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DECAY OF CORRELATIONS IN SUBCRITICAL
POTTS AND RANDOM-CLUSTER MODELS
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ABSTRACT. We prove exponential decay for the tail of the radius R of the cluster at the
origin, for subcritical random-cluster models, under an assumption slightly weaker than that
E(R4~1) < co (here, d is the number of dimensions). Specifically, if E(R%~1) < oo throughout
the subcritical phase, then P(R > n) < exp(—an) for some « > 0. This implies the exponential
decay of the two-point correlation function of subcritical Potts models, subject to a hypothesis
of (at least) polynomial decay of this function. Similar results are known already for percolation
and Ising models, and for Potts models when the number g of available states is sufficiently
large; indeed the hypothesis of polynomial decay has been proved rigorously for these cases. In
two dimensions, the hypothesis that E(R) < oo is weaker than requiring that the susceptibility
be finite, i.e., that the two-point function be summable. The principal new technique is a
form of Russo’s formula for random-cluster models reported by Bezuidenhout, Grimmett, and
Kesten. For the current application, this leads to an analysis of a first-passage problem for
random-cluster models, and a proof that the associated time constant is strictly positive if and
only if the tail of R decays exponentially.

1. Introduction

The probability theory of phase transition in physical systems is fairly developed (see the
papers published in [14]). For a variety of models of interest, it turns out that there is a
unique point of phase transition, which separates a ‘subcritical’ phase from a ‘supercriti-
cal’ phase. Throughout the subcritical phase, one often finds that the correlation functions
decay exponentially over large distances. In contrast, they are bounded away from zero
in the supercritical phase. This general picture of statistical mechanics has been verified
in many probabilistic systems, including the percolation and Ising models. Such percola-
tion/Ising systems may be incorporated together with Potts models within the broader class
of ‘random-cluster models’, and the latter class of models provides a beautiful general set-
ting for studying such systems. In particular, one may ask whether or not the exponential
decay of the connectivity function characterises the subcritical phases of all random-cluster
models. The current paper is directed at this question.
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Decay rates are fundamental to understanding the structure of models of statistical
physics. One of the major thrusts of the modern theory of Gibbs states is directed towards
a control of correlation functions over large spatial scales. This programme was initiated in
part in a famous paper of Dobrushin and Pecherski [11], who established in a certain con-
text that polynomial decay of correlation functions implies exponential decay. Such results
have provided stepping stones towards proofs of full exponential decay; see [18, 24, 27] for
further examples of such theorems. In the present paper, we prove a similar result in the
general context of the random-cluster model (otherwise known as the Fortuin—Kasteleyn
representation).

In advance of presenting the technical details, we state briefly the main result of this
paper. (For formal definitions, the reader is referred to Section 2.) Let p and ¢ be the
parameters of a random-cluster model on Z? where d > 2; here, p is the edge parameter,
and ¢ is the cluster-weighting parameter. Suppose ¢ > 1, and let p.(q) be the critical value
of p, i.e.,

Pe(q) = sup{p : ¢pq(0 < o0) = 0},

where ¢, , is the appropriate probability measure, and {0 < oo} is the event that the origin
is in an infinite open cluster. [For cognoscenti, we remark that ¢, , is the random-cluster
measure obtained using ‘free boundary conditions’.] Writing {0 < 9A,,} for the event that
the open cluster at the origin intersects the sphere of radius n, it is presumably the case
that

(1.1) Gp.q(0 = OA,) < e "

for some a = a(p, q) satisfying

(1.2) alp,q) >0 if p<pe(q).

Inequalities of the form (1.1) have been proved in the special cases when ¢ =1, ¢ = 2, and ¢
is sufficiently large. These cases correspond respectively to the percolation model ([13]), the
Ising model ([2, 4, 6]), and Potts models with large ¢ ([21, 22, 23]). Although the arguments
used in these three special situations have certain features in common, there is no unified
proof, and in particular no proof which extends to general values of q.

For percolation and Ising models, the exponential decay of the two-point function was
first proved in two stages. Initially, it was shown that exponential decay is valid whenever
the susceptibility is finite, i.e., whenever the two-point connectivity function (or correlation
function in the case of the Ising model) is summable; and later it was proved that the suscep-
tibility is indeed finite throughout the subcritical phase. (This was achieved by Hammersley
[18] and Aizenman—Barsky [3] for percolation, and by Simon-Lieb [24, 27] and Aizenman—
Barsky—Ferndndez [4] for the Ising model. In the case of percolation, a direct argument,
avoiding the first stage, was discovered by Menshikov [25, 26].) In proofs of exponential
decay for the percolation model, the BK inequality plays a central role (see [7, 13]). When
q = 2, this role is played by the Simon-Lieb inequality (see [24, 27]). No such method is
known for general ¢, although various attempts have been made to fill the gap (see [9, 15]).

