
PERCOLATION AND MINIMAL SPANNING TREESCarol Bezuidenhout, Geoffrey Grimmett, Armin L�offlerAbstract. Consider a random set Vn of points in the box [n;�n)d, generated eitherby a Poisson process with density p or by a site percolation process with parameterp. We analyse the empirical distribution function Fn of the lengths of edges in aminimal (Euclidean) spanning tree Tn on Vn. We express the limit of Fn, as n!1,in terms of the free energies of a family of percolation processes derived from Vnby declaring two points to be adjacent whenever they are closer than a prescribeddistance. By exploring the singularities of such free energies, we show that the large-nlimits of the moments of Fn are in�nitely di�erentiable functions of p except possiblyat values belonging to a certain in�nite sequence (pc(k) : k � 1) of critical percolationprobabilities. It is believed that these limiting moments are twice di�erentiable atthese singular values, but not thrice di�erentiable. This analysis provides a rigorousframework for the numerical experimentation of Dussert, Rasigni, Rasigni, Palmari,and Llebaria, who have proposed novel Monte Carlo methods for estimating thenumerical values of critical percolation probabilities.
1. IntroductionLet T be the minimal (Euclidean) spanning tree on a �nite subset S of Rd . Thegeometry of T is a central subject in the theory and applications of combinatorialoptimization. If S is chosen randomly from Rd , then the probability distribution ofT contains information about the `typical' structure of minimal spanning trees. Inthis paper, we study the geometry of T when S is chosen either according to productmeasure on the vertices of a lattice L or according to a Poisson process on Rd . Thepurpose of our study is to develop the link between minimal spanning trees andpercolation theory. This will be achieved by an analysis of the empirical distributionfunction of the edge-lengths of T , and by relating this function to the `number ofclusters per site' (or `free energy') of an appropriate site percolation model (in thelattice case, we shall have to consider an in�nite family of site percolation modelsconstructed on the vertex set of L).As mentioned above, the theory of random minimal spanning trees is quite welldeveloped already; see [2], [17], [23] for example. A relationship with percolationtheory was proposed recently in [7], [8], [15], and we shall explore this relation-ship further here. In [7], [15] were reported the results of Monte Carlo experiments1991 Mathematics Subject Classi�cation. 60K35, 82B20.Key words and phrases. Percolation, minimal spanning tree, free energy, critical value.This version was prepared on 9 July 1997. 1



2 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERdesigned to estimate numerical constants (particularly the critical probabilities) as-sociated with certain percolation models. It was proposed there that one may learnthe value of a critical point by studying the locations of singularities of functionsobtained as the limits of the sample mean and variance of the edge-lengths of acertain sequence Tn of minimal spanning trees de�ned on �nite boxes in Rd . Themethods used in the current work are analytic and mathematically rigorous, andour conclusions are partially complementary to the propositions of [7], [8], [15].We recall the de�nition of a minimal spanning tree. Let S be a �nite subsetof Rd where d � 2. A minimal spanning tree (MST) on S is a connected graphT having vertex set S such that the sum of the (Euclidean) edge-lengths of T isminimal. That is to say, we require thatXe2T kek = minG Xe2G kekwhere kek = kx� yk is the Euclidean distance separating the endvertices x and yof the edge e, and the minimum is over all connected graphs G on the vertex set S.Consider a realisation ! of a site percolation process, with density p, on a latticeL embedded in Rd ; note that ! is a random subset of the vertex set of L. Write Tnfor the MST on the vertex set !\An, where An = [�n; n)d is a box of side-length 2n.Whereas [7], [15] are directed largely at the sample mean and standard deviation ofthe edge-lengths of Tn, we consider here the entire empirical distribution function ofthe edge-lengths. Writing Fn for this function (i.e., Fn(�) is the proportion of edgesin Tn having length not exceeding �), we shall prove the convergence, as n ! 1,of Fn to a certain deterministic limit function Hp. Furthermore Hp(�) may beexpressed in terms of the `number of clusters per site' �p(�) de�ned as follows. For� 2 (0;1) we construct a graph on ! by joining two points if and only if they areseparated by a Euclidean distance not exceeding �. For x 2 !, let C�x (!) denotethe connected component (or `cluster') of this (in�nite) graph containing the vertexx. Finally, we de�ne �p(�) = Ep(jC�0 j�1 j 0 2 !) where E p denotes expectation.We shall prove that limn!1Fn(�) = 1� �p(�) a.s. and in L1.The last fact is actually rather straightforward (see Section 3). By exploringthe weak convergence of the sequence Fn(�) of functions, we shall obtain also theconvergence of the moments of Fn(�) to those of the limit function.We turn now to the `singularities' proposed in the numerical work of [7], [15].The existence of such singularities is related to singularities of the family �p(�) offunctions of p, as � ranges over the set (0;1). The rigorous theory of such functionsis incomplete (see [10], Chap. 4), but it is believed that, for �xed �, the function�p(�) is a real-analytic function of p on [0; 1] except at a certain critical value pc(�).At the value pc(�), the function �p(�) is believed to be twice di�erentiable but notthrice di�erentiable. It is an open problem to prove that �p(�) is not in�nitelydi�erentiable on the entire interval [0; 1]. If we accept the physical picture just



PERCOLATION AND MINIMAL SPANNING TREES 3described, then we may deduce the existence of an in�nite family of singularities ofthe limiting distribution function Hp(�) = 1� �p(�), i.e., an in�nite set of values ofp at which the moments of Hp are not in�nitely di�erentiable functions of p. SeeTheorem (3.10) and Theorem (3.11).In the limit as p # 0, the percolation model converges weakly (when correctlyre-scaled) to a Poisson process. Versions of the above statements are valid in thePoisson setting also, and we include these in the subsequent sections. For the basicproperties of percolation and Poisson processes, we refer the reader to [10] and [5],[18] respectively. 2. PreliminariesThe meaning of the symbol jAj will vary according to context: ifA is a countable set,jAj will denote the cardinality of A, and otherwise jAj will denote the d-dimensionalLebesgue measure of A (� Rd ). Let d � 2. On Rd , we denote the Euclidean normby k � k. If A;B � Rd , we de�ne kA;Bk = inf�ka� bk : a 2 A; b 2 B	.We write Bd(x; r) = B(x; r) for the closed Euclidean ball in Rd with radius rcentred at x, and @Bd(x; r) = @B(x; r) for its boundary. Let B(r) = B(r; 0) and@B(r) = @B(r; 0).Suppose � is a �nite weighted graph and � 2 R (see the appendix for graph-theoretic terminology). We denote by �� the spanning subgraph of � obtained bydeleting all edges of � whose weight strictly exceeds �. Let E(�) be the number ofedges of �. We de�ne the `edge-weight distribution function' F� of � by, for � 2 R,(2.1) F�(�) = 8<: E(��)E(�) if E(�) > 0,0 otherwise.Let 
 be the collection of locally �nite subsets of Rd . We shall work on the boxAn = [�n; n)d. For ! 2 
, we writeVn(!) = ! \ An and Vn(!) = jVn(!)j:Let �n(!) be the complete graph on the �nite set Vn(!). For each edge fx; yg of�n(!), we assign to it the weight kx� yk. Let Tn(!) be any minimal spanning tree(MST) of the weighted graph �n(!). We write(2.2) En(�; !) = E(T �n (!)); Fn( � ; !) = FTn(!)(�):By Corollary (A.4) in the appendix, En and Fn do not depend on the choice of theMST Tn, but only on the set Vn.Suppose ! 2 
. Let ��(!) be the graph having vertex set ! and edge setconsisting of all pairs fx; yg with x; y 2 ! and 0 < kx� yk � �. For x 2 !, letC�x (!) be the collection of vertices in the connected component of ��(!) containingthe point x. We refer to C�x (!) as `the cluster at x when the maximal edge-lengthis set to �'.



