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University of CambridgeAbstract. Any infinite graph G = (V, E) has a site percolation critical probability

psite
c and a bond percolation critical probability pbond

c . The well known weak inequality

psite
c ≥ pbond

c is strengthened to strict inequality for a broad category of graphs G,

including all the usual finite-dimensional lattices in two and more dimensions. The
complementary inequality psite

c ≤ 1− (1− pbond
c )∆−1 is proved also, where ∆ denotes

the supremum of the vertex degrees of G.

0. Introduction and results

Let G = (V,E) be an infinite connected graph. Our target in this paper is study

the relationship between site and bond percolation on G, and particularly to prove

inequalities between the two critical probabilities psite
c , pbond

c of these models. To

date, the only general inequality of this type appears to be the weak inequality

psite
c ≥ pbond

c , valid for all connected graphs G. Our principal purpose here is to

extend the coupling arguments used in proving this weak inequality, and to exploit

recently developed methods for proving strict inequalities, in order to obtain the

inequality psite
c > pbond

c for a certain broad category of graphs.

Several difficulties arise in this programme, under two general headings. First,

a method is required for utilising the ‘strict inequality’ methods of Aizenman and

Grimmett (1991) in the ‘non-static’ setting which occurs when studying stochastic

couplings of site and bond percolation. Secondly, there are graph-theoretic compli-

cations in applying such techniques to general graphs.
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We shall give two theorems about strict inequalities, rather than one only. Our

first such result is Theorem 1, which applies specifically to hypercubic lattices in d

(≥ 2) dimensions; this will be proved using a relatively straightforward construction.

Although this construction may in principle be extended (with some combinatorial

complications) to certain other graphs on an ad hoc basis, it does not seem to be easy

to adapt it to a broad general class of graphs. Therefore, we have separated out in

Theorem 2 our more general result, the proof of which requires substantially deeper

ideas than that of Theorem 1. Since Zd is the major playground for percolation,

Theorem 1 and its proof are valuable in their own right.

We present next a description of the two percolation models in question. In the

bond percolation model on G, we are provided with ea collection (Xe : e ∈ E) of

independent Bernoulli random variables, each having the same mean p, indexed by

the set E of edges (or ‘bonds’). If Xe = 1, we say that the edge e is open; otherwise

it is called closed . Given any two vertices (or ‘sites’) x and y, we say that y can be

reached from x (and we write x ↔ y) if there exists a path of open edges from x

to y. Let 0 denote a specific vertex of G, called the ‘origin’. The (random) set of

vertices which can be reached from the origin is denoted by C0:

C0 = {x ∈ V : 0 ↔ x}.

The principal event of interest is that of C0 being infinite, and we define

θbond(p) = Pp(|C0| = ∞),

where Pp denotes the appropriate product probability measure on {0, 1}E. We refer

the reader to Durrett (1988) and Grimmett (1989, 1997) for further information

and standard results concerning percolation. The ‘bond critical probability’ pbond
c =

pbond
c (G) is defined as

pbond
c (G) = sup{p : θbond(p) = 0},

so that

θbond(p)

{

= 0 if p < pbond
c ,

> 0 if p > pbond
c .

In the site percolation model, we have instead a collection (Yx : x ∈ V ) of

Bernoulli random variables, each with mean p, indexed by the set of vertices of G.
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If Yx = 1, we say that the vertex x is active; otherwise we say that x is inactive. In

this model, we say that vertex y can be reached from vertex x (written x ↔ y) if

there exists a path from x to y consisting of active vertices only (in particular, x and

y are required to be active). We make similar definitions to those in the bond model,

obtaining thus a site percolation probability θsite(p), and a site critical probability

psite
c = psite

c (G).

It is natural to ask whether there exists any relationship between the site and

bond percolation models on some fixed graph. It is known that, for any graph G,

(0.1) psite
c (G) ≥ pbond

c (G);

see Hammersley (1961) for a statement of this result; see Oxley and Welsh (1979)

and Kesten (1982) for proofs. In fact a stronger result is true, namely that for any p

and any fixed graph G and starting vertex 0, it is the case that θsite(p) ≤ pθbond(p);

in this sense, percolation does not occur so readily in the site model as in the bond

model. This last inequality follows from a fairly obvious coupling argument, which

we shall present during the proof of our Lemma 5.