In this paper, we establish the first stage of the above programme in the general setting
of random-cluster models. We prove that

(1.3) if lim sup{ndilqﬁp’q(O — 8An)} < oo when p < p.(q)

n—oo
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then there exists « = a(p, q), satisfying a(p,q) > 0 when p < p.(¢), such that
(1.4) Gp,q(0 = 0Ay,) < e™ " for all large n.

Next we discuss briefly the assumption (1.3). Hypothesis (1.3) requires that ¢, 4(0 <
OA,) decay at least as fast as 1/n%~!, and is implied by the stronger statement that

(1.5) ¢p7q(Rd_1) < oo when p<pc(q),

where R = max{n : 0 < 0A,,} is the radius of the open cluster at the origin (and we use ¢, 4
to denote expectation as well as probability); we shall return to this discussion just before
the statement of Theorem 1 in Section 3. By elementary geometrical considerations, there
exists a positive constant 5 = (d) such that

(1.6) plCMi < R+1<|C|

where C' = {z : 0 <> x} is the open cluster at the origin. Therefore (1.6) is implied by the
statement

(1.7) pa(IC|771) < oo when p < pe(q),

which is equivalent, when d = 2, to the finiteness of the susceptibility

x(p,q) = ¢p,q(|C|)-

The relationship between random-cluster models and percolation/Ising/Potts models is
well explored and documented elsewhere (see the references in [16]). The result described
above has the following implication for ferromagnetic Potts models. If the two-point cor-
relation function decays at least as fast as a certain negative polynomial, then it decays at
least as fast as e~®". Hypothesis (1.3) is not easily translated into an exactly equivalent
statement for Potts models. Either of the following two conditions suffices for Potts models:

(a) the two-point correlation function decays at least as fast as 1/n2(@=1),

(b) the finite-volume quantity 73 (0o = 1) — ¢~ decays at least as fast as 1/n%1.
(Here, w3 is a ferromagnetic Potts measure on {1,2,.. ., ¢} having ‘1’ boundary conditions,
and oy is the spin at the origin.)

For this study, it is natural to investigate a certain related first-passage problem arising
as follows from the random-cluster model. Let F,, denote the minimum number of closed
edges amongst paths of the lattice joining the origin to dA,,, i.e., F}, is the minimal number
of extra edges required to be open in order that {0 < 9A,,} occurs. It may be shown, using
the ergodicity of ¢, 4 (see [12, 16, 20]), that the limit

(1.8) wu(p,q) = lim {n_an}

n—odo

exists and is constant (¢, 4-a.s.). It is presumably the case that

(1.9) w(p,q) >0 for p < pe(q).
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We show in Theorem 4 that (1.9) holds if and only if ¢, ,(0 < 0A,,) decays exponentially
as n — oo when p < p.(q) (i.e., (1.1) and (1.2) hold). As noted earlier in a related context,
exponential decay is proved only for ¢ = 1, ¢ = 2, and for sufficiently large q. The above
first-passage problem has been studied in the case of percolation (¢ = 1) by Kesten [19], and
related results are known for the two-dimensional Ising model (see [12] and its references).

A similar first-passage problem has been studied by Fontes and Newman [12]. By utilising
one of their arguments, we shall establish sufficient conditions for the conclusion u(p, q) > 0.
This in turn implies the required exponential decay.

Incidentally, the comparison inequalities (see [16], Thm 2.2) imply exponential decay for
sufficiently small p. The problem is prove it all the way up to the critical point.

2. Random-cluster models

In this section, we introduce appropriate notation, and we define random-cluster measures.
For general results and historical background, we refer the reader to [16] and the references
therein.

