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Abstract

We study the existence of finite and infinite entangled graphs in the
bond percolation process in three dimensions with density p. After a dis-
cussion of the relevant definitions, the entanglement critical probabilities
are defined. The size of the maximal entangled graph at the origin is stud-
ied for small p, and it is shown that this graph has radius whose tail decays
at least as fast as exp(−αn/ log n); indeed, the logarithm may be replaced
by any iterate of logarithm for an appropriate positive constant α. We ex-
plore the question of almost sure uniqueness of the infinite maximal open
entangled graph when p is large, and we establish two relevant theorems.
We make several conjectures concerning the properties of entangled graphs
in percolation.

1 Introduction

Under what conditions does a set of arcs in R
3 have a large entangled subset?

Such an informal question arises frequently in polymer science, but its mathe-
matical formulation poses some interesting challenges. One of these is to present
an acceptable definition of a finite or infinite entangled set of arcs. Another is
to establish conditions under which such entanglement occurs. In the work re-
ported in this paper, we discuss the definition of entanglement, and we study the
existence of entangled graphs in the bond percolation model.

We shall work throughout this paper with the three-dimensional cubic lattice,
denoted L. As in the theory of knots (see [14]), the entanglement of arcs is
intrinsically a three-dimensional affair. Our choice of the cubic lattice is largely
a matter of convenience, and other choices are possible.
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Let F be a finite set of edges of L. Imagining each edge in F as an elastic
but unbreakable connection, we may think of F as being ‘entangled’ if no part
of F may be physically separated from the rest. A formal definition of a finite
entangled graph is given in Section 2.

Given an infinite set G of edges of L, a basic question for certain applications
is whether or not G contains entangled graphs on all scales. This leads us to
the notion of an ‘infinite entangled graph’. There are various possible ways of
defining such an object, and we discuss this in Section 2. We have been struck
by the apparent absence in the topology literature of a study of topological en-
tanglement. For references to entanglement in the physics literature, the reader
is referred to the bibliographies in [6] and [12].

In many physical systems, one is concerned with a family of arcs in R
3 which

have been sampled from a given probability measure. One of the simplest such
measures is product measure. In the case of L, this means that each edge of L

is retained (or declared ‘open’) with a certain probability p, with different edges
being retained independently of one another. The resulting random set of open
edges has been studied in depth under the title ‘bond percolation’ (see [8]), and its
theory has a multifaceted relevance to the study of disordered physical systems.

The question of entanglement in percolation was posed first in [12], where
certain numerical studies concerning a hypothetical ‘entanglement critical prob-
ability’ were reported. The question implicit in [12] was to determine for which
values of p the bond percolation model on L contains entangled graphs on all
scales. The principal numerical conclusion of [12] was that large entangled graphs
occur for some values of p satisfying p < pc, where pc is the usual critical prob-
ability (that is, the threshold value of p for the property that there exists an
infinite connected graph of open edges). The above strict inequality was made
rigorous in [2], but no formal definition or discussion of infinite entanglement was
presented there.

It was proved more recently in [11] that no infinite entangled graphs exist
for sufficiently small positive values of p. More explicitly, it was proved that, for
small p, the origin of L is almost surely contained in the inside of some sphere of
R

3 which intersects no open edge of the percolation process. Here and later, the
word ‘sphere’ is used in its topological sense.

Our general target here is to present and discuss possible definitions for finite
and infinite entangled graphs in L, and to study the existence (or not) of such
objects in bond percolation on L. Such definitions appear in Section 2. In contrast
with the case of finite entangled graphs, some judgement is required in order to
achieve a ‘correct’ definition of an infinite entangled graph, and it seems likely
that an appropriate definition will depend on the particular physical application.
We shall present two ‘extremal definitions’, and we discuss how these definitions
are related to the concepts of ‘free’ and ‘wired’ boundary conditions borrowed
from the theory of statistical physics.

Having introduced a theory of entanglement, we apply this in the context of
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percolation by concentrating on three questions. Firstly, what can be said about
the existence and uniqueness of an ‘entanglement critical probability’? We have
been unable to prove that all ‘reasonable’ definitions of infinite entanglement lead
to the same critical probability.

Secondly, when p is smaller than the entanglement critical probability, how
large is the maximal entangled graph at the origin? Motivated by results con-
cerning connected clusters in percolation (see [8], Chapter 5), it seems reasonable
to expect the tail of the distribution of the radius of the finite entangled graph
E at the origin to decay exponentially. Progress in this direction is presented
in Theorem 3.2, where it is proved that, for p sufficiently small, the tail decays
‘near-exponentially’. Specifically, for all k ≥ 1 and for p sufficiently small, we
have that

Pp

(
rad(E) > r

)
≤ exp

(
−

αkr

λk(r)

)
,

where rad(E) is the radius of E, λk is the kth iterate of logarithm, and αk =
αk(p) > 0 for small p. This is achieved via an inequality introduced in [7] to
obtain comparable results for random-cluster models.

Thirdly, we ask whether, for large p, there exists almost surely a unique infinite
maximal entangled graph. Whereas the techniques of [4] have answered many
such questions for connected graphs, the situation for entangled graphs (as for
infinite ‘rigid’ graphs; see [10]), is much less clear. Theorems 3.3 and 3.4 represent
partial progress towards answering this question. The first theorem states that,
if p is sufficiently close to 1, there exists almost surely a unique infinite maximal
entangled graph; this result is valid for all reasonable choices of the definition of
infinite entanglement, and furthermore the infinite maximal entangled graph is
identical for all such choices. The second theorem asserts the uniqueness of the
infinite maximal entangled graph when p is greater than the connectivity critical
probability pc, for a particular definition of infinite entanglement.

Let en be the number of entangled graphs of n lattice edges containing the
origin. It is clear that en is at least as large as the number of connected graphs of
size n containing the origin (‘animals’), whence en ≥ µn for some constant µ > 1.
We prove in Theorem 3.1 that

en ≤ exp
(
An + 3

8
n log n

)

for some constant A; we pose the question of determining the true rate of growth
of en.

2 Definitions and Preliminary Results

We let Z
3 be the set of all 3-vectors x = (x1, x2, x3) of integers, and we define the

cubic lattice to be the set of pairs

L =
{
{x, y} ⊆ Z

3 : ‖x − y‖ = 1
}
,
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where ‖ · ‖ denotes Euclidean distance. The elements of Z
3 and L are called

vertices and edges, respectively. Thus we define the lattice by its set of edges,
a definition whose convenience when working with entanglement will become
evident. A graph is a non-empty set of edges G ⊆ L, and a subgraph of a graph G
is a non-empty subset of G. The vertex set of a graph G is the set V (G) =

⋃
e∈G e.

We say that a graph G contains the vertex x if x ∈ V (G). The origin of L is
the vertex O = (0, 0, 0). Two edges are called adjacent if they have exactly one
common vertex.

We shall consider bond percolation on the lattice L. The appropriate sample
space is the set Ω = {0, 1}L, which we equip with the product σ-field. For
p ∈ [0, 1], we let P L

p be the product measure on Ω with parameter p. For e ∈ L

and ω ∈ Ω, we call e open (in ω) if ω(e) = 1, and we call e closed otherwise.
Similarly, if E ⊆ L, we call E open if every element of E is open.

We write K(ω) for the set of open edges of the configuration ω ∈ Ω. In
percolation theory, one is usually concerned with the connected components of
the graph K. A quantity of particular interest is the percolation probability

θ(p) = P L
p (K has an infinite connected subgraph containing O),

which gives rise to the critical probability

pc = sup{p : θ(p) = 0}.

See [8] for more details of percolation theory.
Our aim in the present paper is to study ‘entangled’ subgraphs of K in a way

analogous to the existing theory of connected subgraphs. The first step in this
direction is to formulate a precise definition of an entangled graph; this will be
facilitated by some further notation. For a finite subset A = {a1, a2, . . . , ak} of
R

3, we define its (closed) convex hull 〈A〉 by

〈A〉 =

{
∑

i

λiai : λi ≥ 0 for each i, and
∑

i

λi = 1

}
.

Note that, for an edge e ∈ L, 〈e〉 is the closed unit line segment joining the two
vertices of e. For a graph E we write [E] =

⋃
e∈E〈e〉. (This definition applies to

graphs only; the same notation will be used, with a slightly different meaning,
for sets for plaquettes; see Section 5.) For any closed set R of R

3 and any ǫ > 0
we define the (open) ǫ-neighbourhood of R, denoted R{ǫ}, to be the set of points
at Euclidean distance strictly less than ǫ from R; that is to say,

R{ǫ} = {x ∈ R
3 : ‖x − r‖ < ǫ for some r ∈ R}.