We may ask for conditions under which the inequality in (0.1) is strict. If the

graph in question is a tree then necessarily the site and bond critical probabilities

are equal. In this case, if we declare the starting vertex 0 to be automatically active

for the site model, then the site and bond models are essentially identical, in the

sense that C0 has the same distribution for both models. Furthermore, we may make

certain changes to a tree without changing the values of its critical probabilities; one

example of such a change is the addition of finitely many edges. One sees in this

way that there exist infinite, connected graphs which are not trees, for which the

site and bond critical probabilities are equal. However, it is reasonable to suppose

that for a broad category of graphs G, including all the standard finite-dimensional

lattices in two or more dimensions, the strict inequality

(0.2) psite
c (G) > pbond

c (G)

is valid. No general derivation of this is known. The only cases for which (0.2) is

known appear to arise either through special properties of the graph in question

(such as self-duality in the case of Z2, see Higuchi (1982), Tóth (1985)) or via ex-

plicit numerical bounds (see Hughes (1996), pp. 182–183). Certain two-dimensional

inequalities were proved by Kesten (1982), using somewhat elaborate techniques.
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Of greatest interest perhaps is the case when G is the d-dimensional hypercubic

lattice with vertex set Zd and edge set Ed.

Theorem 1. Let d ≥ 2. We have that psite
c (Zd) > pbond

c (Zd).

The strict inequality of Theorem 1 is valid for a much wider range of graphs than

just the hypercubic lattices. As remarked above, these two critical probabilities are

equal for trees, but one might reasonably expect them to be distinct for graphs which

have, in some appropriate sense, a positive density of cycles. It is not immediately

clear what the best way is to make this notion precise for graphs having little or

no symmetry, so we restrict our attention for the moment to graphs having a large

number of automorphisms.

Let G = (V,E) be an infinite connected graph. We call G locally finite if all

vertices have finite degree, and we assume henceforth that this holds. We denote by

∆(G) the supremum of the vertex degrees of G. Let Aut(G) denote the group of

automorphisms of G. This group acts on the vertex set V in the obvious way. We

say that G is finitely transitive if this group action has only finitely many orbits.

Finite transitivity is true of all graphs commonly referred to as ‘lattices’ and has the

additional appeal of being a purely graph-theoretic property: it does not depend on

any particular embedding of the graph in Euclidean space.

We call an edge e of G a bridge if the removal of e disconnects G; we say that

G is bridgeless if it contains no bridges. Connected bridgeless graphs with at least

three vertices are also known as 2-edge-connected graphs.

Theorem 2. Let G be an infinite, finitely transitive, connected, locally finite, bridge-

less graph. Then either

(i) psite
c (G) = pbond

c (G) = 1, or

(ii) 0 < pbond
c (G) < psite

c (G) < 1.

Part (i) applies, for example, to an infinite ladder (the product of Z withK2), and

part (ii) to Zd for d ≥ 2. This theorem is applicable to graphs whose growth functions

are bigger than polynomials, and in particular to the Cayley graphs of many groups.

Percolation on such graphs has been studied recently by several authors; see the

papers and references of Benjamini and Schramm (1996) and Benjamini, Peres,

Lyons, and Schramm (1997). A more general version of Theorem 2, which does not

require the graph to have any non-trivial automorphisms, is given at Theorem 10.
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We make next some remarks concerning strict inequalities. There exist many

situations in which a weak inequality between critical points may be established but

where the corresponding strict inequality is elusive. There seems to be only one

general method for proving such inequalities, namely that described by Aizenman

and Grimmett (1991) (see also Menshikov (1987)). Using this approach, Aizenman

and Grimmett were able to prove strict inequalities for certain percolation and Ising

systems, and Bezuidenhout, Grimmett, and Kesten (1993) proved similar results

for general Potts and random-cluster models. The latter results were extended to

many-body interactions by Grimmett (1994). Strict inequalities can be strangely

difficult to prove, even in situations when the weak inequality is nearly a triviality.

The methods used here lead also to quantified versions of the strict inequalities of

Theorems 1, 2, and 10, but the bounds obtained thus seem to be of limited interest.

Our third main result is an inequality complementary to that of Theorem 2.

Theorem 3. Let G be a connected graph satisfying ∆ = ∆(G) <∞. Then

psite
c ≤ 1 − (1 − pbond

c )∆−1.

The inequality of Theorem 3 may well not be the best possible, although we

have not been able to improve on it. We deduce from (0.1) and Theorem 3 that,

for graphs with bounded degree, psite
c < 1 if and only if pbond

c < 1. It is easy and

standard to prove by counting paths that

(0.3) psite
c , pbond

c ≥
1

∆ − 1
,

and we deduce in this case that psite
c is non-trivial (in the sense that it lies strictly

between 0 and 1) if and only if pbond
c is non-trivial. (This fact may be established

by other arguments also.)

We prove Theorem 1 in Section 1, and Theorem 3 in Section 2. In Section 3, we

present a discussion of the problem of proving (0.2) in general. Finally, we prove

Theorem 2 in Section 4.