We define a random-cluster measure on a finite graph G = (V| E) as follows. Let
0 <p<1andgq >0 The relevant sample space is the finite set Qp = {0,1}¥, con-
taining configurations that allocate 0’s and 1’s to the edges of G. For w € Qp, we call an
edge e open if w(e) = 1, and closed otherwise. The random-cluster measure on G, having
parameters p and ¢, is the probability measure ¢g , , on 2g given by

1

(2.1) 6 pa(w) = { 1~ _p)l—w(e)}qk(w)’ we .
eckE

G,p,q

where k(w) is the number of open components of w (i.e., the number of components of the
graph (V,n(w)), where n(w) is the set of open edges under w), and

(2.2) Zopa= Y {H PO — p)l—w<e>}qk<w>

weEQE ‘ecE

is the normalising factor (or ‘partition function’).

We shall define a random-cluster measure on an infinite lattice by taking weak limits
of such measures on finite boxes of the lattice. In advance of doing this, we present some
notation which will be useful later. Let IL be the d-dimensional hypercubic lattice having
vertex set Z¢ and edge set E containing all pairs of vertices which are euclidean distance 1
apart; we assume throughout that d > 2. We shall write x = (x1, xs,...,xq) for x € Z9,
and denote by (x, y) an edge joining vertices x and y. A path of L is an alternating sequence
xo, €0, L1, €1, ... of distinct vertices x; and edges e; such that e; = (x;,x;41) for each j. If
this path terminates at some x,, then it is said to join zg to x, and to have length n; if a
path has infinitely many vertices then it is said to connect xo to co. We write

|z|| = mlax{|$z|} where © = (x1,22,...,24).

The basic configuration space is Q = {0,1}* endowed with the o-field F generated by
the finite-dimensional cylinders of Q. A configuration w (€ Q) is an assignment of 0 or 1
to each edge e (€ E), and may be put into one—one correspondence with the set n(w) =
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{e € E: w(e) =1} of ‘open’ edges in w. The ‘open paths’ of a configuration w are those
paths of L all of whose edges are open. If A and B are sets of vertices, we write {A < B}
for the event that there exists an open path joining some vertex of A to some vertex of
B. Similarly we write {A < oo} for the event that some vertex of A is the endpoint of an
infinite open path. The complements of such events are denoted using the symbol <.

For any subset E of E, we write Fg for the o-field of subsets of () generated by the
finite-dimensional cylinders of E, so that F = Fg. A bor A is a subset of Z? of the form

d
A= H [ﬂfu yi]
i=1

for some x,y € Z9%, and where [z;,y;] is interpreted as [z;,y;] N Z. The box A generates a
subgraph of L with vertex set A and edge set Ey containing all edges (u,v) with u,v € A.
Of particular interest are the boxes A,, = [-n,n]?, for n > 1. The boundary OV of a set V
of vertices is the set of all vertices = (€ V') which are adjacent to some vertex of L not in V.

For a box A, we write Q} for the subset of Q containing all configurations w satisfying
w(e) =0 for e ¢ Ey.

Let 0 < p <1andq>1. We define qﬁf’\’p’q to be the random-cluster measure on the
finite graph (A,Ex) ‘with boundary condition 0’ (this is the equivalent of free boundary
conditions for ferromagnetic systems). This is done basically as in (2.1), but on a slightly
different probability space. More precisely, let cb%’n 4 be the probability measure on (Q,F)
satisfying

1 —wle w
(2_3) d)OA,p,q(w) = ZO { H pw(e)(l _ p)l ( )}qk( 7A) for w € Q%./
Azpaq e€En

where k(w, A) is the number of components of the graph (Z? n(w)) which intersect A, and
where ZR% g 18 the appropriate normalising constant

(2.4) nyp’q = Z { H pw(e)(l _p)l—w(e)}qk(w,A).

weN] ~e€ky

Note that ¢} , (23) = 1.
The following facts are known and relevant (see [16]).
(a) The limit ¢p, 4 = limy_,7a (ﬁ%’p’q exists, in the sense of weak convergence of measures.
(b) The measure ¢, , is ergodic.
(c) If qSip’ o 18 a random-cluster measure on A with some boundary condition ¢ other than

‘0’ (see [16]), then all weak limits as A — Z% of qﬁf\,p’q are equal to ¢, 4, so long as
p < pe(q), where p.(q) is the following critical value
(2.5) pe(q) = sup{p : ¢p 4(0 < o0) = 0}.