4 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERWe interpret the term `lattice' L to mean a locally �nite subset of Rd satisfyingthe following �ve conditions:(i) L is locally �nite,(ii) L is invariant under translation by a unit vector in any of the co-ordinatedirections,(iii) L is invariant under permutations of the coordinates of Rd , and also underthe re
ection (x1; x2; : : : ; xd) 7! (�x1; x2; : : : ; xd).(iv) for every pair x; y 2 L, there exists a translation � and a rotation � of Rdsuch that y = �(x) and L = ��(L),(v) the origin 0 belongs to L.Note that a lattice is a set of points rather than a graph. The arguments and resultsof this paper are valid when applied to sets L of greater generality than requiredby (i){(v), but we assume these �ve conditions here for simplicity of presentation.For a given lattice L in Rd , and � > 0, we construct a graph L� by joining anypair of points in L which are separated by distance � or less. The ensuing graphwill generally be disconnected, if � is small. There may exist ranges of values of �for which L� contains in�nite components with dimensions strictly less than d. Weshall concentrate on the component of L� containing the origin, which we denoteby L�(0).We now concentrate on two probability distributions for !. Let L be a lattice inRd . The set ! will be distributed either as the set of open sites in a site percolationprocess with density p on L (we refer to this as `the lattice model'), or as a Poissonpoint process in Rd with intensity measure given by pj � j (we call this `the Poissonmodel'). When we refer to `both models' or `either model', then it is these twomodels that are meant. In both models we refer to p as the `density'. The symbolsPp and E p denote (respectively) probability and expectation with respect to eitherof these measures, unless we state explicitly that we are considering only one of themodels. Because the statements of many of our results are identical for the twomodels, we usually use the same notation. When necessary, we use the superscriptsL and P for the lattice and Poisson models, respectively. For recent work on minimalspanning trees for the Poisson model, see [3], [17], [21] and the references therein.3. ResultsThere are two (related) functions which are central to the analysis which follows,namely the quantities given by(3.1) �p(�) = E p � 1jC�0 (!)j ���� 0 2 !�; Hp(�) = 1� �p(�):In the case of the Poisson model, the above conditional expectation is interpretedin the usual way (see [5]). The quantity �p(�), viewed as a function of p with �held �xed, is often referred to in the physics literature as a `free energy' function.However, we shall refer here to �p(�) as the `number of clusters per site'; seeChapter 4 of [10] for the basic properties of �p(�) in the lattice case. It is evident



PERCOLATION AND MINIMAL SPANNING TREES 5from the usual re-scaling argument that(3.2) �Pp (�) = �P1 (p1=d�)in the case of the Poisson model; see [14], [20] for more details of this case.The following theorem contains the basic ingredients of the approach of thispaper. The proof is straightforward, and a sketch thereof is presented at the endof this section.(3.3) Theorem. Let �; p > 0. We have that, as n!1,Fn(�; !)! Hp(�) a.s. and in L1:We shall show that Hp is a distribution function, and shall study its propertiesin some detail. Also, we shall investigate the convergence, as n!1, of the samplemoments of the distribution function Fn to those of Hp. Prior to doing this, wede�ne a certain sequence of values of p at which di�culties arise. These are exactlythe critical probabilities of a certain family of percolation models.Let � > 0, and de�ne the function��(p) = Pp�jC�0 j =1 �� 0 2 !�:Note that, in the lattice case, ��(p) is essentially the percolation probability of thecomponent L�(0) of the graph L�. Using standard arguments from percolationtheory (see [10], [20]), we have that there exists pc(�) > 0 such that��(p)� = 0 if p < pc(�)> 0 if p > pc(�):For the Poisson model, the quantities pc(�) = pPc (�) may be expressed in termsof one another: using the usual re-scaling, we have that pPc (�) = ��dpPc (1). Thesituation is more interesting in the lattice model. Suppose that we are workingon the lattice L, and let D(L) = fkx� yk : x; y 2 L; x 6= yg be the set of `inter-point' distances. It is easily seen that the set D(L) is countable, does not contain0, and has no �nite limit points. Consequently we may express D(L) in the formD(L) = f�k : k � 1g where(3.4) 0 < �k < �k+1 for k � 1, and �k !1 as k !1:It is clear that, for k � 1,pc(�) = pc(�k) if �k � � < �k+1:Here are some properties of the �k and pc(�k). The proof is presented at the endof this section.



6 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLER(3.5) Theorem.(i) The growth function of L satis�es jL \ B(m)j=jB(m)j ! c1 as m ! 1, forsome constant c1 = c1(L) > 0.(ii) There exists a constant c2 = c2(L) > 0 such that �k+1 � �k +1 and c2k1=d ��k � k, for k � 1.(iii) We have that pc(�k) � pc(�k+1) for all k, and pc(�k)! 0 as k !1.(iv) Let K = inffk : pc(�k) < 1g. Then (pc(�k) : k � K) is a strictly decreasingsequence.In order to study the properties of the empirical edge-length distribution func-tion Fn(�; !), we shall need certain information about the smoothness of the limitfunction Hp(�). The necessary facts are contained in the next two theorems.(3.6) Theorem. Let � 2 (0;1). Viewed as a function of p, �p(�) is continuouslydi�erentiable on its domain. (This includes the statement that �p(�) has one-sidedderivatives at all �nite boundary points.) It is in�nitely di�erentiable (with one-sided derivatives where appropriate) except possibly at the critical point p = pc(�).Standard physics dogma asserts that �p(�) is twice di�erentiable at pc(�) butnot thrice di�erentiable, but no proof is known of this statement (see [10], p. 78).(3.7) Theorem. If p > 0, then Hp( � ) is a distribution function. In the Poissoncase, the measure corresponding to Hp = HPp is absolutely continuous with respectto Lebesgue measure on R , and there exist strictly positive constants 
0 and 
1 suchthat(3.8) @HPp (�)@� � 
0�d�1 exp(�
1p�d) for � > 0:We turn now to the de�nition of the moments of the distribution functions Hpand Fn, namely the quantities given when p > 0 by(3.9) mj(p) = Z[0;1) �j dHp(�); Mj;n(!) = Z[0;1) �j dFn(�; !):(3.10) Theorem. Let j � 1.(i) We have that Mj;n(!)! mj(p) a.s. and in L1 as n!1.(ii) The function mj(p) is di�erentiable except at the point p = 0. It is in�nitelydi�erentiable in the lattice model except possibly when p 2 fpc(�k) : k � 1g.In the Poisson model, it is the case that mPj (p) = p�j=dmPj (1) for p > 0.(iii) We have that pj=dmj(p)! mPj (1) as p! 0, where mPj (1) is given as in (3.9)with H1 replaced by HP1 .



PERCOLATION AND MINIMAL SPANNING TREES 7As remarked above, for a given percolation model, it is believed that the numberof clusters per site (or `free energy') is not in�nitely di�erentiable at the criticalpoint. Such a singularity would be shared by the moments mj(p) given above. Westate this formally in the following way.(3.11) Theorem. Let k; j; r � 1, and consider the lattice model. If mj(p) is r timesdi�erentiable at the point pc(�k) (< 1), then �p(�k) is r times di�erentiable as afunction of p at this point.In [7], [15] is proposed the following method for estimating critical probabilities.Consider a realisation of a site percolation process on a graph (such as the square ortriangular lattice). Construct a MST on the points within the box An and considerthe empirical edge-length distribution function Fn. After a sequence of numericalexperiments, one may plot the mean and variance of Fn against the variable p. Theexperiments of [7], [15] suggest that these functions have singularities at the criticalpoint of the lattice, and it was proposed that the above procedure might be used inorder to estimate the true value of this critical point. We make two remarks aboutthis procedure. First, the results of the current paper indicate that these functionshave an in�nite set of singularities, at which they are believed to be twice but notthrice di�erentiable. Secondly, the outcome of the numerical procedure depends onthe actual embedding of the lattice in Rd .In advance of delivering proofs of Theorem (3.3) and Theorem (3.5), we sum-marise the contents of the remainder of the paper. Throughout, we present proofsonly when novelty is required. Some of the required arguments are fairly standard,in which cases references are given and the details omitted. Section 4 contains sometechnical estimates of use later. Theorem (3.6) is proved in Section 5, and Theo-rem (3.7) in Section 6. The remaining two sections contain the proofs of Theorem(3.10) and Theorem (3.11). Graph-theoretic de�nitions have been relegated to theappendix.Sketch Proof of Theorem (3.3). It follows from elementary graph-theoreticconsiderations (see the appendix) that(3.12) Fn(�; !) = Vn(!)�Kn(�; !)Vn(!)� 1 if Vn(!) � 2;where Kn(�; !) is the number of components of the graph ��n(!). We summarisethe basic steps of the proof of the theorem in the case of the lattice model; for thedetails see page 73 of [10], where they are presented for nearest-neighbour bondpercolation on the cubic lattice. We have that, as n!1,Vn(!)� 1jAn \ Lj ! p a.s. and in L1;by the strong law of large numbers. Use of the ergodic theorem yields thatlimn!1 Kn(�; !)jAn \ Lj = E p �1f0 2 !gjC�0 (!)j � a.s. and in L1;