1. Proof of Theorem 1

The basic approach used in our proof of Theorem 1 is the ‘enhancement’ technol-

ogy developed by Aizenman and Grimmett (1991). They considered the following
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situation. Suppose that we are given two percolation processes, one of which is an

‘enhancement’ of the other. We now ask whether or not the enhanced process has

a critical probability which is strictly less than that of the original. Aizenman and

Grimmett (1991) developed a technique for showing that, subject to certain condi-

tions, such strict inequality is valid. One approach would therefore be to find a way

in which a bond model may be viewed as an enhancement (in the sense of Aizenman

and Grimmett) of the site model on the same graph. Rather than do this, we pro-

pose instead to find an enhancement of the site model which lies ‘strictly beneath’

the bond model. The required inequality will then follow.

We do not give full details of the arguments of Aizenman and Grimmett (1991),

but present instead a summary, as follows. The enhancements considered by them

are defined by translation-invariant rules which are applied systematically about the

underlying graph. To describe this precisely, let us restrict our attention for the

moment to site percolation on Zd. Given R > 0 we define the box

B(R) = [−R,R]d = {x ∈ Zd : ‖x‖ ≤ R},

where ‖x‖ = max{|xi| : 1 ≤ i ≤ d} for x = (x1, x2, . . . , xd) ∈ Zd. Let S ⊆ Zd.

The set ΩS = {0, 1}S is called the set of configurations on S. We shall think of a

configuration ω in either of two ways: as a 0/1 vector ω indexed by S, or alternatively

as the subset η(ω) = {x ∈ S : ω(x) = 1} of vertices of S which are active under

ω. This defines a one–one correspondence between vectors ω and subsets η(ω). We

write Ω = ΩZd = {0, 1}Z
d

, and C(R) = ΩB(R), the set of all configurations on B(R).

When convenient, we think of C(R) as the set of subsets of B(R).

We now define the relevant type of enhancement. Let R be a positive integer (the

range of the enhancement), let s satisfy 0 ≤ s ≤ 1 (the enhancement density), and

let f : C(R) → C(R) (the enhancement function). Then, for ω ∈ Ω and η = η(ω),

we define f(0, η) to be the evaluation of f on the restriction of η to B(R), i.e.,

f(0, η) = f(B(R)∩ η). We extend this to a definition of f(x, η), for each x ∈ Zd, by

considering the configuration induced by ω on the box centred about x:

f(x, η) = f
(

(

η ∩ (B(R) + x)
)

− x
)

+ x.

The enhanced configuration is then obtained from η by activating the enhancement

(i.e., declaring all vertices in f(x, η) to be active) if and only if a certain coin flip
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shows heads. More precisely, given ω, ξ ∈ Ω, we define the enhanced configuration

η∗(ω, ξ) by

η∗(ω, ξ) = η(ω) ∪

{

⋃

y:ξ(y)=1

f(y, η(ω))

}

.

Then we introduce probabilities. Let 0 ≤ p ≤ 1 as usual. On the product space

Ω×Ω, we put the product probability measure Pp,s = Pp × Ps, which is to say that

Pp,s(A×B) = Pp(A)Ps(B)

for any events A,B ⊆ Ω. We now define θ(p, s) to be the probability that the origin

belongs to an infinite cluster of the enhanced configuration η∗, i.e.,

θ(p, s) = Pp,s

(

{

(ω, ξ) : 0 lies in an infinite connected subset of η∗(ω, ξ)
}

)

.

There is an important categorisation of enhancements. Following Aizenman and

Grimmett (1991), we shall say that an enhancement is essential if there exists a

configuration ω such that: there exists no doubly infinite path in (the graph induced

by) η(ω), but there exists a doubly infinite path in η(ω)∪f(0, η(ω)). We shall make

use of the following theorem, taken from Aizenman and Grimmett (1991).

Theorem 4. Suppose d ≥ 2 and let s > 0. For any essential enhancement of the

site percolation model on Zd, there exists a non-empty interval (π(s), psite
c ] of values

of p on which θ(p, s) > 0.

This theorem is also valid for bond percolation and with some work a version of

it may be proved for certain other graphs (see Grimmett (1994)).

We now specify the required enhancement. Let e1, . . . , ed denote the usual unit

vectors of Rd: e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), and so on. Given a vertex

y ∈ Zd we define four pairwise disjoint sets of vertices close to y as follows:

P1
y = {y + ei : 1 ≤ i ≤ d}, P2

y = {y + ei + ej : 1 ≤ i < j ≤ d},

N 1
y = {y − ei : 1 ≤ i ≤ d}, N 2

y = {y − ei − ej : 1 ≤ i < j ≤ d}.