(d) Random-cluster measures (with ¢ > 1) satisfy the FKG inequality.
The relationship between random-cluster models and Potts models is well documented
elsewhere (see the references in [16]). We note here only that the g-state Potts model
with pair-interaction J (> 0) corresponds to the random-cluster model with parameters
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p=1-—e"7 and ¢. In particular, the two-point correlation function of the Potts model with
spins o satisfies

<60'0a0'z> - q_l =(1- q_1)¢p,q(0 ),

where (-) denotes averages with respect to the Potts measure on LL arising from free boundary
conditions, and ¢; ; is the Kronecker delta. Now,

¢p,q(0 =) < ¢p,q(0 e 0A,) if ||z|| =n,

so that upper bounds for ¢, ,(0 < 0A,) imply upper bounds for the Potts correlation
function.
3. Exponential decay

We are interested here in the rate of decay of connectivity functions in the subcritical phase,
e., when p < pc(q). We prove exponential decay under a certain assumption which we
introduce next. Let ¢ > 1. For 0 < p <1, define

(3.1) Z(p,q) = lim sup{nd_lgbp,q(o — 8An)}.

n—00

Now Z(p, q) is non-decreasing in p, and we may therefore define

(3.2) pg(q) = sup{p: Z(p,q) < oo}.

Clearly pg(q) < pc(q), and it is generally believed that equality holds here. The critical
point pg(g) plays the role of the quantity pr in the percolation literature (see [13], p. 45),
although pg(¢) and pr have different (but similar) definitions. As observed in Section 1, it
is known that py(q) = pc(q) if ¢ =1, ¢ = 2, or ¢ is sufficiently large.

The condition Z(p,q) < oo amounts to assuming that the radius R = max{||z|| : 0 < x}
has a tail decaying at least as fast as n {4~V and is a weaker assumption than the moment
condition ¢, ,(R4"1) < co. [The expression p(X) denotes the mean of the random variable
X under the measure u.] Actually Z(p,q) = 0 if ¢, ,(R4 1) < oo, since

" ld’pq(OH&A) d1¢qu>n de 1¢pq = k).

There is a converse also. If p < pe(q) then Z(p,q) < oo, implying that
n¢p q(0 = IA,) — 0 for all ¢ satisfying ¢ < d — 1.

This in turn implies that ¢, 4(R°) < oo for all ¢ satisfying ¢ < d — 1 (see [17], Problem
5.6.18).

Theorem 1. Let 0 < p < 1 and ¢ > 1, and suppose that p < pe(q). There exists & = a(p, q)
satisfying a(p, q) > 0 such that

(3.3) Gp.q(0 = OA,) < e for all large n.

This theorem is proved in Section 5.
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When d = 2, it is believed that the critical point p.(q) coincides with the self-dual point
ke = a/(1 + /q); see [16, 28]. It is known that p.(¢) > kg, but no rigorous proof of
the converse inequality is available for general ¢ (> 1). It would be sufficient to prove a
‘reasonable’ decay rate for ¢, 4(0 < dA,,) as n — 0o, when p < p.(¢). Using Theorem 1, we
find that p.(q) = kg if

Gp.q(0 = 0A,) < <(p) for all n,

n

where ¢(p) < oo for p < pc(q).

4. Two lemmas, and a first-passage problem

Next we state and prove two fundamental inequalities. After this, we apply them in studying
a first-passage problem.

First we review a fundamental formula of [8]. Fix ¢ € (0,00), p € (0,1), and let 1, be
the random-cluster measure with parameters p and ¢ on the finite graph G = (V, E); later
we shall set G = A and v, = qS?\,p’q. It is proved in [8] that, for any event A,

(41) () = [0 (N1) = (N )y (1)}

p(1—p)

where 14 is the indicator function of A, and N is the number of open edges (i.e., for
w € Qg ={0,1}¥, we have N(w) =3 _w(e)). A version of this formula is often attributed
to Russo in the case ¢ = 1 (percolation) although it was known earlier to those working in
reliability theory (see the discussion in [13]).

There is a partial order on Qg given by: w < ' if and only if w(e) < w'(e) for all e € E.
A function f : Qg — R is called increasing if f(w) < f(w’) whenever w < ', and is called
decreasing if —f is increasing. An event A (C Qp) is called increasing (resp. decreasing) if
its indicator function 14 is increasing (resp. decreasing).

Henceforth we assume that ¢ > 1, so that 9, satisfies the FKG inequality. Suppose that
A is an increasing event (but not the empty set @). For w € Qg, let Fa(w) be the minimum
number of additional edges necessary for A to occur; that is to say,

(4.2) Fy(w) = inf{z{w'(e) — w(e)} W' >w, W e A}.