By a d-ball (respectively d-sphere) we mean a closed simplicial complex in R
3

which is homeomorphic to {x ∈ R
d : ‖x‖ ≤ 1} (respectively {x ∈ R

d+1 : ‖x‖ =
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1}). (A simplicial complex is a compact subset of R
3 with certain regularity

properties; see [16] for a formal definition.) A 0-ball we refer to as a point, a
1-ball as an arc, a 2-ball as a disc, a 3-ball as a ball, a 1-sphere as a loop, and
a 2-sphere as a sphere. Let R be a d-ball and let φ be a homeomorphism from
{x ∈ R

d : ‖x‖ ≤ 1} to R. We define the boundary of R, written ∆R, to be the
(d − 1)-sphere φ({x ∈ R

d : ‖x‖ = 1}). The interior of R is the set R \ ∆R.
If S is a sphere, we define its inside to be the bounded connected component

of R
3 \ S, and its outside to be the unbounded connected component of R

3 \ S.
We use the term plane to denote a piecewise-linear embedding of R

2 in R
3 which

is locally flat at infinity (see [3] for a definition of this term) when regarded as
an embedding of a 2-sphere in a 3-sphere; if P is a plane, the two connected
components of R

3 \ P are called its half-spaces. We define the radius of a set
R ⊆ R

3 by
rad(R) = sup{‖x‖ : x ∈ R}.

(We shall apply this definition only to a set R which contains O, or to a sphere
having O in its inside.)

If R is a subset of R
3 and S is a sphere, we say that S separates R if R∩S = ∅

and in addition R intersects both the inside and the outside of S. Similarly, if
P is a plane, we say that P separates R if R ∩ P = ∅ and R intersects both
half-spaces of P .

We turn now towards a formal definition of the concept of entanglement. Our
approach will be based on the observation made in [11] that any graph E which
we might wish to regard as being entangled has the property that there exists
no sphere which separates it. We begin with an observation concerning finite
graphs.

Proposition 2.1 Let F be a finite graph. The following three statements are
equivalent.

(i) [F ] is separated by no sphere.

(ii) [F ] is separated by no plane.

(iii) There exists no piecewise-linear homeomorphism of R
3 to itself such that

the image of [F ] does not intersect R
2×{0} but intersects both R

2×(−∞, 0)
and R

2 × (0,∞).

The statements of this proposition are also equivalent to a certain fourth
statement which uses the jargon of knot theory. We do not explore this in detail
here, but summarise it as follows. One may represent a finite graph by means of
a planar ‘diagram’, and one may define a system of moves analogous to Reider-
meister moves for knot diagrams (see [14]). It turns out that the assertions of
Proposition 2.1 are equivalent to the following statement:

A diagram of [F ] may not be transformed into a disconnected diagram
via a sequence of moves.
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Sketch Proof of Proposition 2.1. We present informal accounts of the
required arguments; a more formal account would be long but uninformative.
Writing (i), (ii), (iii) for the negations of the three assertions, we shall show that
(i) implies (ii), (ii) implies (iii), and (iii) implies (i). Firstly, note that any sphere
separating [F ] may be turned into a plane by attaching a long thin infinite tube
which does not intersect [F ]. There are standard topological arguments which
may be used to show that (ii) implies (iii); see [3]. Finally, suppose there exists
a homeomorphism φ as described in (iii), and let H(r) denote the sphere which
is the boundary of the ball [−r, r]2 × [0, r]. Since F is finite, we may find r
sufficiently large that H(r) separates φ(F ). We then apply the inverse of φ to
find that (i) does not hold. 2

We write F for the set of all finite graphs satisfying the statements of Propo-
sition 2.1. We think of F as the set of all finite ‘entangled’ graphs, although
we prefer not to give a formal definition of this term, in order to avoid possible
confusion with certain forthcoming definitions for infinite graphs. Note that F
contains every finite connected graph.

We turn now to infinite graphs. Examples were given in [11] of infinite graphs
which one would wish to regard as being ‘entangled’, together with other graphs
for which the use of the term is questionable. It turns out that there is more
than one plausible definition of entanglement for infinite graphs, and the most
appropriate choice may depend on the particular application. Furthermore, chal-
lenging topological questions arise in the general study of entanglements of infinite
structures. Rather than pursuing such questions directly, we adopt the following
approach. We shall describe a class of families of graphs (called ‘entanglement
systems’), and we claim that any reasonable definition of ‘entanglement’ leads to a
family of graphs belonging to this class. We shall also characterise two particular
families within this class which are extremal in the sense that any entanglement
system contains the smaller and is contained in the larger.

Let E be a family of (finite or infinite) graphs in L. We think of E as a candi-
date for the set of all ‘entangled graphs’, according to some definition. Members
of E are called E-graphs; if A ⊆ L, and B is a subgraph of A lying in E , we call B
a E-subgraph of A. We call E an entanglement system if the following conditions
hold:

(E1) The intersection of E with the set of finite graphs in L is exactly F .

(E2) For any A1, A2, . . . ∈ E with V (Ai) ∩ V (Aj) 6= ∅ for i 6= j, we have that⋃
i Ai ∈ E .

(E3) If A ∈ E then [A] is separated by no sphere.

(Note that our definition of an entanglement system differs from the definition
of an ‘e-system’ given in [11].) We call an entanglement system measurable if in
addition:
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(E4) For all x ∈ Z
3, the set of configurations Ix(E) = {ω ∈ Ω : K(ω) has an

infinite E-subgraph containing x} is measurable.

We make some remarks concerning these definitions. Firstly, we claim that
properties (E1)–(E3) are reasonable requirements for the property of ‘entangle-
ment’. Secondly, it might seem reasonable to replace the word ‘sphere’ in (E3) by
‘plane’; it may be seen that this would lead to a restriction of the definition, and
the forthcoming results would then be weakened. Thirdly, we remark that con-
dition (E4) above will be necessary for the study of entanglement in percolation;
one may construct entanglement systems E which are not measurable.

Fourthly, the following proposition states that entanglement systems are clos-
ed under the operation of taking uncountable unions of graphs with pairwise
intersecting vertex sets.

Proposition 2.2 Let E be an entanglement system, and let {Ai : i ∈ I} be a
subset of E satisfying V (Ai)∩ V (Aj) 6= ∅ for i 6= j. The union

⋃
i∈I Ai belongs to

E .

Proof. Let {Ai : i ∈ I} satisfy the conditions of the proposition, and write
A =

⋃
i∈I Ai. For x ∈ V (A), let Dx be the union of all those Ai satisfying

x ∈ V (Ai), say Dx =
⋃

i∈Ix
Ai. For each e ∈ Dx, we may find i(x, e) ∈ Ix such

that e ∈ Ai(x,e). It follows that

Dx =
⋃

e∈Dx

Ai(x,e),

a countable union, whence Dx ∈ E by condition (E2). Also

A =
⋃

x∈Z3

Dx,

a countable union which belongs to E by (E2). 2
Finally, we comment that (E2) may appear unnecessarily strong. A possible

alternative is the following. If A is a collection of subgraphs of L, we define
the ‘intersection graph’ G(A) having vertex set A, and an edge {A, B} whenever
V (A) ∩ V (B) 6= ∅ and A 6= B.

(E2′) For any A1, A2, . . . ∈ E such that the graph G({A1, A2, . . .}) is connected,
we have that

⋃
i Ai ∈ E .

It is elementary to show that (E2) and (E2′) are equivalent. Furthermore, one
may prove a corresponding version of Proposition 2.2, namely that

⋃
i∈I Ai ∈ E

whenever the Ai are such that Ai ∈ E for all i and the graph G({Ai : i ∈ I}) is
connected.
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Let E be an entanglement system, and let x ∈ Z
3 and ω ∈ Ω. We define

Cx(E) to be the union of all open graphs lying in E and containing the vertex
x. By Proposition 2.2, provided Cx(E) is non-empty, it is itself a member of
E . We abbreviate CO(E) to C(E). We define an E-component to be a maximal
E-subgraph of K(ω). It is readily verified that the set of graphs {Cx(E) : x ∈
Z

3} \ {∅} is precisely the set of E-components, and that these graphs partition
K.

The following two families of graphs will be central to our study of entangle-
ment systems:

E0 = {A ⊆ L : A 6= ∅ and every finite subgraph of A is a

subgraph of some F -subgraph of A};

E1 = {A ⊆ L : A 6= ∅ and [A] is separated by no sphere}.

The following proposition states that E0 and E1 are minimal and maximal entan-
glement systems respectively.

Proposition 2.3 The sets E0 and E1 are measurable entanglement systems, and
every entanglement system E satisfies E0 ⊆ E ⊆ E1.

In our proof of Proposition 2.3 we shall make use of the following fact, which
has other applications also.

Proposition 2.4 For all ω ∈ Ω, the set C(E1) is finite if and only if there exists
a sphere lying in R

3 \ [K(ω)] with O in its inside.

We defer the proofs of Propositions 2.3 and 2.4 to the end of this section.
We shall now make some remarks about E0 and E1. The definition of E0 appears
fairly natural, and is analogous to the definition of infinite rigid graphs used in
[10]. Note however that there exist graphs which do not belong to E0 but which
might be regarded as entangled. See, for example, the graph illustrated in Figure
1. On the other hand, E1 contains graphs which we might prefer not to regard
as entangled, such as any graph which is the union of two disjoint doubly infinite
paths.

Note that, for any given ω ∈ Ω, there is at most one infinite E1-component.
This is an immediate consequence of the definition of E1, on noting that the union
of all infinite E1-components is separated by no sphere.

For any measurable entanglement system E , we define

ηE(p) = P L
p

(
|C(E)| = ∞

)
,

and the corresponding critical probability

pEe = sup{p : ηE(p) = 0}.



Entanglement in Percolation 9

Figure 1: This graph comprising a loop around a doubly-infinite path does not
belong to E0.