Thus, P1
y ∪ N 1

y is precisely the set of neighbours of y. Given a configuration ω, we

say that y is a qualifying vertex if y /∈ η(ω) and P1
y ∪ P2

y ∪ N 1
y ∪ N 2

y ⊆ η(ω). For

ω, ξ ∈ Ω, our enhanced configuration is

η∗(ω, ξ) = η(ω) ∪
{

y : y is a qualifying vertex and ξ(y) = 1
}

.
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Fig. 1. A representation of the enhancement described, when d = 2. Each copy

of the configuration on the left is replaced, with probability s, by the configuration

on the right. Filled circles indicate active sites. Other sites can be either active or

inactive.

It is easy to see that this constitutes an essential enhancement. We shall refer

to η∗ (or the law it induces on the space of configurations) as simply enhanced site

percolation with parameters p and s, and we write θ(p, s) to denote the corresponding

percolation probability of the enhanced configuration. See Figure 1 for a sketch of

the enhancement.

Lemma 5. θ(p, p2) ≤ θbond(p).

Our proof of this lemma begins with a certain ‘dynamic coupling’ which shows

that bond percolation dominates ordinary (i.e., unenhanced) site percolation in the

following sense: we start with a bond process, and we construct a site process from

it in such a way that any pair of vertices which are connected by a path in the

site process were already connected by a path in the bond process. This coupling

is not new and, although slightly unwieldy to describe formally, is a natural one

which is valid for all graphs. At the second stage of the proof, we will observe that,

in the construction of the site process, certain bonds were ignored, and that these

bonds may be used to enhance the ensuing site process in the required way. (Since

the coupling is ‘dynamic’, exactly which bonds were ignored depends on the bond

configuration.)

Proof of Lemma 5. We begin with a bond percolation process on Zd: let (Xe : e ∈

Ed) be a collection of independent 0/1-valued random variables. Let (Zx : x ∈ Zd)

be a collection of independent 0/1-valued random variables, independent of the Xe,

having mean p also. In the first stage of this proof, we construct from these two

families a new collection (Yx : x ∈ Zd) of random variables, which constitutes a site

percolation process with density p. This last process will have the property that, for

x, y ∈ Zd, if y cannot be reached from x in the bond process (Xe), then neither can

y be reached from x in the site process (Yx); this will show that θsite(p) ≤ θbond(p).
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Let e0, e1, . . . be an enumeration of the edges of Zd and let x0, x1, . . . be an

enumeration of its vertices. We wish to define the Yx in terms of the Xe and the

Zy, and we shall do so by a (possibly transfinite, but definitely countable) recursion.

We start with a formal description of the recursion, and then give a somewhat more

informal description.

Suppose at some stage that we have defined the set (Yx : x ∈ X ), where X

is a proper subset of Zd. (At the start we have X = ∅.) Let Y be the set of

vertices not in X which are adjacent to some currently active vertex (i.e., a vertex

u ∈ X with Yu = 1). If Y = ∅, then let y be the first vertex (in the sense of our

enumeration) not in X , and set Yy = Zy. If Y 6= ∅, we let y be the first vertex in Y

and let y′ be the first currently active vertex adjacent to it; we then set Yy = Xyy′ ;

here, uv denotes the edge joining two neighbours u, v. Repeating this procedure will

eventually exhaust all vertices x ∈ Zd, and assign values to all the variables Yx.

This algorithm begins at x0, and builds up a (possibly infinite) active cluster

together with a neighbour set of inactive vertices. When the cluster at x0 is complete,

another vertex is selected as a new starting point, and the process is iterated. Note

that this recursion is transfinite, since infinitely many steps are needed in order to

build up any infinite active cluster.

We now make two key observations about our construction of the variables Yx.

Firstly, for each vertex x, the probability that Yx = 1, conditional on any information

about the values of those Yy determined prior to the definition of Yx, is equal to p.

Based upon this observation one may prove, with a little care, that the random

variables (Yx : x ∈ Zd) are independent with mean p, which is to say that they

constitute a site percolation process on Zd.

Secondly, it is evident from the manner of the construction that if there exists an

active path between two vertices then there exists a (possibly longer) path of open

bonds. Therefore we have succeeded in coupling a bond and a site process with the

required domination property.

We shall now adapt this construction in order to obtain a suitable coupling of

bond percolation with an enhanced site percolation process obtained from the Yx.

Before giving a precise definition of the new coupling, we explain the central idea.