It may be checked that N + F4 is an increasing random variable, and also that
Fa(w)la(w) = 0 for all w. Therefore, by the FKG inequality,

Up(N1a) = 0y (N + Fa)la) = ¢p(N + Fa)ip(A),

whence

Up(N1a) = Pp(N)Pp(A) = ¢p(Fa)ihp(A).

Substituting this into (4.1), we obtain the following lemma.
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Lemma 2. Let ¢ > 1 and 0 < p < 1. For any increasing event A (# &),

s Uy(Fa)
(43) o lostn(A)} > 82

In the proof of Theorem 1, this inequality plays the role of inequalities (3.10) and (3.36)
of [13], used by Menshikov [25, 26] to prove exponential decay for subcritical percolation
models. Integrating (4.3) over the interval [r, s], and using the facts that p(1 —p) < 1 and
that F4 is a decreasing random variable, we find that

(14 or() < yesw {4 [ op(Eadn)
< 1/15(14) eXp{_4(S_T)ws(FA)}7 ifr <s.
There is a further relation between the probability of A and the mean of Fjy.

Lemma 3. Let g > 1 and 0 <r < s < 1. Then, for any increasing event A,

¢ _(=r)g
s—r r+(1-r)g

k
(4.5) Ur(Fy <k) < < ) Ys(A)  for all k > 0.

This lemma is very closely related to the ‘sprinkling’ lemma of [5], a version of which is
valid for random-cluster models; see also [13]. We shall make use of it in the following way.
By (4.5) with C = ¢*>(1 —r)/{(s — r)(r + (1 — 7)q)},

'] K
Ur(Fa) =Y tp(Fa>k) > Y (1-CFyy(A))

where K = max{k : C*1,(A) < 1}. We sum this as usual, noting that C > 1, to find that

- 10g¢s<A) _ C - ¢S(A)
logC Cc—-1

(4.6) Ur(Fa) > if r < s.

In advance of proving the latter lemma, we present an application of the two lemmas
together. Henceforth let ¢ > 1. Returning to the lattice L, we set A,, = {0 < 9A,}, and
write F,, for F4 . As remarked in Section 1, Derrienic’s theorem (see [12, 20]) implies the
existence of the constant limit

(4.7) u(p,q) = lim {n_an} bp.g-a.s.

Using a comparison inequality (see [16], Thm 2.2) we have that u(p,q) is non-increasing in
p, and we define

Paow(q) = sup{p : p(p,q) > 0}.
Next we define the correlation length £(p, q) by

&(p, q)_1 = lim {—% log gﬁp’q(O — nel)} ,

n—o0o
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where ey is a unit vector in the direction of increasing first coordinate, and where the limit
exists by the FKG inequality and subadditivity. (We adopt the convention that co™! = 0.)
Note that £(p, ¢) is non-decreasing in p. Using the argument of [16], Thm 5.14, we have that

) 1 _
nlinolo {_E 1Og ¢P7Q(An)} = f(p7 q) 17
whence ¢, 4(Ay) decays exponentially if and only if £(p,q) < co. We define the further
critical point

pcorr(Q) = Sup{p : §(p7 Q) < OO}
Theorem 4. Let ¢ > 1. It is the case that paow(q) = Peorr(q).

It is clear from the above observations that paow(q) = Peorr(q) < Pe(q) < pe(q), and it
is a consequence of Theorem 1 that peorr(q) = pg(q). It is believed also that py(q) = pc(q)-
As observed earlier, this is known only for ¢ = 1, ¢ = 2, and for sufficiently large q. The
first-passage problem and the time constant u(p, ¢) have been studied in detail when ¢ = 1;
see [19, 20]. Several authors have paid serious attention to a closely related question when
q = 2 and d = 2, namely, the corresponding question for the two-dimensional Ising model,
where the ‘passage time’ F,, is replaced by the minimum number of changes of spin along
paths from the origin to dA,; see [1, 12]. The time constant in the Ising case cannot exceed
the corresponding random-cluster time constant u(p,2), since each edge of the Ising model
having endpoints with unlike spins gives rise to a closed edge in the associated (coupled)
random-cluster process.