8 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERwhere 1fAg is the indicator function of the event A. The a.s. convergence in thestatement of the theorem follows immediately. Convergence in L1 then follows byuse of the bounded convergence theorem.In the Poisson case, the claim of the theorem may be obtained by approximatingto Rd with a discrete grid, and by taking the limit as the grid size approaches 0. �Proof of Theorem (3.5). (i) This follows from the local �niteness and trans-lation invariance of L.(ii) Since 0 lies in L, and L is invariant under unit shifts, we have that Zd � L. Itfollows that D(L) � f1; 2; : : :g, whence �k � k and �k+1 � �k + 1. There exists astrictly positive constant b = b(L) such that the number of points y of L satisfyingkyk � r does not exceed brd. Let k � 1. There exist x; y 2 L such that kxk � pdand kx� yk = �k. By the triangle inequality, kyk � �k +pd, and thereforek � b��k +pd�d � b�pd�d;since �k is a non-decreasing sequence. The lower bound on �k follows.(iii) The monotonicity of pc(�k) is trivial since �k � �k+1. We use a simple blockargument for the second part. Let p > 0 and choose an integer M such that(3.13) Pp (AM contains a point of !) > pc(Z2);where pc(Z2) is the critical probability of site percolation on the square lattice. Nowchoose k such that �k > 4Mpd. With this choice of k, we have that kx� yk < �kfor all pairs x; y satisfying x 2 AM , y 2 AM + (2M; 0; 0; : : : ; 0). For x1; x2 2 Z,we colour the translate AM + 2M(x1; x2; 0; : : : ; 0) of AM green if it contains somepoint of !. The green boxes constitute a site percolation process on a copy of thesquare lattice, each site of which represents the corresponding translate of AM . By(3.13), this process is supercritical. It follows that pc(�k) � p.(iv) A detailed argument would be long and contain no new ideas, and is thereforeomitted. The claim may be shown by following the methods of [1]. �4. TechnicalitiesWe establish next certain inequalities which will be necessary for the proofs whichfollow later.4.1. Re-scalingFor r > 0 and x 2 Zd, de�ne the box Axr = 2rx+ (r; r; : : : ; r) + [�r; r)d. For �xedr, the Axr will serve as sites in a re-scaled process. Suppose r > 0 and ! 2 
. Wecall x (2 Zd) r-occupied if ! \Axr 6= ?, and we write �r! for the set of r-occupiedsites of Zd. If ! is a realisation of any of the models considered in this paper, �r!is then a realisation of a site percolation process on Zd. So long as r is chosen



PERCOLATION AND MINIMAL SPANNING TREES 9suitably, we have that p(x) = Pp (x is r-occupied) does not depend on the choice ofx 2 Zd. Note thatp(x) = ( 1� e�p(2r)d for the Poisson model, with r > 0,1� (1� p)(2r)d for the lattice model on Zd, with r = 1; 2; : : : :(4.1.1) Lemma. If � 2 R, ! 2 
, and r > 0, then1� Fn(�; !) � 1� Fn=(2r) �� 2rpd2r ;�r!! ;for all positive multiples n of 2r.Proof. We use a fairly standard argument in order to build a spanning tree of! \ An by joining together minimal spanning trees on certain subsets of An. Let! 2 
, let n; r > 0, and let m = n=(2r), assumed integral. We partition An intoboxes, each of which is a translate of Ar, in such a way that the centres of theseboxes form a copy of Am (suitably re-scaled and translated). Let ! = �r!. Wemay assume that Vm(!) > 1 and � � 2rpd, and we do so for the rest of the proof.Let Tm(!) be a MST of ! \ Am and, for each x 2 Am which is r-occupied, letTr(!; x) be a MST of ! \ Axr . We construct a spanning tree of ! \ An as follows.First, take the union of all such Tr(!; x), noting that this union is a spanning forestof !\An. For all pairs x; y 2 !\Am which are joined by an edge of Tm(!), we addan edge joining some point (chosen according to a predetermined rule) in !\Axr tosome point in ! \Ayr . The resulting graph is a spanning tree of ! \An. We claimthat, by Corollary (A.4) in the Appendix,(4.1.2) Fn(�; !) � 1Vn(!)� 1 ( Xx2AmE�Tr(!; x)�+ Em �� 2rpd2r ; !!) :The following two facts are relevant to this inequality. First, the diameter of Aris 2rpd (� �), whence all edges in any given Tr(!; x) have length not exceeding�. Secondly, if there is an edge fx; yg of Tm(!) with length not exceeding (� �2rpd)=(2r), then the above construction requires that an edge be added in Anjoining some point in Axr to some point in Ayr ; no two such points are further than� apart. Now, Xx2AmE�Tr(!; x)� = Vn(!)� Vm(!)by (A.1). Substituting this into (4.1.2) yields the result. �4.2. Comparison with geometrically-distributed random variablesIt will at times be useful to bound the edge-length distribution function of a randomMST in terms of the empirical distribution function of a sequence of geometrically



10 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERdistributed random variables. We shall use such an inequality only for the case ofthe lattice model on Zd, and therefore we consider this case only in this subsection.We say that a random variable Z is geometric-p if Z takes the value k withprobability (1� p)k�1p, for k = 1; 2; : : : .(4.2.1) Theorem. Let ! denote a realisation of a site percolation process on Zdwith density p, and let Vn and Fn be as in Section 2. There exists a sequenceX0(!); X1(!); : : : of independent geometric{p random variables, depending on !alone, such that 1� Fn(�; !) � 1� eFn(�; !) for all � 2 R;where eFn( � ; !) denotes the empirical distribution function of the random sequenceX1(!); : : : ; XVn(!)�1(!).Proof. We turn Zd into a graph by adding edges between any two points x; ysatisfying kx� yk = 1. Let ! � Zd. Let � be a �xed nearest-neighbour path inZd that starts at the origin and visits each site in Zd exactly once; we require that,for every n � 0, � visits every point in An before visiting any point in An+1 n An.Let �(1); �(2); : : : be the sites in � in the order visited. Let i1(!); i2(!); : : : be theincreasing sequence of indices i for which �(i) 2 !. For k � 1, let �k(!) = �(ik(!))and let �k(!) be the straight line segment in Rd joining �k(!) to �k+1(!). Let�(!) be the path �1(!); �1(!); �2(!); �2(!); : : : , and let Tn(!) be the sub-path�1(!); �1(!); �2(!); �2(!); : : : ; �Vn(!) (if Vn(!) > 0). Then Tn(!) is a spanningtree of Vn(!). Let X0(!) = i1(!) and, for k � 1, let Xk(!) = ik+1(!)� ik(!) andlk(!) = k�k+1(!)� �k(!)k. We have that lk(!) � Xk(!) for k � 1.Suppose now that ! is distributed as the set of open sites of a percolation processon Zd with density p. Then the Xk are independent geometric{p random variables.Assume Vn(!) > 1, and let eFn(!) be the empirical distribution function of thesequence X1(!); X2(!); : : : ; XVn�1(!). Let FTn(!) be as in (2.1) with � = Tn(!)and using the weight function k�k. Then FTn(!) is the empirical distribution functionof the sequence l1(!); l2(!); : : : ; lVn�1(!). Using Corollary (A.4), we deduce that1� Fn(�; !) � 1� FTn(!)(�) � 1� eFn(�; !)for all ! with Vn(!) > 1, and for all �. �4.3. Super-exponential bounds for the number of edgesOur purpose here is to prove a bound on the tail of the number of long edges in aMST.(4.3.1) Lemma. There exist strictly positive constants K0, 
0, and 
1 such thatE p (En(1; !)�En(�; !))jAnj � 
0p exp ��
1p�d� if � � K0:



PERCOLATION AND MINIMAL SPANNING TREES 11
Proof. We go into some detail in the Poisson case. The proof in the lattice case issimilar but some additional complications arise because of the lattice spacing; seethe remarks at the end of the proof.Let 0 < � < �. If there is an edge in Tn(!) whose length lies in the interval(�; �], then it must join two points x and y such that � < kx� yk � �, and inaddition (by examining Kruskal's greedy algorithm) there can exist no point of! \An belonging to B(x; �) \B(y; �). Therefore, for large n,(4.3.2)En(�)� En(�) � Xx2!\An Xy2!\An\A(x;�;�) 1fB(x; �) \B(y; �) \ ! \An = ?gwhere En(
) = En(
; !), A(x; �; �) is the annulus enclosed by the spheres centredat x and having radii � and � respectively, and 1f�g denotes the indicator function.An estimate of the expected value of (4.3.2) yields(4.3.3)E p (En(�)�En(�))jAnj(� � �) � 
0�d�1p2exp��
1p (2�� �)d� if 0 < 12� < � < �where 
0 and 
1 depend only on the dimension d. We have used the fact that, if12� < � < kx� yk � �, then B(x; �)\B(y; �) contains a Euclidean ball of diameterno smaller than �� (kx� yk��) � 2���, and at least half of this ball lies in An.To derive the bound in the statement of the lemma, take � = k � 1 and � = k in(4.3.3), and then sum over k � K + 1 where K is an integer. This gives that, forsu�ciently large K,E p (En(1)� En(K))jAnj � 
0p2 1Xk=K+1 kd�1exp ��p 
2(k � 2)d�� 
3p2 Z 1K xd�1exp ��p 
4xd�dx= 
5p exp ��p 
4Kd�;where the 
i are positive and depend only on d. This, taken together with the factthat En(�; !) is increasing in �, gives the result, for newly de�ned 
0; 
1.Here are some further notes for the lattice case. Suppose that(4.3.4) �k � � < �k+1 � �l � � < �l+1;where 0 � k < l (and �0 = 0). If x; y 2 L and � < kx� yk � �, then kx� yk 2f�k+1; : : : ; �lg, and any point in B(x; �) \ B(y; �) \ L actually lies in B(x; �k) \B(y; �k). This intersection contains a ball of diameter at least 2�k � kx� yk �2�k��l. By Theorem (3.5)(ii) and (4.3.4), this diameter is at least 2��2��. We



12 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERargue now as in the Poisson case. Note that there exist constants ci = ci(L) suchthat, for x 2 L,jA(x; �; �) \ Lj � ���A(0; ��pd; � +pd ) \ L���� c1���A(0; ��pd; � +pd ) \ Zd���� c2(� +pd )d�1[(� +pd )� (��pd )]:We have therefore that there exist positive constants c4, n0 such thatE p (En(�)� En(�))jAnj(� � �+ 2pd ) � c3�d�1p2exp�c4 (2�� 2� �)d log(1� p)�:if � > � > a0 and 2(�� a0) > 2 + �. We note that log(1� p) � �p and proceedas before. �4.4. Tail estimates for �nite percolation clustersLet us consider site percolation on the graph L�, where � > 0. We prove nexttwo lemmas concerning the tail of the radius of the open cluster C�0 at the origin.The �rst deals with the subcritical case (p < pc(�)), and the second with thesupercritical case. We de�ne the radius rad(S) of a subset S of Rd containing theorigin by rad(S) = inffr 2 R : S � Arg.(4.4.1) Lemma. Assume d � 2 and � > 0. There exists a function � = �(p; �),strictly positive and continuous in p when p < pc(�), such thatPp�rad(C�0 ) � n� � e�n� for n � 1:
(4.4.2) Lemma. Assume d � 2, � > 0, and pc(�) < 1.(a) There exists a function � = �(p; �), strictly positive and continuous in p whenp > pc(�), such thatPp�n < rad(C�0 ) <1� � e�n� for n � 1:(b) Let 0 < p0 < 1. There exist positive constants a0, 
, �, such that, if p0 � p �1 and � � a0, thenPp�n < rad(C�0 ) <1� � 
 (1� p)n��1_(d�2) for n � 1;where a _ b = maxfa; bg.



PERCOLATION AND MINIMAL SPANNING TREES 13There exists a positive constant c = c(L) such that(4.4.3) if jC�0 j � n then rad(C�0 ) � cn1=d:Using this fact, one may obtain an estimate for the tail of the volume of an opencluster from an estimate for its radius. Estimates obtained from the above lemmasin this way are not the best possible, but will su�ce for the purposes of this paper.They may be strengthened by utilising further methods of [10].Proof of Lemma (4.4.1). We do not present this, since it follows the proof ofTheorem (3.4) of [10]. �Proof of Lemma (4.4.2). Suppose that d � 3 (we shall return later to the cased = 2). First we prove part (b), and then we indicate the necessary steps in orderto obtain part (a). We begin with two sub-lemmas.(4.4.4) Lemma. For d � 2, there exist p1 2 (0; 1) and constants 
;M > 0, dependingon d and p1, such thatPZdp ���C10 �� <1� � 
 (1� p)M if p1 � p � 1;where the superscript indicates that the lattice in question is Zd.Proof. By an argument presented in [10] (remarks on Thm (6.95), pp. 138{140),there exist positive constants 
0, �, and �, depending only on d, such thatPZdp ���C10 �� <1� � 1� p+ 
0p 1Xn=1nd [(1� p)�]�n(d�1)=d if (1� p)� < 1:Therefore, with p1 chosen to satisfy (1 � p1)� < 1, there exists a constant 
1 =
1(
0; �; �; p1) such thatPZdp ���C10 �� <1� � (1� p) + 
1(1� p)� if p1 � p � 1: �(4.4.5) Lemma. Let d � 2 and p0 2 (0; 1). There exist constants a0; 
;N > 0,depending on d and L, such thatPp (jC�0 j <1) � 
 (1� p)N�d if p0 � p � 1 and � � a0:
Proof. In the notation of Section 4.1,Pp (jC�0 (!)j <1) � Pp ���C10 (�r(�)!)�� <1� = PZd� ���C10 �� <1� ;



14 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERwhere r(�) = ��=p4d+ 12� and � = �(p; �) = 1 � (1� p)f(�) with f(�) =��Ar(�) \ L��. Let p1, 
, M be given as in Lemma (4.4.4), and choose a0 such thatf(a0) � log(1� p1)= log(1� p0). Assume p � p0, so that �(p; �) � p1, whencePp (jC�0 j <1) � 
 (1� �)M = 
 (1� p)Mf(�) � 
 (1� p)N�d ;where N depends only on M and L. �We turn now to the proof of Lemma (4.4.2)(b) proper, when d � 3 and 0 <p0 < 1. We adapt an argument of [4] (see [10], pp. 127{129). For r 2 R, letPr = fx 2 Rd : x1 = rg and Qr = fx 2 Rd : x1 � rg. For integral i, the set L \ Piconstitutes a (d� 1)-dimensional lattice, and we pick constants a0, 
, N accordingto Lemma (4.4.5) with d replaced by d� 1. We now follow [10] but working with(d�1)-dimensional hyperplanes rather than with slabs. Instead of reproducing theargument in full detail, we summarise the necessary changes. Let � � a0 _pd_ 32 ,let 
 = supfx1 : x 2 L; kxk � �g, and � = d
e; note that b�c � 
 � � and� � 2
. Let x 2 L be such that x1 = 
. As in [10], we build the cluster C�0according to a recursive construction, and we write vi = (a1; a2; a3; : : : ; ad) for theearliest open vertex encountered which lies in the half-space Qi� . There are twocases to be considered.(i) If a1 + 
 < (i+ 1)�, we de�ne w0i = vi + x, and we choose w00i 2 P(i+1)� suchthat kw0i � w00i k � �. (Such a point w00i must exist since � � pd.)(ii) If a1 + 
 � (i+ 1)�, we de�ne w0i = vi and w00i as in case (i).Let Fi be the event that w0i and w00i are open (noting that w0i is always open undercase (ii) above), and that ���C�w00i (! \ P(i+1)�)��� <1, so that, by Lemma (4.4.5),Pp (Fi) � pPp�jC�0 (! \ P0)j <1� � 
(1� p)N�d�1 :If C�0 \ Qn+1 6= ? and jC�0 j < 1, then none of the events F0; F1; : : : ; Fr�1 haveoccurred, for r satisfying r� � n. It follows as in [10] thatPp�C�0 \Qn+1 6= ?; jC�0 j <1� � h
(1� p)N�d�1ibn=�c:This implies the claim, since An has 2d bounding hyperplanes.Next we indicate how to obtain part (a) of Lemma (4.4.2) when d � 3. LetLr = fx 2 L : 0 � x1 � rg, a slab of thickness r. We join any two points of Lr whichare separated by distance � or less, and we de�ne the corresponding percolationprobability ��r (p) = Pp (jC�0 \ Lrj =1). There is a `slab' critical probability givenby pc(�; r) = supfp : ��r (p) = 0g. The argument of [11], [12] is easily adapted toobtain that pc(�; r) # pc(�) as r !1.Suppose that p > pc(�), and �nd r such that p > pc(�; r). We now reproduce theessence of the argument in [10], pp. 127{129, adapted as above, obtaining therebythat Pp�C�0 \Qn+1 6= ?; jC�0 j <1� � �1� ��r (p)�bn=(r+�)c:



PERCOLATION AND MINIMAL SPANNING TREES 15This implies that(4.4.6) Pp�n < rad(C�0 ) <1� � 2d exp����r (p)bn=(r + �)c�:It may be shown in the usual way (see [10], p. 117) that ��r (p) is a continuous,monotone, and strictly positive function of p on the interval (pc(�; r); 1]. Therequired conclusion follows easily from the fact that pc(�; r) # pc(�) as r !1.For the remainder of this proof we suppose that d = 2. We utilise the blockconstruction of [12] in order to prove Lemma (4.4.2)(a). Suppose � > 0 andp > pc(�), and de�ne the rectangle TM;N = [0;M ] � [0; N ] of R2 . A left-rightcrossing of TM;N is a sequence x0; x1; x2; : : : ; xr of points in L such that(i) xi is open and kxi+1 � xik � � for all i,(ii) x1; x2; : : : ; xr�1 2 TM;N ,(iii) x0 2 [��; 0]� [0; N ] and xn 2 [M;M + �]� [0; N ].A top-bottom crossing of TM;N is a sequence satisfying (iii0) in place of (iii), where:(iii0) x0 2 [0;M ]� [N;N + �] and xn 2 [0;M ]� [��; 0].Before proceeding, we note a geometrical fact. If a rectangle has both a top-bottom and left-right crossing, then the vertices therein belong to the same opencluster of L�. This follows by use of the triangle inequality.Let LRM;N (resp. TBM;N ) be the event that TM;N has a left-right (resp. top-bottom) crossing. We claim that, if " > 0, there exists a positive integer N =N(p; �; ") such that(4.4.7) Pp (LR4N;N ) = Pp (TBN;4N ) > 1� ":Rather than prove this in detail, we sketch the required argument. The �rst stepis to note that the `block construction' of [12] is valid mutatis mutandis for sitepercolation on L�. As in [12], one may construct a certain process de�ned onblocks of L in such a way that the `block variables' dominate (stochastically) asite percolation process having large density. Since supercritical site percolation(with large density) possesses left-right crossings of tubes with aspect ratio 4, withprobability approaching 1 as the size of the tube increases, one obtains (4.4.7) forlarge N . (The choice of the quantity 4N in (4.4.7) is somewhat arbitrary, and maybe weakened.)With N chosen according to (4.4.7), let R = 2N , and call the box BR = [�R;R]2blue if� the two rectangles [�R;R]� [�R;�R+N ] and [�R;R]� [R�N;R] containleft-right crossings, and� the two rectangles [�R;�R+N ]� [�R;R] and [R�N;R]� [�R;R] containtop-bottom crossings.We extend this de�nition to all translates of BR, using the `translated' notions ofleft-right and top-bottom crossings.We now renormalise. For x = (x1; x2) 2 Z2, we colour x blue if the box BxR =BR + (3Nx1; 3Nx2) is blue. We have by (4.4.7) that(4.4.8) Pp (x is blue) > 1� 4";



16 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERand furthermore that the random variables F = �1fx is blueg : x 2 Z2� are k-dependent for some value of k which is constant for all �; p; ";N . Let pc(L2 , site) <� < 1, where pc(L2 , site) is the critical probability of site percolation on the squarelattice L2 . Using the results of [19], we may choose ", su�ciently small and positive,such that the family F stochastically dominates a site percolation process on L2with density �; we choose " accordingly.Next we observe a certain property of site percolation at density �, and thenwe interpret this property in the context of the original process. Consider sitepercolation on L2 at density �. Let Cn be the event that the annulus B2nnBncontains an open circuitD having the origin in its interior, and such thatD lies in anin�nite open cluster. Using standard arguments (see [10], [16]), we have that thereexists a function � = �(�), strictly positive and continuous when � > pc(L2 , site),such that(4.4.9) P�(Cn) � 1� e��n for all large n:[Here, P� denotes the appropriate probability measure. Equation (4.4.9) is provedusing duality arguments, as follows. If Cn does not occur then either (a) there is aclosed matching crossing of the annulus, or (b) there is an open circuit of the annuluswhich is not connected to in�nity. Each eventuality has an exponentially smallprobability, obtained by applying [10], Theorem (3.4), to the subcritical process onthe matching lattice.]It follows by (4.4.9), and the above remarks concerning stochastic domination,that there exists (with probability at least 1�e��n) a blue circuit of B2nnBn whichsurrounds the origin and is joined to in�nity.We note next that, if kx � yk = 1, then BxR \ ByR is a rectangle of dimensions4N by N . Furthermore, if x and y are blue, then the set of eight (left-right ortop-bottom) crossings involved in this assumption belong to the same connectedopen cluster of L�. Therefore, if the blue circuit exists as in the above paragraph,then either jC�0 j =1 or rad(C�0 ) � 6Nn. We deduce thatPp�6Nn < rad(C�0 ) <1� � e��nas required in part (a). That � may be assumed continuous in p follows from thefact that N may be assumed bounded away from 1 when p is bounded away frompc.For part (b) of Lemma (4.4.2) when d = 2, let 0 < p0 < 1, � > p20, and letr = b�=p20c, as in the proof of Lemma (4.4.5). With this choice of r, let B�be the set of all r-occupied points x of Z2 such that C�0 \ Axr 6= ?. The set B�forms a collection B1; B2; : : : of connected subsets of vertices of the square lattice,and we write �eBi for the external boundary of Bi (i.e., �eBi contains all pointsy 2 Z2 such that (i) y is adjacent in L2 to some x 2 Bi, and (ii) y lies in anin�nite path of L2 with points in Z2 n Bi). We make two claims for the union�eB = �eB1 [�eB2 [ : : : , namely:(A) �eB is a connected set of points in the matching lattice L2� , obtained fromL2 by adding the two diagonals to every unit face, and



PERCOLATION AND MINIMAL SPANNING TREES 17(B) for all y 2 �eB, the point y is not r-occupied.Claim (A) follows from consideration of the set of points x for which there existu 2 A0r, v 2 Axr satisfying ku� vk � �. Claim (B) follows from the fact that, ifkx� yk = 1 and u 2 Axr , v 2 Ayr , then ku� vk � �.Suppose now that n < rad(C�0 ) < 1, so that 0 lies in some �nite cluster whichintersects the complement of An. If C�0 intersects Qn = fx 2 Rd : x1 � ng, then�eB contains a path, having an endpoint of the form (�u; 0) with u 2 f1; 2; : : :g,and with at least u+n=(2r) points in all, none of which is r-occupied. By countingself-avoiding paths on L2� , we obtain thatPp�n < rad(C�0 ) <1� � 2d 1Xu=1 Xk�u+n=(2r)n8(1� p)4r2ok:[We have used the fact that jL \Arj � jArj = 4r2.] We pick a0 (> p20) such that81=(2r0)(1� p0)2r0 < 1 where r0 = ba0=p20c, and the claim follows. �5. Proof of Theorem (3.6), Di�erentiability of �In this section we present a summary of the proof that, for given � > 0, the function�p(�) is continuously di�erentiable in p on the interior of its domain. This will beproved by the method laid out in [10], pp. 78{80, where bond percolation on thecubic lattice was studied.A separate argument is required in order to show that one-sided derivatives existat the endpoints of the domain. We omit this, which follows roughly the methodused in [10], p. 140{142.5.1. Proof of Theorem (3.6) in the lattice caseLet L� denote the graph with vertex set L and with edges joining every pair ofvertices which are separated by distance � or less. We de�ne a distance-� latticeanimal A to be the vertex set of a �nite subgraph of L� containing the origin. IfA is such an animal, we de�ne its boundary �A to be the set of sites x in L forwhich 0 < kx;Ak � �. Let A�nb be the collection of distance-� lattice animals Afor which jAj = n and j�Aj = b, and write a�nb = jA�nbj.There exists a constant �(L) such that jL \ B(x; �)j � �(L)�d for all x 2 Rdand � � �1. Therefore(5.1.1) 1 � b � �(L)�dn if a�nb 6= 0:This estimate replaces (4.14){(4.15) of [10], p. 75.In order to prove continuous di�erentiability, it su�ces to prove the same prop-erty of the quantity(5.1.2) p�p(�) = 1Xn=1 1nXb a�nbpnqb where q = 1� p:



18 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERThe idea is to show that the sum of the term-wise derivatives in (5.1.2) is uniformlyabsolutely convergent for p 2 [p0; p1], whenever 0 < p0 < p1 < 1. The absolutevalue of the nth term of the sum of derivatives is bounded above by1nXb a�nb����np � bq ����pnqb:By means of a large-deviations estimate obtained as in [10], Thm (4.20), one �ndsthat, for any choice of � > 0, this quantity is no greater than(5.1.3) �Pp (jC�0 j = n) + f1 _ �(L)�dg2pq n2 exp ��13n�2p2q�;where u _ v = maxfu; vg. The proof is completed as in [10], p. 79, by a suitablechoice of �.In order to prove the in�nite di�erentiability of �, one follows the arguments of[10], pp. 140{142, and utilises Lemma (4.4.1), Lemma (4.4.2), and (4.4.3). Theonly di�erence of note lies in the subcritical case p < pc(�), where [10] used anexponential estimate for the volume of C�0 . In our case, Lemma (4.4.1) su�cesfor the in�nite di�erentiability of �p(�), via (4.4.3), but is not strong enough toimply real-analyticity. The required arguments are straightforward, and we omitthe details. �In the forthcoming proof of Theorem (3.10), we shall make use of the followingresult, obtained by summing estimate (5.1.3).(5.1.4) Corollary. Let 0 < p0 < p1 < 1 and a0 > 0. Then (@=@p)�p(�) isuniformly bounded for p0 � p � p1 and 0 � � � a0.5.2. Proof of Theorem (3.6) in the Poisson caseWe begin with two lemmas.(5.2.1) Lemma. For each n � 1, there exists a measure �n = ��n which is concen-trated on the interval [0; (n+ 1)jB(�)j] and has the property thatPp�jC�0 j = n+ 1 �� 0 2 !� = pn Z(0;1) e�pV d�n(V ) for p > 0:
Proof. Fix � � 0 and n � 1. Let x = fx1; x2; : : : ; xng � Rd . We write Un(x)for the indicator function that the graph G�(0;x), obtained from the vertex setf0; x1; x2; : : : ; xng by joining all pairs of points which are separated by a distance� or less, is connected. We write V (x) for the volume of the union D(x) = B(�)[(Snm=1B(xi; �)) of balls. Now, jC�0 j = n + 1 if and only if the following two



PERCOLATION AND MINIMAL SPANNING TREES 19statements hold: (i) there exists a subset X = fX1; X2; : : : ; Xng of ! n f0g suchthat Un(X) = 1, and (ii) the region D(X)nf0; X1; X2; : : : ; Xng is empty. Therefore,Pp�jC�0 j = n+ 1 �� 0 2 !� = 1n! ZRd � � �ZRd Un(x)e�pV (x)pn dx1dx2 : : : dxn:It follows by a change of variables thatPp�jC�0 j = n+ 1 �� 0 2 !� = pn Z(0;1) e�pV d�n(V )for some measure �n. Since jV (x)j � (n+1)jB(�)j, the measure �n is concentratedon the required interval. �The mean number of points within a region of volume V equals pV . The followinglemma provides large-deviation bounds for the number of points in a given region.(5.2.2) Lemma. Let �n be given as in Lemma (5.2.1). There exists an absoluteconstant 
0 such that, for p; � > 0 and n � 0,Zjn�pV j>pn�pne�pV d�n(V ) � 
0pnn�ep�(1� p�)�n + �e�p�(1 + p�)�noif p� < 1 and n > (p�)�1.Proof. For any p > 01Xn=0 Z pne�pV d�n(V ) = Pp�jC�0 j <1 �� 0 2 !� � 1;whence no term in the sum exceeds 1. Therefore, if p > 0 and 0 < v < (n+1)jB(�)j,p�n � Z e�pV d�n(V ) � e�pv�n (0; v) ;where �n(a; b) is the �n-measure of the interval (a; b). Optimising over p for �xedv gives(5.2.3) �n (0; v) � �evn �n :Split the the integral on the left hand side of the inequality in the statement ofLemma (5.2.2) into two pieces corresponding to V < (n=p)(1 � p�) and V >



20 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLER(n=p)(1 + p�). In the �rst integral, integrate by parts and use (5.2.3) to obtainthat it equalspn+1 Z(0;1) e�pv�n �0; v ^ �np (1� p�)�� dv� Z n(1�p�)=p0 e�pv �epvn �n p dv + Z 1n(1�p�)=p e�pvp[e(1� p�)]n dv= (e=n)n Z n(1�p�)0 une�u du+ �ep�(1� p�)�n :Similarly, the second term is bounded by (e=n)n R1n(1+p�) une�udu. By a re�nementof Stirling's formula (see [9], p. 54), (e=n)n � ep2�n=n!, whence the sum of thetwo terms is bounded above by�ep�(1� p�)�n + ep2�nProb�����Sn+1n � 1���� > p��;where Sn+1 is the sum of n+1 independent mean-1 exponential random variables.Using Markov's inequality in the usual way (see [13], p. 184),Prob (Sn=n > a) � expnn (1� a+ log a)o if a > 1Prob (Sn=n < a) � expnn (1� a+ log a)o if 0 < a < 1:Substituting a = an = (1� p�)n=(n+ 1), we obtain the claim of the lemma. �From (3.1) and Lemma (5.2.1), we have that�p(�) = 1Xn=0 1n+ 1 Z pne�pV d�n(V ):As in the lattice case, it su�ces to show that, for 0 < p1 <1, the sum of absolutevalues of the term-wise derivatives converges uniformly for p 2 [p1;1). Let � > 0.The absolute value of the nth term of this sum satis�es1n+ 1 ����Z �np � V � pne�pV d�n(V )����(5.2.4) � Z ����1p � Vn ����pne�pV d�n(V )� �Pp�jC�0 j = n+ 1 �� 0 2 !�+ 1 + 2jB(�)jp Zjn�pV j>pn� pne�pV d�n(V );



PERCOLATION AND MINIMAL SPANNING TREES 21since �n is supported on [0; (n+ 1)jB(�)j]. Choose � by p� = �4n�1 logn�1=2 sothat, for large n, �ep�(1� p�)�n � n�2 and �e�p�(1 + p�)�n � en�2: Substitutingfrom Lemma (5.2.2), we obtain that there exists a constant 
1, depending only on�, such that the right side of (5.2.4) is bounded above by1pr4 lognn Pp�jC�0 j = n+ 1 �� 0 2 !�+ 
1pn3=2 :Summing, and using the fact that P1n=0 Pp�jC�0 j = n+ 1 �� 0 2 !� � 1 we obtainthat, for N su�ciently large and p � p1,1Xn=N ���� ddp 1n+ 1 Z pne�pV d�n(V )���� � 1p1r4 logNN + 
1p1 1Xn=N 1n3=2 :The result follows. �6. Proof of Theorem (3.7), Further Properties of Hp6.1. Proof of Theorem (3.7)Suppose that ! 2 
 and 0 2 !. The map � 7! jC�0 j�1 is readily seen to beright-continuous, and it follows by the bounded convergence theorem that Hp( � ) isright-continuous also. Obviously Hp(0) = 0. Furthermore,�p(�) � N�1 + Pp�j! \B(�)j � N � 1� for N � 2:It follows that Hp(�)! 1 as �!1, implying that Hp is a distribution function.In the Poisson case, (3.2) and Theorem (3.6) imply that Hp(�) is di�eren-tiable in � on (0;1). Inequality (3.8) then follows from (4.3.3) and the fact that1fVn � 1 < (1� ")pjAnjg ! 0 a.s. as n!1, for �xed " > 0.6.2. Further properties of HpIn proving part (iii) of Theorem (3.10) in the lattice case, we shall need to under-stand the behaviour of the distribution function Hp in the limit as p # 0. We endowthe space of probability measures on R+ with the topology of weak convergence. Itis an immediate consequence of Theorem (3.6) and Theorem (3.7) that the mappingp 7! Hp is a continuous function from (0;1) to the space of probability measureson R+ . Furthermore, Hp converges vaguely to H0 as p ! 0; note that H0 is iden-tically zero, which is not a proper distribution function. In order to control theescape of mass to in�nity, we re-scale Hp by de�ning the function(6.2.1) eHp(�) = Hp(p�1=d�):We shall now state and prove the relevant weak convergence theorem.