We use the abbreviations ηj = ηEj and pj
e = p

Ej
e for j = 0, 1. We have by Propo-

sition 2.3 that η0 ≤ ηE ≤ η1, and therefore p1
e ≤ pEe ≤ p0

e , for any entanglement
system E . Since every connected graph lies in E0, we have also that p0

e ≤ pc,
and in particular p0

e < 1. The inequality p0
e ≤ pc may be strengthened to strict

inequality as described in [2]. It was proved in [11] that 0 < p1
e . We summarise

these results as follows:

0 < p1
e ≤ pEe ≤ p0

e < pc < 1 for any entanglement system E .

It is an important unanswered question whether or not p0
e and p1

e are equal.
Finally, we note that the definitions of the entanglement systems E0 and E1

may be motivated by a discussion of ‘boundary conditions’. Let B(n) be the
subgraph of L consisting of all edges both of whose vertices lie in [−n, n]3, and
let ∂B(n) be the set of vertices V (B(n))∩ V (L \B(n)). Given the configuration
ω and the corresponding graph of open edges K(ω), we define K0

n = K ∩ B(n)
and K1

n = K ∪ (L \ B(n)). Thus K0
n (respectively K1

n) is obtained from K by
removing (respectively adding) all edges outside B(n).

It is easily verified that

{|C(E0)| = ∞} = lim sup
n→∞

E0
n,

where

E0
n =

{
K0

n has an F -subgraph which contains O and some vertex of ∂B(n)
}
.

For this reason, we may think of E0 as the family of entangled graphs gener-
ated by what might be termed ‘boundary condition 0’. A similar, and indeed
somewhat stronger, correspondence exists between E1 and ‘boundary condition
1’. Specifically, it may be deduced from Proposition 2.4 that we have

{|C(E1)| = ∞} = lim
n→∞

E1
n,(1)

where

E1
n =

{
K1

n has an F -subgraph which contains O and some vertex of ∂B(n)
}
,

and the limit is decreasing.
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We turn next to the proofs of Propositions 2.3 and 2.4, and begin with the
latter, for which we shall require two topological lemmas. The following abuse of
notation will be convenient: if a and b are real numbers satisfying a < b, and Sa

and Sb are two spheres such that Sa lies in the inside of Sb, we write S[a,b] for the
closed region of R

3 lying between the two spheres; that is, the complement (in
R

3) of the union of the inside of Sa and the outside of Sb. We also write S[−∞,a]

for the union of Sa and its inside, and S[a,∞] for the union of Sa and its outside.
The first lemma states than given any sphere, we may find two further spheres

lying ‘just inside’ and ‘just outside’ the first.

Lemma 2.5 Let S0 be any sphere and let ǫ > 0. There exist spheres denoted S−ǫ

and Sǫ with the following properties: S−ǫ lies in the inside of S0, and S[−ǫ,0] ⊆

S0
{ǫ}; S0 lies in the inside of Sǫ, and S[0,ǫ] ⊆ S0

{ǫ}.

The second lemma concerns homeomorphisms which ‘retract’ one sphere onto
another.

Lemma 2.6 Let a < b < c, and let Sa, Sb and Sc be spheres such that Sa lies in
the inside of Sb, and Sb lies in the inside of Sc.

(i) There exists a piecewise-linear homeomorphism from S[a,∞] to S[b,∞] whose
restriction to S[c,∞] is the identity.

(ii) There exists a piecewise-linear homeomorphism from S[−∞,c] to S[−∞,b]

whose restriction to S[−∞,a] is the identity.

We omit the proofs of Lemmas 2.5 and 2.6, the validity of which may be demon-
strated using standard techniques, as in [16], for example. We are now ready to
prove Proposition 2.4.

Proof of Proposition 2.4. It is immediate from the definition of E1 that
the existence of a sphere with the stated properties implies that C(E1) is finite.
We therefore turn to the proof of the converse statement.

Let ω ∈ Ω and K = K(ω). We write E1(K) for the set of all E1-subgraphs of
K, and we define

Ẽ1(K) =
{
G ⊆ K : G 6= ∅ and [G] is separated by no sphere lying in R

3 \ [K]
}
.

Clearly we have Ẽ1(K) ⊇ E1(K), but these sets are in general unequal: for exam-
ple, if G consists of two non-adjacent edges of a connected subgraph of K, then
G lies in Ẽ1(K) but not in E1(K). We recall the definition of an E1-component,
and we define an Ẽ1-component analogously to be a maximal element of Ẽ1(K).
It is straightforward to check (by the same argument as for E1-components) that
the Ẽ1-components partition K. The central step in the proof of Proposition 2.4
will be to prove the following claim:

for any configuration ω, the set of Ẽ1-components

is identical to the set of E1-components.
(2)
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For any sphere L we write N(L) = N(L, ω) for the number of open edges
e ∈ K(ω) such that L intersects 〈e〉. Since a sphere is a bounded subset of R

3,
N(L) is necessarily finite.

Since Ẽ1(K) ⊇ E1(K), we have that each Ẽ1-component is a union of E1-
components, so all that is required is to rule out the possibility that there exists an
Ẽ1-component which is not an E1-graph. Suppose on the contrary that G is such
an Ẽ1-component, and let L be a sphere which separates [G]. Let G1 (respectively
G2) be the subgraph of G consisting of all edges in the inside (respectively outside)
of L, so that G is the disjoint union of G1 and G2. The sphere L has the following
properties.

(i) [G1] lies in the inside of L.

(ii) [G2] lies in the outside of L.

Note that properties (i) and (ii) imply that L does not intersect [G]. We
recall that N(L) < ∞. If N(L) = 0, L is disjoint from [K], in contradiction
to the assumption that G is an Ẽ1-component. Our approach will be to make
successive modifications to L so as to reduce the number of open edges which it
intersects, while retaining properties (i) and (ii), and to proceed inductively until
the number of such edges has been reduced to zero; this will yield a contradiction
as above.

Suppose N(L) > 0 and let H be an Ẽ1-component such that L intersects [H].
We shall use Lemma 2.6 to modify L so as to remove its intersections with [H].
Since H and G are distinct Ẽ1-components, there exists a sphere, S0 say, lying in
R

3 \ [K], which separates [H]∪ [G], and either [H] lies in the inside of S0 and [G]
lies in the outside, or vice versa. We shall treat the two cases separately. Firstly,
let ǫ > 0 be sufficiently small that S0

{ǫ} ⊆ R
3 \ [K] (that this is possible follows

by a compactness argument), and let S−ǫ and Sǫ be as in Lemma 2.5. Now, if
[H] lies in the inside of S0, let S−1 be any (small) sphere lying in the inside of S−ǫ

and not intersecting L, and apply part (i) of Lemma 2.6 taking a = −1, b = −ǫ
and c = 0. If on the other hand [H] lies in the outside of S0, let S1 be any (large)
sphere having both Sǫ and L in its inside, and apply part (ii) of Lemma 2.6 taking
a = 0, b = ǫ and c = 1. In either case, let φ be the homeomorphism given under
the appropriate part of Lemma 2.6. Evidently φ(L) is a sphere, and we claim
that it satisfies properties (i) and (ii) above (with L replaced with φ(L)), and that
N(φ(L)) < N(L). Properties (i) and (ii) hold because φ is a homeomorphism
which is the identity on [G1] and [G2]. The number of edges N(L) is reduced
for the following reason. The part of L which intersects [H] is mapped by φ
into S0

{ǫ}, whose intersection with [H] is empty. And it is easy to see from the
properties of φ that any edge of K which intersects φ(L) also intersects L. As
explained above, we now argue by induction to obtain a contradiction, and we
have proved the claim (2).

Finally, suppose that |C(E1)| < ∞. By (2), C(E1) is also the Ẽ1-component
at the origin. Let L be any sphere having C(E1) in its inside. We repeat the
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argument above, making successive modifications to L so as to remove its inter-
sections with all other Ẽ1-components, until we have a sphere which has C(E1) in
its inside, and intersects no edges of K. This completes the proof. 2
Proof of Proposition 2.3. In order to prove that E0 and E1 are entangle-
ment systems, we must verify that they satisfy conditions (E1)–(E3). We shall
give details only of the proof that E0 satisfies (E2), the other statements being
straightforward. Suppose that A1, A2, . . . ∈ E0 satisfy the conditions of (E2),
and let F be any finite subgraph of

⋃
i Ai. There exists some finite set of natural

numbers J such that F =
⋃

i∈J Bi, where Bi is some finite subgraph of Ai for each
i ∈ J . There exist finite sets Ci satisfying Bi ⊆ Ci ⊆ Ai for each i ∈ J such the
Ci have pairwise-intersecting vertex sets. Since Ai ∈ E0, we may find F -graphs
Di satisfying Ci ⊆ Di ⊆ Ai. Since the Di have pairwise-intersecting vertex sets,
any sphere which separates

⋃
i∈J Di must separate some Di, a contradiction since

Di ∈ F ; it follows that
⋃

i∈J Di ∈ F . Since F ⊆
⋃

i∈J Di ⊆
⋃

i Ai, we have proved
as required that

⋃
i Ai ∈ E0.