In some of the following proofs we shall make use of Lemmas 2 and 3 applied to the infinite-
volume random-cluster measures. Let A be an increasing (non-empty) cylinder event in the
measurable space (£2, F), and set 1, = qSOAM’p’q, where M is a positive integer. We apply
(4.4) and (4.6) accordingly, noting that

q

1—
7(1( 7“)<0< .
s—r s—r

Now, take the limit as M — oo, to obtain that, for 0 < r < s < 1,

(4.8) Ora(A4) < big(A) exp{ =45 = 1)14(Fa) },

“loggug(4) O
(49) Pl 2 glafs -y 01

Before turning to the proof of Theorem 4, we make one further observation. Inequalities
(4.8) and (4.9), with A = A,,, imply that the correlation length &(p, q) is strictly increasing
in p whenever it is finite (cf. [13], Thm 5.14).

Proof of Lemma 3. Let r < s. We shall employ a suitable coupling of the measures v,
and ¢s. Let E = {e1,ea,...,e,} be the edges of the graph G, and let Uy, Us, ..., U,, be
independent random variables having the uniform distribution on [0,1]. We shall examine
the edges in turn, to determine whether they are open or closed for the respective parameters
r and s. The outcome will be a pair (7,w) of configurations each lying in = {0, 1}¥ such
that m < w. The configurations m, w are random in the sense that they are functions of the
Uj.
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First, we declare

m(er) =1 if and only if Uy < 4,.(J1),
w(@l) =1 ifand only if Ul < z)bs(Jl)a

where J; is the set of configurations v (€ Q) with v(e;) = 1. Note that ¥, (J1) < ¥s(J7)
since r < s, and therefore m(e1) < w(eq).

Let M be an integer satisfying 1 < M < m. Having defined 7(e;), w(e;) such that
m(e;) < w(e;) (for i < M), we define 7(epr4+1) and w(epr41) as follows. We declare

m(ems1) =1 if and only if Ungr < ¥y (Jargr | Fae(w)),
wlem1) =1 ifand only if Unry1 < ¥ (Ju41 | Fu(w)),

where Fjs(7) is the set of configurations v satisfying v(e;) = vy(e;) for 1 < i < M. We have
that ¥, (Jar41 | Far(m)) < ©s(Ipr41 | Far(w)) since r < s and 7(e;) < w(e;) for 1 < i < M;
this implies that 7(ep+1) < w(epr41)-
Continuing likewise, we obtain a pair (7, w) of configurations satisfying:
(a) ™ <w,
(b) = is distributed according to the measure .,
(¢) w is distributed according to the measure 5.
We write u for the probability measure associated with the Uj.
By a straightforward computation (cf. equation (3.10) of [16]),

Ji | D; :$,

Up(Ji | Df) = p,
where D; is the event that there is no open path of E \ {e;} joining the endpoints of e;, and

Dys is the complement of D;. Using conditional expectations, we deduce that, since ¢ > 1,
then

(4.10) o SUnlBi D) <

p+(1-p)
for any event D defined on the states of E \ {e;}. It follows from the definition of the 7(e;)
and w(e;) that

(1-r)g
e =0|U,Us,...,Uy) =1—=9,(J Fn, < —F——.
p(m(enryn) ‘ 1, U2 M) r ( M+1‘ (7)) r+(l—r)g
By a similar argument,
M(w(eM—l—l) = 1,7T(€M_|_1) =0 ‘ U17U27' . 7UM>

S—T

q

= s (a1 | Fu (W) — e (Jngg1 | Fu(m)) >
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A full derivation of the last inequality is obtainable as follows. Using Lemma 2 with A = J;
(so that Fy, = 1;¢) together with (4.10),

¢p(Ji)(1 — d’z)(Ji)) > 1
p(1—p) “p+(1-p)

>

1
Vp(Ji) > —.
q
Now integrate over the interval [r, s] to obtain that

S—T

q

(4.11) 1/)5(']2) o wr(‘]z) >
Finally,

Vs (Jm1 | Frrw)) = e (Jrg1 | Fre (7)) = 05 (g1 | Fre(w)) — ¥r (Jaagr | Far(w)),

and the claim follows by applying (4.11) with ¢ = M + 1 to the graph obtained from G by
contracting (resp. deleting) any edge e; (for 1 < i < M) with w(e;) = 1 (resp. w(e;) = 0).
Cf. Theorem 2.3 of [16].

