a rw point, and |Cy| = o0) > 0, and
(b) as e |0, the re-scaled process X¢(-) converges Po-dp to \/SW , where
W is a standard Brownian motion in R and § is a strictly positive
constant.

The convergence ‘Py-dp’ means that

(4.1) PY(f(X9) — E(f(W)) in Po-probability,
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for all bounded continuous functions on the appropriate Skorohod path-
space D([0,c),R?). Here, E stands for the canonical expectation operator.

We finish with some remarks concerning Theorem 4.1 (full details of the
proof of which may be found in [2, 16, 18]). In applying the CLT of [12, 20],
one needs certain information about the geometry of the pin-ball table. Non-
trivial reflectors (i.e., reflectors other than crossings) may have complicated
geometries, and so one works as much as possible on volumes of space which
contain only rw points and crossings. The geometry of such regions may be
controlled as follows. First, one states an appropriate property of a large
block, and then one utilises arguments from percolation theory (see [15])
to describe the set of ‘good’ blocks. More precisely, when the density of
good blocks exceeds the critical percolation probability p., then there exists
a.s. an infinite cluster of good blocks, all of whose rw points lie in a single
inter-communicating class within the pin-ball table. The validity of a CLT
then follows in a fairly straightforward manner from the results of [12, 20].
It is however a substantial problem to prove that the diffusion constant J is
strictly positive, and this may be achieved using arguments relating random
walks to electrical networks.
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