22 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLER(6.2.2) Theorem. We have that eHp converges weakly to HP1 as p! 0.Proof. This is a trivial consequence of re-scaling in the Poisson case, and there-fore we consider only the lattice case. We need to show that, for �xed � > 0,�p(p�1=d�) ! �P1 (�) as p ! 0. Let 
0 be the collection of locally �nite subsets !of Rd for which 0 2 !; for ! 2 
0, de�ne f�(!) = jC�0 (!)j�1. Then it su�ces toshow that(6.2.3) Z f�(!) d�p(!)! Z f�(!) d�(!) as p! 0;where �p and � are, respectively, the measures on 
0 corresponding to the set ofopen sites of site percolation at density p on p1=dL, and the Poisson point pro-cess with intensity measure j � j, both conditioned to include the origin. Sincef� is bounded, (6.2.3) will follow if we can �nd a topology on 
0 under which(a) 
0 is a complete separable metric space, (b) �p converges weakly to �, and(c) the set of discontinuities of f� has measure 0 under �. A suitable topol-ogy is the Skorohod topology. This topology can be speci�ed by requiring that!n ! ! if and only if j!n \ Bj ! j! \ Bj for every open ball B � Rd . It iseasy to check that, under the Skorohod topology, f� is continuous o� the setf! 2 
0 : kx� yk = � for some x; y 2 !g, and that this set has measure 0 under�. �7. Proof of Theorem (3.10)(i), Convergence of MomentsWe give the details only for the lattice case with L = Zd. For the other cases, one�rst re-scales as in Section 4.1, and then uses Lemma (4.1.1) before proceeding asin the case dealt with here.We begin by stating a lemma which is an easy consequence of standard theorems(see Thm 7.10.3 of [13]).(7.1) Lemma. Suppose � is a positive measure on the measure space (
;F) andfn, f , gn, and g are functions which are non-negative, F-measurable, and inte-grable with respect to �. Suppose gn ! g almost everywhere with respect to �, andR gn d�! R g d� as n!1. Then(i) R jgn � gj d�! 0, and(ii) if fn � gn and fn ! f �-a.e., then R jfn � f j d�! 0.Since Mj;n � 0, it su�ces by Lemma (7.1)(i) to show that Mj;n ! mj(p) a.s.and that E p (Mj;n)! mj(p).Almost sure convergence. For j � 1, let �j be the measure on (0;1) de�ned byd�j(�) = j�j�1 d�. We must show that, for almost all !,Z (1� Fn(�; !)) d�j(�)! Z �p(�) d�j(�) as n!1:



PERCOLATION AND MINIMAL SPANNING TREES 23It follows from Theorem (3.3) that, for almost every !,for every rational �; 1� Fn(�; !)! �p(�); and 1� eFn(�; !)! Pp (X1 > �);where eFn and X1 are given as in Theorem (4.2.1). Using Theorem (4.2.1) andLemma (7.1)(ii), it su�ces to show thatZ (1� eFn(�; !)) d�j(�)! Z Pp (X1 > �) d�j(�) a.s.Now Vn !1 a.s., andZ (1� eFn(�; !)) d�j(�) = 1Vn � 1 Vn�1Xk=1 Xk(!)j for j � 1:By the strong law, both sides converge a.s. to the jth moment of the geometricdistribution, as required.Convergence of expected values. If Vn(!) � 1, then Fn(�; !) = 0 for all �. Thus wehave (integrating by parts and using Tonelli's theorem) thatE p (Mj;n(!)) = Z j�j�1E p�(1� Fn(�))1fVn > 1g� d�;where we have suppressed reference to !. However, in the notation of Theorem(4.2.1), we have that E p�(1� Fn(�))1fVn > 1g� is no greater thanE p �(1� eFn(�))1fVn > 1g� = E p  1fVn > 1gVn � 1 Vn�1Xk=1 1fXk > �g!(7.2)
� 3E p  1Vn + 1 VnXk=0 1fXk > �g!;where the Xi are de�ned as in the proof of Theorem (4.2.1). Let Mn = jAnj. Notethat Vn = inf nk :Pki=0Xk > Mno, whence Vn is a stopping time with respect tothe natural �ltration fFk : k � 0g generated by the sequence fX0; X1; : : :g. LetYk = 1fXk > �g. We have that� VnXk=0Yk�2 = � VnXk=0(Yk � E pYk)�2 + (Vn + 1)2E p (Y0)2+ 2(Vn + 1)E p (Y0) VnXk=0(Yk � E pYk);



24 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERwhence, by Wald's equation ([13], p. 396) and the Cauchy{Schwarz inequality,Ep "� VnXk=0Yk�2# � Sp(n) + E p �(Vn + 1)2�E p (Y0)2+ 2E p (Y0)�E p �(Vn + 1)2�Sp(n)	1=2 ;where, by Exercise (10.2.15) of [13],Sp(n) = varp " VnXk=0(Yk � E pYk)# = E p (Vn + 1)varp(Y0):Now, E p(Y 20 ) = E p(Y0) = Pp (X0 > �) � 
0(1� p)� where 
0 is a constant. Also,Vn is the sum of Mn independent identically distributed random variables, whenceE pVn =Mnp, E pV 2n �Mnp+ (Mnp)2, and E p�(Vn + 1)�2� � 2(Mnp)�2. By (7.2)and the Cauchy{Schwarz inequality again, we have thatE p�(1� Fn(�))1fVn > 1g� � 
1(1� p)�=2where 
1 is a constant. Convergence of E p (Mn;j) to mj(p) now follows by thedominated convergence theorem and Theorem (3.3).8. Remaining Proofs, Di�erentiability of the mjThere remain the proofs of parts (ii){(iii) of Theorem (3.10), and the proof ofTheorem (3.11).8.1. The lattice case of Theorem (3.10)(ii)We begin with the proof of Theorem (3.10)(ii) in the lattice case, beginning withthe statement that mj(p) is once di�erentiable. Let j � 1. By (3.1) and integrationby parts, we have that(8.1.1) mj(p) = Z 10 j�j�1�p(�) d�:Using the mean value and dominated convergence theorems, it is enough to showthat, for any j � 0 and any p0, p1 with 0 < p0 < p1 < 1,(8.1.2) Z 10 �j supp2[p0;p1] ���� @@p�p(�)����d� < 1:By Corollary (5.1.4), the integrand is uniformly bounded for 0 � � � a0 wherea0 is as in Lemma (4.4.2)(b). To deal with large �, we utilise as follows the proofthat � is in�nitely di�erentiable for nearest neighbour bond percolation (see [10],