It follows from the above that

s—r‘r—i—(l—r)q
q (1-r)g

(4.12) u(w(eM_H) =1 7T(€M+1) == 0, Ul, UQ7 ey UM) 2

Now fix a configuration £ (€ ) and a set B of edges such that £(e) = 0 for e € B. We
claim that

(4.13) p(m=¢& wle)=1foree B) > <8_T T+(1_T)q>|B|u( £)
. =, = > . T =£).
q (1-7)g
This follows from the recursive construction of m and w in terms of the family Uy, U, ... , Uy,

in the light of the bound (4.12).
Inequality (4.13) implies the claim of the lemma, as follows. Let & be a configuration
satisfying Fia(§) < k. There exists a set B = B¢ of edges such that
(a) [B| <k,
(b) &(e) =0 for e € B,
(c) the configuration obtained from ¢ by allocating state 1 to all edges in B lies in the
event A.
If more than one such set B exists, we pick the earliest in some deterministic ordering of all
subsets of E. Then, by (4.13),

Vs(A) > p(Fa(r) <k, w(e) =1 for e € By)
= Z p(r=¢ wle)=1for e € Be)

§:Fa(§)<k

s—r r+(l—-r)g i
> (S TR wE s,
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Proof of Theorem 4. Let r < s < paow(q). There exists a constant v = (s, q) (> 0) such
that

(4.14) ¢s.q(Fn) > nvy(s,q) foralln > 1.

Now let A = A,, = {0 < 9A,}. In conjunction with (4.14), (4.8) implies the exponential
decay of ¢, 4(Ay), whence r < peorr(q). Therefore paow(q) < peorr(q)-

Conversely, suppose that 7 < s < peorr(q). There exists @ = a(s,q) (> 0) such that
$s,q(Ap) < e for all n. By (4.9) with A = A,, and some positive 5 = §(r, s, q),

—log(e™™") . _ an B
Oralln) 2 ot =t~ T el -y P
whence 7 < pgow(q). Therefore peorr(¢) < Pow(q). O

5. Proof of Theorem 1

There are two stages in the proof. In the first stage, we use inequalities (4.4) and (4.6) in an
iterative scheme in order to prove that ¢, 4(A,) decays ‘near-exponentially’ when p < p,(q).
In the second stage, we use Theorem 4 together with an argument developed by Fontes
and Newman [12] to deduce full exponential decay. The conclusions of these two stages are
summarised in the following two lemmas.

Lemma 5. Let 0 < p < 1 and ¢ > 1, and suppose that p < pg(q). There exist constants
c(p), A(p), satisfying c¢(p) > 0, 0 < A(p) < 1, such that

bp.a(An) < exp(—cn®)  for alln > 1.

We recall the flow constant pu(p,q) defined in (1.8) and (4.7). As before, C' is the vertex
set of the open cluster at the origin.

Lemma6. Let0<p <1andq>1. If ¢pq(|C**€) < oo for some e > 0, then p(p, q) > 0.

Before embarking on the proofs of these lemmas, we make some remarks. First, Lemma
5 will be proved by an iterative scheme which may be continued further. If this is done, one
obtains thereby a proof that ¢, (A,) decays at least as fast as exp{—ay(p)n/log; n) for
any k > 1, where ag(p) > 0 and log, n is the kth iterate of logarithm.

Secondly, the hypothesis of Lemma 6 is implied by the conclusion of Lemma 5, using
(1.6). Therefore Lemmas 5 and 6 imply that p(p,¢) > 0 when p < pg(q), whence Theorem
1 follows by Theorem 4.

Thirdly, essentially the only feature of the measure ¢, , which enables Lemma 6 is the
FKG property. More precisely, a version of Lemma 6 holds with ¢,, , replaced by any ergodic
probability measure satisfying the FKG inequality. In addition, the moment condition may
be relaxed just a little; see [10, 12].

Proof of Lemma 5.. We shall make central use of inequalities (4.4) and (4.6), in an iterative
scheme. Rather than using these inequalities in the forms presented for finite graphs, we
shall make use of their infinite-volume versions (4.8) and (4.9). In the following, we shall
sometimes use real quantities when wntegers are required. It will be clear that this notational
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simplification has no ultimate effect on the validity of the proof. All o(1) and O(1) terms
are to be interpreted in the limit n — oo.
Fix ¢ > 1. For p < pg(q), there exists ¢;(p) satistying ¢;(p) > 0 such that

1(p)

9

(5.1) bp.q(An) < ) for all n.
Let r < s <t < pg(q)- By (4.9),
buo(F) > —log ¢ 4(Ar) Lo() > (d—l)logn+o(1)
SR = logC - log C

where 1 < C' = ¢/(t — s) < oco. Insert this into (4.8) to obtain that

c2(r)
(52) ¢T7q(An) S m for all n

for some strictly positive and finite ca(r) and Ag(r). This holds for all » < pg(q), and is an
improvement over (5.1).