Next we prove the measurability of E0 and E1. By the translation invariance
of E0 and E1, it suffices to prove the measurability of the sets IO(E0) and IO(E1),
as defined in (E4). To see that IO(E0) is measurable, note that

IO(E0) = lim sup
n→∞

En,

where En =
{
ω ∈ Ω : O is contained in some open F -graph of size n

}
.

The set En is measurable, since the number of such F -graphs is finite. (We shall
obtain an explicit upper bound for the number of such graphs in Section 4; a
cruder argument suffices to show that the number is finite.) Turning to E1, we
have by Proposition 2.4 that IO(E1) occurs if and only if there exists no sphere
lying in R

3 \ [K(ω)] with O in its inside. The appropriate set of configurations
may be written as

⋂∞
r=1 Tr where Tr is the event that there exists no such sphere

with radius r or less; each Tr is a cylinder event (compare (1)).
Let E be any entanglement system. We shall prove next that E0 ⊆ E ⊆ E1.

Let A ∈ E0. If A is finite then it is immediate from condition (E1) that A ∈ E .
Otherwise we write A = {e1, e2, . . . } and define Ai = {e1, e2, . . . , ei}. By the
definition of E0, we may find Bi ∈ F satisfying Ai ⊆ Bi ⊆ A, and we have
A =

⋃
i Bi. It follows from properties (E1) and (E2) that A ∈ E . Finally, it is

immediate by (E3) that E ⊆ E1 for every entanglement system E . 2
3 Results

Our first main result concerns the number of F -graphs containing the origin. We
define

en =
∣∣∣
{
F ∈ F : |F | = n and F contains O

}∣∣∣.
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Since every F -graph is connected, en is bounded below by the number of con-
nected graphs of size n containing O; this number grows (asymptotically) expo-
nentially with n (see, for example [8], Chapter 4). The following upper bound
for en will be proved in Section 4.

Theorem 3.1 There exists a constant A such that

en ≤ exp
(
An + 3

8
n log n

)
for all n.

We do not know the true rate of growth of en, or indeed whether or not en

grows faster than all exponential functions of n.
The main result of [11] implies that |C(E1)| < ∞ almost surely if p is suffi-

ciently small but positive. Our next result is to extend this to an upper bound
for the tail of the distribution of the size of C(E1) for small positive p.

We write λk for the kth iterate of the natural logarithm function, defined for
convenience thus:

λ1(x) = log x,

λk+1(x) = max{log(λk(x)), 1} for k ≥ 1.

Theorem 3.2 There exists p0 > 0 such that, for every p < p0 and every k =
1, 2, . . . , there exists αk = αk(p) > 0 such that

P L
p

(
rad(C(E1)) > r

)
≤ exp

(
−

αkr

λk(r)

)
for all r ≥ 0.

In the light of Proposition 2.3, this inequality for E1 implies a corresponding
inequality for any entanglement system E , with the same functions αk. The proof
of Theorem 3.2 will be given in Section 6. The idea of the proof is to refine the
method used in [11] to prove p1

e > 0, making use of some probabilistic tools taken
from [7].

Our next result is that, for p close to 1, there exists a unique infinite E-
component for any measurable entanglement system E ; furthermore this compo-
nent is identical for all measurable entanglement systems.

Theorem 3.3 There exists p1 < 1 such that, whenever p ≥ p1, there exists
almost surely an infinite open graph I with the following property. For every
measurable entanglement system E , I is the unique infinite E-component.

This result implies in particular that the functions η0 and η1 are equal for
large p, since for p ≥ p1 we have

η0(p) = P L
p (I contains O) = η1(p).
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The proof of Theorem 3.3 will be given in Section 7, and depends on showing
that, for p ≥ p1, the origin is almost surely enclosed by an infinite sequence of
nested surfaces with the property that every edge of L lying in such a surface is
open.

We conjecture that, for any entanglement system E , there exists a unique
infinite E-component whenever ηE(p) > 0. As remarked in Section 2, this is
trivially true for the entanglement system E1; and Theorem 3.3 establishes the
conjecture for all E when p is large. Our final result is a partial affirmation of
the conjecture for the entanglement system E0: for p strictly greater than the
connectivity critical probability pc, we have uniqueness for E0. The proof is given
in Section 8.

Theorem 3.4 Suppose p > pc. There exists almost surely a unique infinite E0-
component.

4 The Number of Finite Entangled Graphs

Proof of Theorem 3.1. Suppose F is an F -graph of size n containing O, and
let C1, C2, . . . , Ck be the connected components of F . Note that, provided n ≥ 8,
every Ci satisfies |Ci| ≥ 8. To see this, observe that, given any connected graph
C of size 7 or less, we may find a sphere which does not intersect [C] and which
does not intersect 〈e〉 for any edge e ∈ L not sharing a vertex with C (there is
a unique counterexample with 8 edges, forming a square two-dimensional loop).
Note further that, after re-ordering the indices 1, 2, . . . , k if necessary, we have
that:

(i) C1 contains O, and

(ii) for each i ≥ 1, [Ci+1] intersects the convex hull of [C1 ∪ C2 ∪ · · · ∪ Ci].

If (ii) were to fail for a given i, there would exist a sphere lying just outside the
convex hull of [C1 ∪ C2 ∪ · · · ∪ Ci] which would separate F .

Using these facts, we may bound the number of such graphs as follows: choose
C1 containing O, then choose some vertex x1 lying in the convex hull of [C1];
choose C2 containing x1, and choose a vertex x2 lying in the convex hull of [C1 ∪
C2]; iterate this process. The number of connected graphs of size n containing
a given vertex is bounded above by µn for some constant µ (see for example [8],
Chapter 4); and it is straightforward to verify that the convex hull of [C1 ∪C2 ∪
· · · ∪ Ci] contains at most (2|C1 ∪ C2 ∪ · · · ∪ Ci|)3 vertices. Therefore, we obtain
the bound

en ≤
∑

c

µc1[2c1]
3µc2[2(c1 + c2)]

3µc3 · · · [2(c1 + · · ·+ ck−1)]
3µck ,
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where the sum is over all possible sequences c = (c1, c2, . . . , ck), where k is any
integer satisfying 1 ≤ k ≤ n/8, and such that ci ≥ 8 for all i, and c1+c2+· · ·+ck =
n. We bound this expression as follows:

en ≤ µn
∑

c

(2n)3k

≤ µn
⌊n/8⌋∑

k=1

(
n + k − 1

k − 1

)
(2n)3k

≤ µn
⌊n/8⌋∑

k=1

(n + k)k

k!
(2n)3k

≤ an
⌊n/8⌋∑

k=1

(
n4

k

)k

for some constant a. The binomial coefficient in the second line is an upper bound
on the number of ways of choosing c1, c2, . . . , ck summing to n. By considering
the ratios of successive terms, we see that, for n sufficiently large, the final term
in the last sum is the greatest, whence

en ≤ an n

8

(
n4

n/8

)n/8

≤ exp
(
An + 3

8
n log n

)

for a suitable constant A. 2
5 Plaquette Percolation

The dual process to three-dimensional bond percolation is a process defined on
‘plaquettes’. This dual process was studied first in [1] and applied subsequently
to entanglements in [11]. We indicate in this section how surfaces of plaquettes
are related to entanglement.

We define the set

P =
{
{a, b, c, d} ⊆ Z

3 : a, b, c, d are distinct and

‖a − b‖ = ‖b − c‖ = ‖c − d‖ = ‖d − a‖ = 1
}
,

and we refer to the members of P as plaquettes. If f is a plaquette, note that the
convex hull 〈f〉 is a closed square subset of R

3 having unit side-length. For a set
F of plaquettes, we write [F ] =

⋃
f∈F 〈f〉. (Recall the contrasting definition of

[G] for a graph G, namely the union of the line segments of edges in G.) In the
plaquette percolation model on P with parameter q we declare each plaquette to be
‘retained’ with probability q or ‘discarded’ with probability 1 − q, with different
plaquettes receiving independent designations; we write Q for the random set
of retained plaquettes. More precisely, we define the sample space Π = {0, 1}P,
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equipped with the product σ-field. For q ∈ [0, 1] we define P P
q to be the product

measure on Π with parameter q. We define the random variable Q on Π by
Q(π) = {f ∈ P : π(f) = 1}.

We call an event A (⊆ Π) increasing if π ∈ A whenever there exists π′ ∈ Π
satisfying π′ ≤ π and π′ ∈ A. We call A a cylinder event if there exists some π′ ∈
Π and some finite subset F of P such that A = {π ∈ Π : π(f) = π′(f) for all f ∈
F}; in this case, we say that A is defined on the set F .

There is a natural bijection between Ω and Π, as follows. Let L+ be the
‘shifted’ cubic lattice L + (1

2
, 1

2
, 1

2
), and e+ the shifted edge e + (1

2
, 1

2
, 1

2
). For any

shifted edge e+ there is a unique plaquette f such that 〈e〉 ∩ 〈f〉 6= ∅, and for
every plaquette there is a unique shifted edge with this property. Given e ∈ L, we
define f(e) to be the plaquette corresponding to e+ in this way. We observe that
f(e) is also the unique plaquette such that 〈e+〉 intersects the 1

4
-neighbourhood

〈f(e)〉{1/4}. For ω ∈ Ω, we may define a corresponding π ∈ Π by

π(f(e)) = 1 if and only if ω(e) = 0.(3)

Now let p+ q = 1, and choose ω according to the product measure P L
p . It is clear

that π is governed by the product measure P P
q .