Suppose that y is a qualifying vertex in the sense of the definition of enhanced site

percolation. Then Yy = 0 and Yx = 1 for all x ∈ P1
y ∪ P2

y ∪ N 1
y ∪ N 2

y . Note that
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all the vertices of P1
y ∪ P2

y (resp. N 1
y ∪ N 2

y ) must lie in the same site percolation

cluster C1 = C1(y) (resp. C2 = C2(y)). If C1 = C2, then the activation of y makes

no difference to the connectivity properties of the graph except at y. If C1 6= C2,

then activating y effectively joins C1 and C2 together. Since Yy = 0, it is the case

that at most one edge e incident with y was examined (in the sense that the value

of Xe was considered) in the determination of the Yu. Therefore there exists at least

one unexamined edge joining y to P1
y ; let the first such edge in our enumeration be

e = e(y). Likewise, there exists a first unexamined edge, f = f(y) say, joining y

and N 1
y . We adopt the following enhancement: we declare y to be active if and only

if Xe = Xf = 1. This has the effect of adding y into the enhanced configuration

with probability p2. Acting thus for all qualifying vertices y yields an enhanced site

percolation; the independence of the enhancement at different qualifying vertices

follows from the fact that the sequence of all e(y) and f(y) contains no repetitions.

Furthermore, the above enhancement cannot join any two vertices which are not

already joined by an open path in the bond model: activating y has the effect of

connecting y to the clusters C1(y) and C2(y) and to no others, and this activation

of y occurs only in situations where y is already joined to both of these clusters in

the bond model.

It is fairly straightforward to present a formal description of the informal ac-

count above. In order to obtain the appropriate enhancement, we require a family

(Hy : y ∈ Zd) of independent Bernoulli random variables, having parameter p2 and

independent of the family (Yx). We only require the Hy for qualifying vertices y,

and we may simply set Hy = Xe(y)Xf(y), where e(y) and f(y) are given as above.

We have now given a coupling of bond percolation and an enhanced site perco-

lation with the property that any two vertices which are in the same cluster of the

enhanced site process are in the same cluster of the bond process. In particular,

if the cluster containing the origin in the enhanced vertex process is infinite, then

the cluster containing the origin in the bond process is infinite also. The required

inequality follows. �

Proof of Theorem 1. We use the notation of the proof of Lemma 5. Note first that

the enhancement presented there is essential. Let s = 1
2p

site
c . By Theorem 4, there

exists π(s) (< psite
c ) such that θ(p, s) > 0 for all p > π(s). Let max{π(s), s} < p <
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psite
c . Since p2 > s2, we have that θ(p, p2) ≥ θ(p, s) > 0. Therefore, by Lemma 5,

θbond(p) > 0, whence psite
c > p ≥ pbond

c as required. �

2. Proof of Theorem 3

Let G = (V,E) be an infinite, connected, locally finite graph. We let δ(x) be the

degree of the vertex x, so that ∆ = ∆(G) = sup{δ(x) : x ∈ V }. We construct a

coupling of a site and bond model on G. As above, we begin with a bond process

with density p on G together with an enumeration x0, x1, . . . of V , and we shall

construct a site process (or more precisely one component of a site process, together

with its boundary). Rather than give all the formalities of the proof, we give an

informal account which may easily be made rigorous.

We begin at stage 0 with the first vertex x0 in the enumeration of V (called

the ‘origin’), and we declare it to be active if and only if at least one of the bonds

incident with it is open; otherwise we declare it to be inactive. If x0 is inactive, then

we stop; otherwise we continue to the next stage. Note that

Pp(x0 is active) = 1 − (1 − p)δ(x0) ≤ 1 − (1 − p)∆.

At each subsequent stage (stage n, say) we consider the vertex, v say, which is the

earliest vertex in the enumeration out of those which have not yet been considered

and which are adjacent to some vertex which has been considered and declared

active; if there are no such vertices then we stop. We declare v to be active if and

only if there exists at least one open bond joining v to some vertex which has not yet

been considered; otherwise we declare v to be inactive. Writing Fn for the history

of the process up to this stage, we have that

(2.1) Pp(v is active | Fn) = 1 − (1 − p)ρ ≤ 1 − (1 − p)∆−1,

where ρ is the number of edges of G joining v to vertices not already considered.

In this way we build up precisely one component C of active vertices (which may

be finite or infinite); furthermore, every neighbour of every active vertex in C is

eventually considered (i.e., declared active or inactive). Note, however, that some

vertices which belong to the component containing 0 in the bond process may have

been declared inactive in the ensuing site process. Nevertheless, it is easy to see that
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if the component containing the origin in the bond process is infinite, then so is C.