Next we shall obtain an improvement of (5.2). Let m be a positive integer, and let
R; =im for 0 <i < K, where K = [n/m]. Let L; be the event {OAg, < OAg,,, }, and let
H; = Fr,,, the minimal number of extra edges needed for L; to occur. Clearly,

K-1
(5.3) F,> Y H,
1=0

since every path from 0 to dA,, traverses each annulus Ag,, , \ Ag,. There exists a constant
n (> 1) such that |[0Ag| < nRY1 for all R. Therefore, by the translation invariance of ¢, 4,

(5-4) ¢p,q(Li) < |8ARi|¢p,q(Am) < n"dilqsp,q(Am)-

Let 7 < s < pg(q), and let cop = ca(s), Ag = Ay(s) where the functions ca(p) and Aq(p)
are given as in (5.2). It follows from (5.2) and (5.4) that

d— Co 1
(5.5) ¢s,q(Ls) < mn=t A1t A, < 2
if
(5.6) m = {(2neg)nd=1}/@71HE2)

and we choose m accordingly (here and later, we assume that n is large). Now H; > 1 if L;
does not occur, whence

(5.7) bualF) 2 {1 = ug(L)} > 4K
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by (5.3) and (5.5). Also,
(5.8) K = |n/m] > Dn”®

by (5.6), for appropriate positive constants D, Ag satisfying D > 0, 0 < Az < 1. In
conjunction with (4.8) and (5.7), this lower bound for K implies that

(5.9) br.q(Ay) < exp {—03nA3} for all n.

where ¢3 = ¢3(r) > 0, 0 < Ag = Az(r) < 1. This holds for all r < p,(q). 0

Proof of Lemma 6. We prove that u(p,q) > 0 by an argument to be found in [12]. Let II,,
be the set of all paths of L joining the origin to dA,,. With T'(7) denoting the number of
closed edges in a path 7w, we have that

1
T@+12 ) e

TET

where the sum is over all vertices x of m, and C, is the open cluster at z. It follows by
Jensen’s inequality that

-1

T(r)+1 _ 1 1 1

mrls Ly Lot byt
ER=P e {mz; }

Therefore,

n well,

B |7
where

1
K, = sup {HZC@}-

m€ll, TET

Using (4.7), we find that pu(p,q) > K~ a.s., where

(5.10) K = limsup [sup {ﬁ Z Cyl : || = m}] ,

m— 00
rem

where the (inner) supremum is over all paths from the origin containing m vertices. We
propose to show that K < oo a.s., whence u(p,q) > 0 as required.

Let {éz : v € Z%} be a collection of independent subsets of Z? with the property that
C, has the same distribution as C,. We claim, as in [12], that {|C,| : # € Z4} is dominated
stochastically by {M, : v € Z%}, where

M, = sup{|5y| cy €28 x € 6'y}

We prove this inductively. Let vy, v, ... be a deterministic ordering of 7%, Given the random
variables {C, : x € Z%}, we shall construct a family {D, : x € Z%} having the same joint
distributions as {C,, : € Z?} and satisfying (for each x) D, C C, for some y depending on
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x. First, we set D,, = C,,. Given Dy, Dy,, ..., D, , we define E = |JI" | D,,. Iff v, 11 € E,
we set Dy, ., = Dy, for some j such that v, 41 € Dy, If vy ¢ E, we argue as follows. Let
AF be the set of edges of Z¢ having exactly one endpoint in E. We may find a (random)

subset F' of évn .1 such that F' has the conditional distribution of C,, ., given that all edges

in AFE are closed; we now set D, ., = F. [It is here that we use the FKG inequality.] We
obtain the stochastic domination accordingly.
It follows by (5.10) that

K <limsup [sup

m— 00

1
szw:W:m a.s.
TET

By Lemma 2 of [12, p. 760],

1 -
K < 2limsup |sup T Z |Co? T =m a.s.

where the (inner) supremum is over all animals I" of . having m vertices and containing the
origin. Using the result of [10], the right side is a.s. finite so long as |C,|? has finite (d + €)th
moment for some € > 0. The conclusion of Lemma 6 follows. O
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