Writing K+ for the set of shifted open edges of a configuration ω ∈ Ω, and Q
for the set of retained plaquettes constructed from the configuration π given in
(3), we have by the above remarks that the sets [K+] and [Q]{1/4} are disjoint.
As indicated earlier, the above correspondence between the plaquette and bond
processes is loosely referred to as ‘duality’.

It was proved in [11] that p1
e > 0. This was achieved by showing that, for

q sufficiently close to 1, there exists almost surely a sphere contained in [Q]{1/4}

and enclosing a predetermined point. It is natural to ask whether or not the
corresponding statement holds with [Q]{1/4} replaced by [Q]. More specifically, is
it the case that, for q sufficiently close to 1, [Q] contains almost surely a sphere
enclosing the point (1

2
, 1

2
, 1

2
)? We discuss this question further below.

Let R be a random subset of R
3 defined on the sample space Π, and define

the event

S(R) = {R contains a sphere with (1
2
, 1

2
, 1

2
) in its inside};

we shall be concerned only with the cases where R is one of [Q], [Q]{ǫ}, R
3 \K+.

By a convenient abuse of notation, given a random set R = R(π), we define the
critical point

qs(R) = sup{q : P P
q (S(R)) < 1}.

Proposition 5.1 We have that

1 − p1
e = qs(R

3 \ [K+]) = qs([Q]{ǫ}) < 1 for all 0 < ǫ < 1
2
.
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Figure 2: The marked vertex (1
2
, 1

2
, 1

2
) is enclosed by a sphere lying in the com-

plement of the graph, but not by a sphere of retained dual plaquettes.

Proof. We claim first that

S(R3 \ [K+]) = S([Q]{ǫ}) for all 0 < ǫ < 1
2
,

and this may be proved as follows. Given a sphere in R
3 \ [K+], we may perturb

it slightly so that it avoids all vertices of L+, and then we may find a homeo-
morphism of R

3 to itself which maps the resulting sphere into [Q]{ǫ}. The second
equality of the proposition follows from this observation.

Secondly, Proposition 2.4 implies that

S(R3 \ [K+]) =
{
K+ has no infinite E1-subgraph containing (1

2
, 1

2
, 1

2
)
}
,

and the first equality of the proposition follows. The inequality

qs([Q]{1/4}) < 1

was proved in [11]. 2
Turning to the event S([Q]), we note that S([Q]) ⊆ S([Q]{ǫ}) for ǫ > 0.

Perhaps surprisingly, these events are not equal, as may be seen by inspecting
the graph illustrated in Figure 2. In this case, there exists a sphere enclosing
(1

2
, 1

2
, 1

2
) which is contained in R

3 \ [K+], but there exists no such sphere lying
in [Q]. We are led to pose the question of deciding whether or not the strict
inequalities

qs([Q]{ǫ}) < qs([Q]) < 1

are valid for 0 < ǫ < 1
2
.

The existence of graphs such as that in Figure 2 may have been overlooked
in [1], where it is suggested that the existence of a ‘disc of plaquettes’ separating
the top and bottom faces of a cuboid block is equivalent to the absence of an
‘entangled connection’ between the top and bottom faces. A counterexample to
this statement may be constructed along the same lines as Figure 2.
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Figure 3: A disc ‘spanning’ a block.

6 Near-exponential decay for small p

The purpose of this section is to prove Theorem 3.2. This is an immediate
consequence of the following result, which states that, in the plaquette percolation
model with q close to 1, we may find with large probability a sphere lying in
[Q]{1/4} and enclosing a specified point, with an appropriate bound on its radius.

Define the event

S(r) =
{
[Q]{1/4} contains a sphere of radius at most r

having the point (1
2
, 1

2
, 1

2
) in its inside

}
.

Theorem 6.1 There exists q0 < 1 such that, for every q > q0 and for every
k = 1, 2, . . . , there exists αk = αk(q) > 0 such that

P P
q (S(r)) ≥ 1 − exp

(
−

αkr

λk(r)

)
for all r ≥ 0.

Before proving this result, we indicate why it implies Theorem 3.2.

Proof of Theorem 3.2. If rad(C(E1)) > r, there can exist no sphere in
R

3 \ [K] with O in its inside with radius r or less. Passing to the dual plaquette
model via (3), we deduce that

P L
p

(
rad(C(E1)) > r

)
≤ 1 − P P

q (S(r)) where p + q = 1,

and the claim of the theorem follows from Theorem 6.1. 2
The remainder of this section is devoted to proving Theorem 6.1. Since we

shall be working entirely with the plaquette model, we shall abbreviate P P
q to Pq

throughout, and we shall write Eq for the associated expectation operator.
As in [11], we shall attempt to demonstrate the existence of certain surfaces of

plaquettes within blocks. Such an event may be described roughly by saying that
the block contains a disc lying in [Q]{1/4} which ‘separates’ the top and bottom
faces of the block, and whose boundary is suitably ‘well behaved’, as illustrated
in Figure 3. There follows a precise definition of the event in question, beginning
with some further notation.
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C3

O

a

b

(a,b,c)

c

c

cC1 C2
Cn

Figure 4: The discs C1, C2, . . . , Cn are the squares around the periphery of the
block H = H(a, b, c).

We define a block to be any subset of R
3 of the form [a, d] × [b, e] × [c, f ]; in

particular, we let
H(a, b, c) = [0, a] × [0, b] × [0, c],

illustrated in Figure 4. Let c divide both a and b, and let H = H(a, b, c). With
n = 2(a/c + b/c), we consider the sequence of square discs (C1, C2, . . . , Cn) lying
in ∆H as illustrated in Figure 4. By a loop around H we mean a loop which is a
union of the form ν1 ∪{x12}∪ν2 ∪{x23}∪ · · · ∪νn ∪{xn1} where νi is the interior
of an arc, νi lies in the interior of Ci, and xij is a point lying in the interior
of the arc Ci ∩ Cj. A disc across H is a disc D ⊆ H with the properties that
D ∩ ∆H = ∆D, and ∆D is a loop around H. We define the set of plaquettes

P(H) = {u ∈ P : 〈u〉 ⊆ H , 〈u〉 6⊆ ∆H},

and the random subset of R
3

W (H) = [Q ∩ P(H)]{1/4} ∩ H.

Finally, we let D(a, b, c) be the event that W (H) contains a disc across H. This
is the event referred to in the preceding paragraph. Note that D(a, b, c) is an
increasing cylinder event defined on the finite set of plaquettes P(H).

We shall sometimes need to refer to events corresponding to D(a, b, c) but
referring to a block not located at the origin, and we shall do this as follows. Let
T by any bijection of P to itself (in the cases we shall consider, T will correspond
to a translation or rotation of R

3). Then T induces a natural bijection from Π
to itself, which we shall also denote by T . For any event A we refer to the event
{π ∈ Π : T (π) ∈ A} as a copy of A.
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Figure 5: The construction for Lemma 6.3.

We shall now present three lemmas abstracted from [11] concerning events of
the form D(a, b, c). In each case we shall give a brief sketch of the proof, referring
the reader to [11] for the details.

Lemma 6.2 For any positive integers m and x we have that

D(16mx, 8mx, 4mx) ⊇ B1 ∪ B2 ∪ · · · ∪ Bm

for certain cylinder events B1, B2, . . . , Bm which are copies of D(16mx, 8mx, 4x)
and which are defined on disjoint sets of plaquettes.

Sketch Proof. The proof involves considering a ‘stack’ of m disjoint blocks
congruent to H(16mx, 8mx, 4x) whose union is H(16mx, 8mx, 4mx). The result
follows because a disc across any one of the smaller blocks is also a disc across
the larger block. 2
Lemma 6.3 For any positive integers m and x we have

D(16mx, 8mx, 4x) ⊇ C1 ∩ C2 ∩ · · · ∩ Cn,

where n = (16m − 3)2, and C1, C2, . . . , Cn are certain copies of D(4x, 2x, x).

Sketch Proof. The proof is based on a construction taken from [11] which is
illustrated in Figure 5; the construction involves building up a larger block from
a sequence of overlapping congruent smaller blocks in different orientations. If
we have a disc across each of the smaller blocks, we can construct a disc across
the larger block; the topological justification for this is given in [11]. We use this
construction twice: firstly we use 16m−3 congruent copies of H(4x, 2x, x) to build
H(8mx, 4x, 2x), and we then use 16m− 3 congruent copies of H(8mx, 4x, 2x) to
build H(16mx, 8mx, 4x). 2
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Lemmas 6.2 and 6.3 together allow us to relate the events D(16mx, 8mx, 4mx)
and D(4x, 2x, x), these being events defined on similar blocks having dimensions
in the ratio 4m : 1. The following lemma shows how the events D(4x, 2x, x) can
be related to spheres enclosing the origin.

Lemma 6.4 There exist fixed positive integers w and h such that the following
holds. For every positive integer x there exist copies A1, A2, . . . , Ah of D(4x, 2x, x)
such that

S(wx) ⊇ A1 ∩ A2 ∩ · · · ∩ Ah.