In order to see this, suppose that C is finite. Define its external boundary ∂eC to

be those vertices which are not in C but which are adjacent to a vertex in C; that

is, ∂eC comprises precisely those vertices which have been considered and which

have been declared inactive. Then there exists no open edge in the bond process

which leads from a vertex in C ∪ ∂eC to a vertex outside C ∪ ∂eC. Therefore, the

component containing the origin in the bond process is contained in C ∪∂eC, which

is a finite set.

In the construction of C, each vertex other than the origin was declared active

with conditional probability at most 1− (1− p)∆−1; cf. (2.1). This implies that the

site process is stochastically dominated by an independent site percolation model

on G, having density 1 − (1 − p)∆−1 and conditioned on the origin being active. It

follows that

(2.2) θsite
(

1 − (1 − p)∆−1
)

≥
{

1 − (1 − p)δ(x0)
}

θbond(p).

The required inequality follows. �

3. Strict inequality for more general graphs

We discuss next the problem of proving strict inequality for general graphs. Even

finitely transitive graphs can contain cycles which do not affect the percolation

probabilities. Take, for example, an infinite binary tree, and attach a triangle to

each vertex. No infinite self-avoiding path can make use of these additional edges

(except, perhaps, at its start), so the percolation probabilities are unaffected. To

avoid these inessential parts of a graph, we make a further definition and some

associated observations.

We say that a vertex x is 2-connected to infinity if G has at least two infinite

paths which are disjoint except at their common endvertex x. (Note that throughout

we use path to mean a (finite or infinite, possibly doubly infinite) sequence of distinct

vertices, each adjacent to the next in the sequence.) We say that G is 2-connected

to infinity if every vertex x has this property. The following lemma gives an useful

characterization of vertices which are 2-connected to infinity. The ‘only if’ part is

trivial; the proof of the ‘if’ part requires just an easy amendment to the proof of

the vertex form of Menger’s Theorem, otherwise known as the Max-Flow/Min-Cut

Theorem (see, for example, Bollobás (1979)), and we omit it.
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Lemma 6. Let G be an infinite, locally finite, connected graph. A vertex x of G is

2-connected to infinity if and only if there exists no vertex y ( 6= x) with the property

that all infinite paths starting at x pass through y.

Let Sk(G) denote the subgraph of G induced by the set of all vertices which are

2-connected to infinity; we call Sk(G) the skeleton of G. The following proposition

shows that, by replacing G by its skeleton, we can restrict our attention to graphs

which are 2-connected to infinity.

Proposition 7. Let G be an infinite, locally finite, connected graph. Then Sk(G) is

itself a connected (possibly empty) graph which is 2-connected to infinity. Further-

more,

(i) if Sk(G) is empty and ∆(G) <∞, then pbond
c (G) = psite

c (G) = 1,

(ii) if Sk(G) is non-empty, then G and Sk(G) have the same bond and site critical

probabilities.

Proof. Suppose x ∈ Sk(G). Then x lies on a doubly infinite path in G, and clearly

all the vertices on this path belong to Sk(G). Hence x lies on a doubly infinite path

in Sk(G). This demonstrates that Sk(G) is 2-connected to infinity. It is equally easy

to see that Sk(G) must be connected.

Next we introduce some notation. For x /∈ Sk(G), let f(x) denote a vertex y

( 6= x) with the property that all infinite paths of G, starting at x, pass through

y. If there exist more than one such y, then we assign f(x) to be one of these

according to some pre-determined rule (according to a fixed ordering of the vertices

of G, perhaps). We write Bx for the set of all vertices of G which can be reached

from x along paths which do not use f(x).

We prove (ii) first. Suppose that Sk(G) 6= ∅, and let x ∈ Sk(G). Clearly, any

infinite path of Sk(G) from x is also an infinite path of G. We shall now prove

the converse. Let xx1x2 . . . be an infinite path of G, and suppose that there exists

some xj with xj /∈ Sk(G). Either x ∈ Bxj
or not. If x ∈ Bxj

, then x /∈ Sk(G),

a contradiction. If x /∈ Bxj
, then xj cannot be joined by disjoint paths to x and

to infinity, since all such paths must pass through the vertex f(xj). This is a

contradiction, and we deduce that xj ∈ Sk(G) for all j. Therefore, the path xx1x2 . . .

lies in Sk(G). It follows that x lies in an infinite open (bond or site) path of Sk(G)

if and only if it lies in such a path of G. Claim (ii) follows.
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Suppose now that Sk(G) = ∅, and let x0 be a vertex of G. Consider the sequence

x0, x1, x2, . . . defined by xj+1 = f(xj). Clearly the xj are distinct; furthermore, we

may find a subsequence x0, y1, y2, . . . no two of which are adjacent. Now, in the

site percolation model, if any yj is inactive then there is no percolation from x0;

it follows that, if p < 1, then θsite(p) = 0, as required. Similarly, in the bond

percolation model, if any yj is isolated (i.e., all incident edges are closed) then there

is no percolation from x0. If p < 1 then, since G has bounded degree, the probability

that any vertex is isolated is bounded away from zero, and, since no two yj are

adjacent, the corresponding ‘isolation events’ are independent; hence θbond(p) = 0

if p < 1, and claim (i) follows. �

Proposition 7 does not require that G be finitely transitive; we remark that, if

we make this additional assumption, then it is not hard to show (using ideas related

to those above) that Sk(G) is non-empty. We will not need this fact, however.