PERCOLATION AND MINIMAL SPANNING TREES 25Thm (6.120), pp. 140{141)). By Lemma (4.4.2)(b) and (4.4.3), there exist positiveconstants 
2 and � such that, for all n,(8.1.3) Pp (jC�0 j = n) � 
2 (1� p)�n1=d�1_(d�2) if � � a0 and p � p0:Therefore, by (5.1.1), if � � a0 and p0 � p = 1� q � p1,���� @@p�p(�)���� � 1Xn=1Xb a�nb����1p � b=nq ����pnqb� (1 + �(L)�d)p0(1� p1) � 1Xn=1Pp (jC�0 j = n)� 
3�d 1Xn=1 (1� p0)�n1=d�1_(d�2)� 
4�d (1� p0)��1_(d�2)where the 
i depend only on L, a0, p0, and p1. Inequality (8.1.2) follows.Let r � 1. In order to prove that mj+1(p) is r times di�erentiable o� the setfpc(�k) : k � 1g, it su�ces to show the following: if K � 0 and pc(�K+1) < p0 <p1 < pc(�K), then(8.1.4) Z 10 �j supp2[p0;p1] ���� @r@pr �p(�)���� d� <1:The derivatives in (8.1.4) exist by Theorem (3.6). Furthermore, by (5.1.1) and(5.1.2), ���� @r@pr �p(�)���� � A(1 + �)dr 1Xn=1nr�1Pp (jC�0 j = n)(8.1.5) = A(1 + �)drE p�jC�0 jr�1; jC�0 j <1�for some A = A(p0; p1; r;L).Note for future use that(8.1.6) �p(�) = � 1 if � < �1;�p(�k) if �k � � < �k+1where �0 = 0, and also that �k !1 as k !1.Let a0 (> �K+1) be as in Lemma (4.4.2)(b), and split the integral in (8.1.4)into three parts, corresponding to the intervals [0; �K+1), [�K+1; a0), and [a0;1).By (8.1.3) and (8.1.5), the third of these three integrals is �nite. The right side of(8.1.5) is non-decreasing in p and �, for � < �K+1 and p < pc(�K), whence the�rst integral is no greater thanA (1 + �K+1)j+dr+1 E p1 �jC�K0 jr�1�:



26 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERThis is �nite, by Lemma (4.4.1).By (8.1.6), there exist constants B, L such that the middle integral is no greaterthan B(1 + �L)dr LXk=K+1��j+1k+1 � �j+1k � supp0�p�p1 E p�jC�k0 jr�1; jC�k0 j <1�;which is �nite by Lemma (4.4.2)(a) and (4.4.3).8.2. The Poisson case of Theorem (3.10)(ii)It follows from (3.2) and (8.1.1) thatmPj (p) = Z 10 j�j�1�Pp (�) d�(8.2.1) = Z 10 j�j�1�P1 (p1=d�) d� = p�j=dmPj (1):Finally, mPj (1) <1 by (3.8).8.3. Proof of Theorem (3.10)(iii)This is a trivial consequence of re-scaling for the Poisson model, and so we consideronly the lattice model. Let j � 1. We are required to prove thatZ[0;1) �j d eHp(�)! Z[0;1) �j dHP1 (�) as p! 0:where eHp is given by (6.2.1). Since eHp ) HP1 as p ! 0 (cf. Theorem (6.2.2)), itsu�ces to prove that, for " > 0, there exists M such that(8.3.1) Z 1M �j d eHp(�) < " for all p 2 (0; 12 ]:Now, by (6.2.1) and integration by parts,M Z 1M �j d eHp(�) � Z 10 �j+1 d eHp(�)(8.3.2) = p(j+1)=d Z 10 �j+1 dHp(�)= p(j+1)=d�� lim�!1h�j+1�p(�)i+ Z 10 (j + 1)�j�p(�) d�� :Let �n = EpVn. By Lemma (4.3.1),�p(�) = limn!1 E p �En(1)� En(�)Vn � 1 �� limn!1 �Pp �Vn � 12�n�+ E p (En(1)� En(�))12�n � 1 �� 
2p exp(�
1p�d)



PERCOLATION AND MINIMAL SPANNING TREES 27for large � and some positive constants 
i. The required (8.3.1) follows from(8.3.2). �8.4. Proof of Theorem (3.11)Let k; j; r � 1 and assume that pc(�k) < 1. We have from (8.1.1) and (8.1.6) thatmj(p) = ��jk+1 � �jk��p(�k) + ZI j�j�1�p(�) d�where I = [0;1) n (�k; �k+1). By the argument presented in Section 8.1, the inte-gral is in�nitely di�erentiable at the point pc(�k). The claim of the theorem is animmediate consequence. �Appendix. Graph theoryA graph � consists of a set V(�) of points called the vertices of �, and a set E(�) of(unordered) pairs of distinct points of V(�) called the edges of �. If e = fv; wg 2E(�), v and w are called the endvertices of e. A complete graph is a graph �such that E(�) = ffx; yg : x; y 2 V(�); x 6= yg. The graph � is �nite if V(�) is�nite. A subgraph of a graph � is a graph whose vertex set is a subset of V(�)and whose edge set is a subset of E(�). A spanning subgraph of a graph � is asubgraph of � whose vertex set coincides with that of �. A path � in a graph � isa �nite sequence v1; e1; v2; : : : ; vn�1; en�1; vn where the vi are distinct vertices inV(�), and ei = fvi; vi+1g 2 E(�). In this case v1 is called the initial vertex of �and vn its �nal vertex. A circuit is a path v1; e1; v2; : : : ; vn together with the edgeen = fvn; v1g. A graph � is connected if for every pair v; w of vertices in � thereexists a path with initial vertex v and �nal vertex w. A component in a graph �is a maximal connected subgraph of �. A tree is a connected graph containing nocircuits. A forest is a graph without circuits. A spanning tree of a connected graphis a spanning subgraph that is a tree. A weighted graph is a graph � together withan assignment e 7! w(e) of non-negative weights to its edges. A minimal spanningtree (MST) T of a weighted graph � is a spanning tree of � for whichPe2E(T ) w(e)is minimal. If ! is a locally �nite subset of Rd , a spanning tree of ! is a spanningtree of the complete graph with vertex set !.Let � be a �nite weighted graph with n edges. The following routine, called`Kruskal's algorithm', is a standard greedy method for �nding a MST in � ([6]).Let e1; : : : ; en be a �xed ordering of the edges of � such that w(ei) � w(ei+1) forall i. At stage 0 we are given the vertex set of � and no edges. We now examine theedges in the given order. At each stage, we add the current edge ei to the graphobtained so far if and only if this does not create a circuit. The graph obtainedthereby, after all edges have been examined, is a MST.If the w(ei) are not distinct, then there may be more than one MST. For anygiven MST T of �, there exists an ordering of the vertices (as above) for whichKruskal's algorithm gives rise to T .



28 C. BEZUIDENHOUT, G. GRIMMETT, A. L�OFFLERFor any �nite graph �, we let V (�), E(�), and K(�) respectively denote thenumber of vertices, edges, and connected components of �. It is elementary that,if F is a �nite forest, then(A.1) E(F) = V (F)�K(F):For any weighted graph �, we denote by �� the spanning subgraph of � obtainedby deleting all edges whose weight strictly exceeds �. We shall make use of thefollowing inequality.(A.2) Lemma. Suppose � is any �nite connected weighted graph and T is a spanningtree of �. Then(A.3) E(T )� E(T�) � K(��)� 1 for all �;with equality for all � if and only if T is a minimal spanning tree.Proof. We apply (A.1) to T and to T�. This yields E(T )�E(T�) = K(T�)� 1,whence (A.3) follows. For the last statement, it su�ces to show that any MSTobtained via Kruskal's greedy algorithm satis�es (A.3) with equality. Fix an ap-propriate ordering of the edges of �, and construct a MST T using Kruskal's al-gorithm. After all edges of weight � or less have been added, but before any edgewith weight exceeding � has been considered, the current graph will be T �. Noedge of length � or less will be considered again, and therefore the components ofT � are precisely those of ��. Since T � is a spanning forest, we have by (A.1) thatE(T �) = V (�)�K(��). Taken together with the fact that E(T ) = V (�)� 1, oneobtains equality in (A.3). Finally, if a spanning tree T satis�es (A.3) with equalityfor all �, then E(T�) = E(T �) for any MST T and all �; it follows that T is aMST. �We de�ne the `edge-weight distribution function' F� of a weighted graph � by(2.1).(A.4) Corollary. Let � be a �nite connected weighted graph.(a) Any two MSTs in � have the same edge-weight distribution function.(b) If T is a spanning tree and T is a MST of �, then FT dominates FT in thesense that 1� FT (�) � 1� FT (�) for all � 2 R:Proof. Both parts follow from Lemma (A.2) and the fact that E(T ) = V (�) � 1for any spanning tree T . �
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