Sketch Proof. One first shows that using copies of D(4x, 2x, x) one may
construct a disc across a block with sides in the ratio 4 : 4 : 1 (by a construction
similar to that in the preceding lemma). Six blocks of this latter shape may
be used to construct a cubic shell enclosing the origin, and this shell contains a
sphere provided each of the blocks contains a disc. As in the preceding result,
there are some non-trivial topological details which may be found in [11]. 2

For any integer i ≥ 1 we write Di = D(4 · 8i, 2 · 8i, 8i). Our approach to
proving Theorem 6.1 will be to obtain successively stronger lower bounds on the
probability of Di (for large i), and to use Lemma 6.4 in order to translate these
into bounds concerning S(r).

Proposition 6.5 There exists q0 < 1 such that the following holds. If q > q0,
there exist c0 = c0(q) > 0 and σ0 = σ0(q) ∈ (0, 1) such that

1 − Pq(Di) ≤ exp
[
−c0(8

i)σ0

]
for all i ≥ 1.

Proof. Let i ≥ 2. Applying Lemma 6.2 in the case m = 2, and using the fact
that the events B1 and B2 in the lemma are independent, we find that

Pq(Di) ≥ 1 −
[
1 − Pq

(
D(4 · 8i, 2 · 8i, 4 · 8i−1)

)]2
.

Applying Lemma 6.3 (with m = 2 and hence n < 210) and using the FKG
inequality (see [8], page 34) we have that

Pq(Di) ≥ 1 −
[
1 − Pq(Di−1)

210
]2

for all q.

It is the case that

1 − xN ≤ N(1 − x) if N ≥ 1 and 0 ≤ x ≤ 1,(4)

and hence

1 − Pq(Di) ≤ M [1 − Pq(Di−1)]
2,
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where M = 220. Iterating the last inequality gives

1 − Pq(Di) ≤ M−1
[
M(1 − Pq(D1))

]2i−1

,

and the claim of the proposition follows provided that M(1 − Pq(D1)) < 1.
Now, D1 occurs provided all 32 × 16 plaquettes in the block H(32, 16, 8) lying
in one given horizontal plane are retained, and, by a simple calculation, the last
inequality is satisfied provided q ≥ 1 − 2−29. 2

We shall deduce Theorem 6.1 from Proposition 6.5, with the same value of
q0. We saw above that one may take q0 = 1 − 2−29. This value of q0 may be
decreased by a more careful application of the same ideas; for example, using the
construction in [11], one may obtain q0 = 1 − 1/15616. It seems unlikely that
such improvements will be useful in practice, and therefore we do not seek here
to minimise the value of q0.

In order to strengthen the bound on Pq(Di), we shall require some additional
probabilistic tools taken from [7]. Suppose A is an increasing cylinder event of
Π, defined on a finite set of plaquettes F . Define the random variable ΨA to be
the minimum number of plaquettes which one needs to remove from the set of
retained plaquettes Q in order to prevent A from occurring; that is,

ΨA(π) = min

{
∑

π′

{
π(f) − π′(f)

}
: π′ ≤ π, π′ /∈ A

}
, π ∈ Π.

Note that ΨA(π) = 0 if π /∈ A.

Lemma 6.6 If B and C1, C2, . . . , Cm are increasing cylinder events such that

B ⊇ C1 ∪ C2 ∪ · · · ∪ Cm,

and C1, C2, . . . , Cm are defined on disjoint sets of plaquettes, then

ΨB ≥ ΨC1
+ ΨC2

+ · · ·+ ΨCm
.

The proof of this lemma is immediate from the definition of ΨA; we omit the
details, which are related to those of equation (13.21) of [7].

For any event A we write

Λq(A) = − log(1 − Pq(A)).

Lemma 6.7 If 0 < t < u < 1, there exists c = c(t, u) > 0 such that

Λu(A) ≥ cEt(ΨA)

for every increasing cylinder event A.
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Lemma 6.8 If 0 < s < t < 1, there exist a = a(s, t) > 0 and b = b(s, t) > 0
such that

Et(ΨA) ≥ aΛs(A) − b

for every increasing cylinder event A.

Here are some remarks about these two lemmas, which are essentially equa-
tions (13.24) and (13.25) of [7]. Two steps are needed in order to deduce the
above formulations from the latter equations. Firstly, the results in [7] apply in
the more general context of random cluster measures; to obtain the specialisation
to product measure we set the ‘cluster-weighting factor’ referred to as ‘q’ in [7]
to unity. Secondly, we apply the inequalities of [7] not to the event A but to its
complement; this complement is a decreasing event which corresponds via (3) to
an increasing event in the dual bond percolation model on L+. For further details
of the proofs of the lemmas, the reader is referred to [7].

Proof of Theorem 6.1. As mentioned earlier, our approach will be to use
the above lemmas to obtain successive improvements to the bound in Proposition
6.5. We begin by explaining how Lemmas 6.6–6.8 may be applied in a general
context. Suppose A, B, and C are increasing cylinder events such that

A ⊇ B1 ∪ B2 ∪ · · · ∪ Bm,

B ⊇ C1 ∩ C2 ∩ · · · ∩ Cn,
(5)

where the Bi are copies of B defined on disjoint sets of plaquettes, and the Cj

are copies of C. If 0 < s < t < u < 1, we have the following chain of inequalities
relating the probabilities of A and C. Let a = a(s, t), b = b(s, t), c = c(t, u) be
given as in Lemmas 6.7–6.8. Then

Λu(A) ≥ cEt(ΨA) by Lemma 6.7

≥ cmEt(ΨB) by (5) and Lemma 6.6

≥ cm(aΛs(B) − b) by Lemma 6.8

≥ cm
(
− a log[1 − Ps(C)n] − b

)
by (5) and the FKG inequality

≥ cm
(
− a log[n(1 − Ps(C))] − b

)
by (4)

= cm
(
aΛs(C) − a log n − b

)
.

We make use of this inequality by setting A = Di and C = Dj where i > j ≥ 1.
With m = 8i−j/4 and n = (16m − 3)2, we have by Lemmas 6.2 and 6.3 that (5)
is valid with B = D(4 · 8i, 2 · 8i, 4 · 8j). Writing I = 8i and J = 8j we deduce
that, if 0 < s < t < u < 1, there exist strictly positive functions a′, b′, c′ of s, t, u
such that

Λu(Di) ≥ (I/J)
[
c′Λs(Dj) − a′ log(I/J) − b′

]
.(6)



24 Geoffrey Grimmett and Alexander Holroyd

We may assume that c′ < 1, whence (6) is valid whenever i ≥ j ≥ 1.
We may now use this inequality as follows: given a lower bound for the

sequence (Λq(Di) : i ≥ 1) which holds for all q > q0, we may substitute this into
the right side of (6) with a suitable choice of j, to obtain an improved bound.
We shall iterate this method to obtain the conclusion of the theorem.

Let q0 be as in Proposition 6.5, let q0 < u < 1, and choose s and t such that
q0 < s < t < u (for definiteness, choose q0, s, t, u in arithmetic progression). By
Proposition 6.5, we have Λs(Dj) ≥ c0J

σ0 for j ≥ 1, where J = 8j and σ0 = σ0(s)
satisfies 0 < σ0 < 1. Let i be large, and let j = ⌊(2 log i)/(σ0 log 8)⌋; there exists
a positive constant γ = γ(σ0) such that

γJ ≤ (log I)2/σ0 ≤ 8γJ,

where I = 8i. We substitute this value of j into (6), and deduce the existence of
positive functions a′′, b′′, c′′, c′′′ of s, t, u such that

Λu(Di) ≥
I

(log I)2/σ0

(
c′′(log I)2 − a′′ log

[
I

(log I)2/σ0

]
− b′′

)

≥ c′′′
I

(log I)2/σ0−2
for all i ≥ 1.

(The above argument yields such an inequality for large i, and the value of c′′′

may be chosen in order that it hold for small i also.) In conclusion, we have
proved that, for every q > q0, there exist c1 = c1(q) > 0 and σ1 = σ1(q) > 0 such
that

Λq(Di) ≥
c1I

(log I)σ1
for all i ≥ 1.

The next step is to prove that, for each k ≥ 1, there exist ck = ck(q) > 0 and
σk = σk(q) > 0 such that

Λq(Di) ≥
ckI

λk(I)σk
for all i ≥ 1.(7)

This may be proved by induction on k, and the details are omitted. Each stage
is proved via (6) using the same argument as above, but now choosing j in such
a way that J = 8j behaves approximately as (log I)2.

Let k ≥ 1 and q > q0. Since σk > 0, inequality (7) with k replaced by k + 1
implies that

Λq(Di) ≥
dkI

λk(I)
for some dk = dk(q) > 0 and all i ≥ 1,

which we write as

1 − Pq(Di) ≤ exp

(
−

dkI

λk(I)

)
.(8)
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We now appeal to Lemma 6.4. Let w and h be given as in that lemma. For
any integer i ≥ 1, taking x = 8i and r = w8i, we have that

1 − Pq(S(r)) ≤ 1 − Pq(Di)
h by Lemma 6.4 and the FKG inequality

≤ h
[
1 − Pq(Di)

]
by (4)

≤ exp

(
−

d′
kr

λk(r)

)

for some d′
k = d′

k(q) > 0. Finally, we extend this conclusion to all r as follows.
For r ≥ w, we choose i such that w8i ≤ r ≤ w8i+1. Since S(r) ⊇ S(w8i), we
have that Pq(S(r)) ≥ Pq(S(w8i)), and the conclusion of the theorem follows with
αk = d′

k/8. 2
7 Uniqueness for large p

The purpose of this section is to prove Theorem 3.3. We start with some notation.
For any set U of plaquettes, we recall the notation [U ] =

⋃
f∈U〈f〉, the union of

the convex hulls of the plaquettes in U . We define a splitting set to be a finite
set of plaquettes U ⊆ P with the following properties.