A graph which is connected but which is not a tree must contain some cycle; if the

graph is finitely transitive then ‘equivalent’ cycles must occur throughout the graph

and so, under every reasonable interpretation, the graph contains a positive density

of cycles. Provided that the vertices of these cycles lie in doubly infinite paths, they

appear to be of greater assistance to bond percolation than to site percolation.

Conjecture 8. Let G be an infinite, finitely transitive, connected, locally finite

graph whose skeleton Sk(G) is not a tree. Then G satisfies either (i) or (ii) of

Theorem 2.

Note that the conditions of the conjecture imply that G has bounded degree.

Furthermore, if (i) of Conjecture 8 does not hold, then 0 < pbond
c ≤ psite

c < 1, by

(0.1), (0.3), and Theorem 3. Theorem 2 amounts to this conjecture subject to the

extra condition that G be bridgeless.

The following corollary of Theorem 2 is immediate by applying Proposition 7.

Corollary 9. Let G be an infinite, finitely transitive, connected, locally finite graph

whose skeleton is bridgeless. Then G satisfies either (i) or (ii) of Theorem 2.

It is easy to see that the skeleton of any bridgeless graph is itself bridgeless,

and so any graph satisfying the conditions of Theorem 2 is actually covered by

Corollary 9. This corollary may be improved substantially. Our proof of Theorem 2
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Fig. 2. Part of the graph T�
4

which contains infinite paths of bridges.

does not depend strongly on the assumption of finite transitivity. With only minor

modifications, the proof yields the following.

Theorem 10. Let G be an infinite, connected, locally finite graph, and suppose that

the skeleton of G is of bounded degree. Suppose further that there exist constants M

and K such that every path of length M in Sk(G) contains an edge which is part of

a cycle of length at most K. Then G satisfies either (i) or (ii) of Theorem 2.

There remain graphs which satisfy the conditions of Conjecture 8 and yet are not

covered by Theorem 10, and we present two such graphs. Our first example is tree-

like. We start with the infinite tree in which every vertex has degree four, T4. We

then colour the vertices pink or brown in such a way that every vertex has precisely

two pink neighbours and two brown neighbours; there is essentially only one way

to do this. We then consider the pink vertices in turn, replacing each vertex with

a 4-cycle and connecting each of what were the vertex’s neighbours with a different

vertex of the 4-cycle. The resulting graph, which we call T�
4 , is roughly illustrated

in Figure 2.

The graph T�
4 certainly satisfies the conditions of Conjecture 8, yet it contains

infinite paths all of whose edges are bridges. A graph such as this, however, can be

tackled by considering its partition into blocks, where a block is either a bridge or a

maximal 2-connected subgraph. When the blocks are themselves finite, as in the case

of T�
4 , percolation on the graph may be regarded as a multitype branching process,

in much the same way as percolation on a homogeneous or periodic tree may be

regarded as a branching process. In such cases the percolation probabilities may be
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calculated explicitly, and methods similar to those of Oxley and Welsh (1979) may

be utilised in order to establish general results concerning the equality or inequality

of bond and site critical probabilities.

It is not too hard, however, to construct graphs satisfying the conditions of

Conjecture 8 which are vertex-transitive and 2-connected to infinity, and contain

bridges, and yet have infinitely many infinite blocks. Some such graphs contain

doubly infinite paths which cannot be locally modified to contain any edge which

is part of a cycle. These graphs do not appear to yield either to enhancement

technology, or to branching process comparisons, and the corresponding question of

strict inequality remains open. Here is an example of such a graph G = (V,E). Let

T be the vertex set of a binary tree, and Z2 the vertex set of the square lattice. The

graph G may be defined informally as follows. We start with a binary tree T . At

each vertex t of T we ‘hang’ a copy of Z2 by identifying t with the origin of this

copy. Now, at each vertex of each copy of Z2, we attach a copy of T by its root, and

so on. This amounts to constructing the ‘free product’ T ∗ Z2.