(i) [U ] is a connected subset of R
3.

(ii) R
3 \ [U ] has at least one bounded connected component.

It is useful to think of a splitting set as a closed surface of plaquettes, although
our definition is in fact considerably more permissive than this.

For any set T ⊆ R
3, we define its inside ins(T ) to be the union of all the

bounded connected components of R
3 \ T , and its outside to be the union of all

unbounded connected components of R
3 \T . We say that a set T ⊆ R

3 separates
R

3 if R
3\T has more than one connected component. Note that, if T is bounded,

then R
3 \ T has exactly one unbounded connected component.

Our proof of Theorem 3.3 depends on the following proposition.

Proposition 7.1 There exists p1 < 1 such that, if p > p1, almost surely with
respect to P L

p there exists an infinite sequence of splitting sets U1, U2, . . . with the
following properties.

(i) The insides of the Ui form an increasing sequence of sets whose union is
R

3.

(ii) If e ∈ L is any edge such that 〈e〉 ⊆ [Ui] for some i, then e is open.

Our proof of Proposition 7.1 depends on the following ‘well known’ result.
Although a similar statement is proved in [5] (Lemma 2.1), we have been unable
to find a published proof of the required fact. Therefore we include a proof here.
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Lemma 7.2 Let ω ∈ Ω and π ∈ Π be dual configurations of edges and plaquettes
as in (3). Suppose that the connected component of K(ω) at the origin, C say, is
finite. Then there exists a splitting set U ⊆ Q(π) with [C]+(1

2
, 1

2
, 1

2
) in its inside.

Proof. This proof is motivated by the method in the appendix of [5]. Suppose
that |C| < ∞. Let D be the set of edges on the ‘boundary’ of C:

D =
{
{x, y} : x ∈ V (C) and y 6∈ V (C)

}
,

and let P be the corresponding set of plaquettes

P = {f(e) : e ∈ D}.

Clearly P is a finite set, and P ⊆ Q(π).
For a set A ⊆ R

3 and a point x ∈ R
3 we say that A encloses x if x lies in

the inside of A. We write h = (1
2
, 1

2
, 1

2
), and we claim that [P ] encloses h. To

see this, firstly note that, since the sets concerned are simplicial, the concepts of
connectedness and path-connectedness coincide. Suppose we have a path from
h to infinity; that is, a continuous mapping γ : [0,∞) → R

3 with γ(0) = h and
whose image is unbounded. Define an occupied cell of C to be a set of the form
[x, x + 1]× [y, y + 1]× [z, z + 1] ⊆ R

3 where x, y, z are integers, and whose centre
(x + 1

2
, y + 1

2
, z + 1

2
) lies in V (C) + (1

2
, 1

2
, 1

2
). By considering the ‘last’ point of γ

lying in any occupied cell of C, we see that the image of γ must intersect [P ].
Hence [P ] encloses h as required.

Let P1, P2, . . . , Pk be subsets of P such that [P1], [P2], . . . , [Pk] are precisely
the connected components of [P ]. We claim that some [Pi] encloses h, from
which the conclusion of the lemma will follow. Suppose on the contrary that
no [Pi] encloses h, and write Pi = [Pi] ∪ ins([Pi]). Each Pi is closed, does not
separate R

3, and does not contain h. We claim that, for i 6= j, either Pi ∩Pj = ∅
or one of the pair Pi, Pj is a subset of the other. This is proved as follows.
Note first that each Pi is connected, and assume that i and j are such that
Pi ∩ Pj 6= ∅ and i 6= j. Firstly, if Pi ∩ [Pj ] 6= ∅, then some point in [Pj] lies in
ins([Pi]). Since [Pj ] is connected, and is disjoint from [Pi], [Pj] lies entirely in
some bounded connected component of R

3 \ [Pi], and therefore [Pj] ⊆ ins([Pi]).
It follows that Pj ⊆ ins([Pj ]), implying that Pj ⊆ Pi. Secondly, if Pi ∩ [Pj] = ∅
but Pi ∩ ins([Pj ]) 6= ∅, then a similar reasoning yields that Pi ⊆ ins([Pj]). In
either case, the required conclusion holds.

It follows by [13] (§57; Section I, Theorem 9 and Section II, Theorem 2) that
W = P1 ∪ P2 ∪ · · · ∪ Pk does not separate R

3. Now h /∈ W , whence h lies in the
unique component of R

3 \ W . This component is unbounded, and this yields a
contradiction of the assumption that [P ] encloses h. 2
Proof of Proposition 7.1. The first step is to show the following. In
the plaquette percolation model with q > 1 − pc, there exists P P

q -a.s. an infinite
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sequence of splitting sets lying in the set Q of retained plaquettes, and having
property (i) of the proposition. (Note that this event is an increasing subset of
Π.) This statement is proved as follows.

Let ω ∈ Ω and π ∈ Π satisfy (3), and let n ≥ 1. Suppose that p < pc.
Consider the graph K(ω) ∪ B(n), and let A be the connected component of this
graph containing the box B(n). Since p < pc, A is P L

p -a.s. finite. It follows from
Lemma 7.2 that there exists P P

q -a.s. a set of retained plaquettes which forms a
splitting set having B(n) + (1

2
, 1

2
, 1

2
) in its inside.

If there does not exist an infinite sequence of splitting sets as claimed above,
then there exists some (random) n such that B(n) + (1

2
, 1

2
, 1

2
) lies in the inside

of no splitting set of retained plaquettes. By the remark above, this occurs with
probability zero, so we have proved our earlier claim.

Now let ω ∈ Ω. We say that a plaquette f ∈ P is occupied if and only if:

for each of the four edges e ∈ L such that e ⊆ f , we have ω(e) = 1.

We write Q′ for the set of occupied plaquettes. The following statements are
clear:

(i) For every f ∈ P, P L
p (f ∈ Q′) = p4.

(ii) The measure governing Q′ is ‘1-dependent’. That is to say, if A and B are
subsets of P such that [A] and [B] are disjoint, then the random sets Q′∩A
and Q′ ∩ B are independent of one another.

The following stochastic domination follows from results in [15] (see also [8],
Section 7.3). Let 1 − pc < q < 1. If p4 is sufficiently close to 1, the measure
governing Q′ stochastically dominates the product measure P P

q . That is to say,
there exists p1 = p1(q) < 1 such that the measure governing Q′ stochastically
dominates P P

q whenever p ≥ p1.
Let 1 − pc < q < 1 and p ≥ p1(q). We deduce from the statement at the

beginning of this proof that Q′ contains P L
p -a.s. a sequence of splitting sets sat-

isfying condition (i) of Proposition 7.1. Finally, it follows from the definition of
an occupied plaquette that this sequence of splitting sets also satisfies condition
(ii) of the proposition. 2
Proof of Theorem 3.3. Let p1 be as in Proposition 7.1; we may assume
that pc < p1 < 1. Let p > p1. We have that η1(p) > 0, whence by the zero–one
law K possesses P L

p -a.s. an infinite E1-subgraph. As noted in Section 2, it follows
from the definition of E1 that there exists P L

p -a.s. a unique E1-component, which
we denote I.

We claim that I ∈ E0. This implies the result of the theorem, for the following
reasons. Suppose E is a measurable entanglement system. Since E0 ⊆ E , I is an
E-graph, whence it lies in some infinite E-component, denoted I ′, say. Since
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E ⊆ E1, such a component I ′ must be a subgraph of I, hence I (= I ′) is a E-
component. Similarly, if I ′′ is any infinite E-component, I ′′ must be a subgraph
of an infinite E1-component, implying that I ′′ ⊆ I. Hence I is the unique infinite
E-component.

We now justify the claim that I ∈ E0. Let F be any finite subgraph of I. By
Proposition 7.1, there exists P L

p -a.s. some splitting set U such that [F ] lies in the
inside of [U ], and every edge e ∈ L satisfying 〈e〉 ⊆ [U ] is open. Note that, for
any edge e, exactly one of the following holds: (i) 〈e〉 ⊆ [U ]; (ii) 〈e〉 intersects
the inside of [U ]; (iii) 〈e〉 intersects the outside of [U ]. We write B for the graph
consisting of all edges e ∈ L satisfying 〈e〉 ⊆ [U ], and we write A for the graph
consisting of all edges e ∈ I such that 〈e〉 intersects the inside of U . We shall
show that the graph A ∪ B is an F -graph, and satisfies F ⊆ A ∪ B ⊆ I. The
above claim will then follow by the definition of E0.

Suppose that A∪B is not an F -graph, so that [A∪B] is separated by sphere
S, say. We shall use standard topological techniques to modify S so as to obtain
a sphere which separates I, giving a contradiction. For a detailed justification
of the topological steps, which are similar to some of those used in [11], see for
example [16]. Also, for examples of similar arguments in the topology literature,
see [14], Chapter 2.

Since [U ] is connected, so is [B], whence B lies in either the inside or the
outside of S. Since S separates [A ∪ B], there must exist an edge e ∈ A such
that 〈e〉 lies in the opposite ‘side’ (inside or outside) of S from [B]. Consider the
intersections of S and [U ]. After deforming S by a small amount if necessary, we
may assume that all such intersections are transverse. Noting that S is disjoint
from [B], we deduce that S ∩ [U ] consists of finitely many disjoint loops, each
one lying in the interior of 〈f〉 for some plaquette f ∈ U . (The finiteness is a
consequence of the requirement that spheres be simplicial complexes.) We shall
show that, by modifying S, we may strictly reduce the number of such loops whilst
retaining the property that S separates [B]∪〈e〉. It will follow by induction that
S may be chosen so that the number of such loops is zero.

Suppose the number of loops is non-zero. Consider the loops lying in one par-
ticular plaquette 〈f〉 as subsets of the interior of 〈f〉, and let α be an innermost
loop among these. Then α bounds a disc D on 〈f〉, which has no further inter-
sections with S or [A∪B]. We apply ‘surgery’ to S along α as follows. Remove a
thin annulus neighbourhood of α from S, and replace it with two slightly shifted
copies of D lying parallel to 〈f〉, one on each side (see Figure 6). We write S ′

for the modified surface thus obtained from S. We make all the alterations in a
sufficiently small neighbourhood to ensure that S ′ remains disjoint from [A∪D].
We now consider the form of S ′. We have effectively cut S around a loop, and
attached two almost-coincident discs to the cut edges. There are two possible
outcomes, depending on whether the added discs lie in the inside or the outside
of S. The latter case is illustrated in Figure 7. In either case it may be seen
that S ′ is the union of two disjoint spheres, and by considering the positions of
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bD

X

Y’Y

X

Figure 6: Removing a component of S ∩ [U ].

S
C

e

Figure 7: A cross section of the modified surface S ′, in one of the possible cases.
In this case, the smaller of the two resulting spheres separates [B] ∪ 〈e〉.

[B] and 〈e〉, one of these spheres must separate [B]∪ 〈e〉 (perhaps with the roles
of inside and outside reversed compared with S). We let S ′′ be this sphere. We
note that S ′′ ∩ [U ] has strictly fewer components (loops) than has S ∩ [U ]. We
now repeat such surgery inductively until we obtain a sphere S1 which separates
[A ∪ B] and which is disjoint from [U ].

There are three possibilities: (i) S1 lies in the inside of [U ]; (ii) [U ] lies in the
inside of S1; (iii) each lies in the outside of the other. However, since S1 separates
[B]∪ 〈e〉, while [B] is a subset of [U ] and 〈e〉 lies in the inside of [U ], it is readily
seen that only the first of these three is possible. Thus we have a sphere S1 which
lies in the inside of [U ], and separates [A∪B]. Since the graph I \A lies entirely
in the union of [U ] and the outside of [U ], it follows that S1 separates I. This is a
contradiction since I ∈ E1. We have therefore proved as required that A∪B ∈ F .

It follows by the definition of A that F ⊆ A and A ⊆ I. We have proved
above that A∪B ∈ F ⊆ E1, and it follows by property (E2) of the entanglement
system E1 that A ∪ B ⊆ I. This concludes the proof that I ∈ E0. 2
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8 Uniqueness above pc

The purpose of this section is to prove Theorem 3.4; henceforth, we abbreviate
P L

p to Pp. The basic argument is the following. For p > pc, there exists Pp-a.s. a
unique infinite connected component C, say (see [4]). Any E0-component which
intersects C must contain C as a subgraph, and hence if there were more than
one infinite E0-component, at least one would necessarily have empty intersection
with C. We shall show that this latter event has probability zero, using the result
proved in [9] that the critical probability for percolation on a half-space of L is
the same as that for the whole space.

Here is some notation. For x = (x1, x2, x3) ∈ Z
3, we define the half-space

H1(x) to be the subgraph of L consisting of all edges having at least one vertex
lying in {x1 + 1, x1 + 2, . . . } × Z

2. Similarly, we define the half-space H2(x) by
replacing {x1 + 1, x1 + 2, . . . } × Z

2 with {. . . , x1 − 2, x1 − 1} × Z
2. In a similar

manner, we define the half-spaces Hi(x) for i = 3, 4, 5, 6 to be the analogous
graphs corresponding to each of the two senses of the other two coordinates.

Proof of Theorem 3.4. Let

Y = {there exists an infinite E0-component containing

O which has no infinite connected subgraph}.

We shall prove that Pp(Y ) = 0 if p > pc. The conclusion of the theorem will
then follow by the above discussion and the almost sure uniqueness of the infinite
connected component.

We shall use a ‘re-start argument’ as follows. Define the event

En =
{
K ∩ B(n) has an F -subgraph containing O and some vertex of ∂B(n)

}
.

(9)

It follows from the definition of E0 that |C(E0)| = ∞ if and only if En occurs
for infinitely many n. If {En i.o.} occurs, we choose the smallest n1 for which
En1

occurs, and try to ‘grow’ an infinite connected open graph starting from
the vertex of ∂B(n1) referred to in (9), working in a half-space which does not
intersect B(n1). If we succeed, then C(E0) has an infinite connected subgraph. If
not, we must fail within some finite distance, and hence we may find some larger
n2 such that En2

occurs, but we have not yet ‘examined’ any edges outside B(n2).
We then repeat the process. At each step, there is some fixed positive probability
of finding an infinite connected graph, and with sufficient care we may show that
some such event occurs with probability one.

We now present the details of the argument. By a stopping time we mean a
random variable X taking values in {1, 2, . . .}∪{∞} such that the event {X ≤ n}
is a cylinder event defined in terms of the states of the edges of B(n). We shall
construct an increasing sequence of stopping times with the property that, if any
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one of them is infinite, then the event Y does not occur; we shall then prove that
almost surely some stopping time is infinite.

Firstly, let
N1 = min{n : En occurs},

where, here and subsequently, the minimum of the empty set is taken to be ∞.
We now define M1 as follows. If N1 = ∞ we set M1 = ∞. Otherwise, since
EN1

occurs, we may let x1 be the first vertex of ∂B(N1) (according to some pre-
determined ordering) such that K ∩B(N1) has an F -subgraph containing O and
x1. Now, given any vertex x 6= O there exists a unique n such that x ∈ ∂B(n), and
there also exists some i = i(x) ∈ {1, 2, . . . , 6} such that the half-space Hi(x) is
disjoint from B(n) (i is not always unique, but we may always choose i according
to some pre-determined rule). Given x 6= O and some integer m > n we define
the event

Gm(x) = {K ∩ Hi(x) ∩ B(m) has a connected subgraph containing

x and some vertex of ∂B(m)},

where i is as above. If N1 < ∞, we define

M1 = min{m > N1 : Gm(x1) does not occur}.

We now proceed to define Nk and Mk inductively for all k as follows. Suppose
N1, M1, . . . , Nk, Mk have been defined (where k ≥ 1). If Mk = ∞ we set Nk+1 =
∞, and otherwise

Nk+1 = min{n > Mk : En occurs}.

If Nk+1 = ∞ we set Mk+1 = ∞; otherwise, as before let xk+1 be a vertex ‘demon-
strating’ ENk+1

as in (9), and define

Mk+1 = min{m > Nk+1 : Gm(xk+1) does not occur}.

The random variables N1, M1, N2, M2, . . . are stopping times satisfying

N1 ≤ M1 ≤ N2 ≤ M2 ≤ · · ·

with the corresponding strict inequalities holding so long as the random variables
are finite. In the following, we write (for example) ‘A, B < ∞’ for the assertion
that both A and B are finite. For all k ≥ 1 we have

Pp(N1, M1, . . . , Nk, Mk < ∞)

= Pp(N1 < ∞)Pp(M1 < ∞ | N1 < ∞) · · ·Pp(Nk < ∞ | N1, M1, . . . , Mk−1 < ∞)

× Pp(Mk < ∞ | N1, M1, . . . , Mk−1, Nk < ∞)

≤ Pp(M1 < ∞ | N1 < ∞) · · ·Pp(Mk < ∞ | N1, M1, . . . , Mk−1, Nk < ∞)

= (1 − θH(p))k for k ≥ 1,
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where θH(p) is the probability that H1(O)∩K has an infinite connected subgraph
containing O. It was proved in [9] that θH(p) > 0 when p > pc, and it follows
from the above that

Pp(Ni < ∞ and Mi < ∞ for all i ≥ 1) = 0.

We may now complete the proof by observing that if any of the above stopping
times is infinite, Y cannot occur. Indeed, if for some k, Nk = ∞ but Mk−1 < ∞,
then En occurs for only finitely many n, whence there exists no infinite open
E0-graph containing O. If, on the other hand, there exists k such that Mk = ∞
but Nk < ∞, then O is contained in some F -subgraph of K∩B(Nk) which shares
a vertex with an infinite connected subgraph, whence O is contained in an open
E0-graph having an infinite connected subgraph. In either case, the event Y does
not occur. 2
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