More formally we construct G as follows. We write u ∼ v to indicate that vertices

s and t are neighbours in T or in Z2. We use O to denote the origin of Z2 and R

to denote the root of T . We define V to be the family of all ordered sequences

(t0, x0, . . . , xr−1, tr) for some r ≥ 0 with xi ∈ Z2\{O}, ti ∈ T , and tj 6= R for

1 ≤ j < r. Two vertices (t0, x0, . . . , xr−1, tr) and (u0, y0, . . . , ys−1, us), with r ≤ s,

are declared adjacent if and only if one of the following holds:

(i) r = s, ti = ui and xi = yi for i < r − 1, tr−1 = ur−1, xr−1 ∼ yr−1 and

tr = yr = R;

(ii) r = s, ti = ui and xi = yi for i ≤ r − 1, and ts ∼ us;

(iii) r = s− 1, xi = yi for i ≤ r − 1, tj = uj for j ≤ r, ys ∼ O and us = R.

The edge set of G may be partitioned into the set of bridges (i.e., those edges

lying in the one of the copies of T , corresponding to (ii) above) and the set of ‘lattice

edges’ (i.e., those lying in one of the copies of Z2, corresponding to (i) or (iii)). The

difficulty faced by the method of enhancements (see Lemma 11 for the details of

how the method operates) is that one can have infinite paths in G which cannot be

locally modified to contain any edge which is part of a cycle.

Finally we remark that, although Theorems 2 and 10 give a general class of

graphs for which either strict inequality holds or both critical probabilities equal
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Fig. 3. An enhancement of site percolation on the hexagonal lattice which is dom-

inated by bond percolation. The vertices marked • are active. The two vertices

marked ◦ are inactive and with probability s = p2 both become active. The status

of other vertices is immaterial.

one, they give no indication of which conclusion is valid for any specific instance. It

would certainly be interesting to have a graph-theoretic condition for distinguishing

between these two cases in, say, the finitely transitive case. A partial answer to this

question is suggested by Benjamini and Schramm (1996). They conjecture that if

G is the Cayley graph of an infinite (finitely-generated) group which is not a finite

extension of Z then psite
c (G) < 1.

4. Proof of Theorem 2

It does not seem too hard to adapt the proof of Theorem 1 on a case-by-case basis in

order to obtain strict inequality for most familiar lattices. As an illustration, Figure

3 shows an example of a suitable enhancement of site percolation on the hexagonal

lattice. Some care is needed in justifying the corresponding versions of Theorem 4

above, and the graph-theoretic arguments have to be individually adapted for each

lattice of interest. It seems to be quite another matter to extend the conclusion to

a general class of graphs.

Rather than considering an enhancement of site percolation, it turns out to be

more profitable to consider a diminishment of bond percolation (i.e., a local adjust-

ment to the process which can only decrease the chance of percolation occurring),

and to show that this diminished bond percolation dominates site percolation in a

suitable sense. It was a little surprising to discover that we could not adapt the

argument to find an enhancement of site percolation which is dominated by bond
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percolation: there appears to be greater flexibility in making local adjustments to

the bonds than there is in making adjustments to sites. Diminishments were also

used by Holroyd (1998) in a situation where enhancements were difficult to handle.

We begin by describing the diminishment required. Suppose we have a graph

G = (V,E) satisfying the conditions of Theorem 2, and recall that 0 denotes the

origin of G. We find an integer K such that every edge belongs to some cycle of

length at most K, and we denote by C the set of all cycles having length K or less.

Given a bond configuration for G, we say that a particular cycle x1x2 . . . xnx1 in C

is correctly configured if the following conditions all hold:

(i) precisely one of the edges x1x2, x2x3, . . . , xnx1 is closed and the others are

open;

(ii) exactly one of (a) and (b) following holds (where an edge is said to be incident

with the cycle if precisely one of its two endvertices is a vertex of the cycle):

(a) precisely two of the edges incident with the cycle, xiy and xjz say, are

open and all the others are closed, with xi, xj , y, z all distinct;

(b) precisely one edge incident with the cycle, xiy say, is open;

(iii) the origin does not belong to the cycle.

Case (ii)(b) is used only as a technical device for dealing with a dull but slightly

awkward part of the proof of the forthcoming Lemma 11.

Roughly speaking, for any correctly configured cycle, our diminishment will, with

probability s, declare all the edges of the cycle to be closed. However, if two such

cycles have vertices in common, complications arise in the proof of Lemma 12. To

obviate this difficulty, we introduce a device for selecting cycles at random, inde-

pendently of everything else; we will then only consider diminishing those randomly

selected cycles. The selection procedure must ensure that any cycle of size at most

K is selected with a probability bounded away from 0, and yet no two cycles with

any vertex in common are simultaneously selected.

Let Ξ = {0, 1}C and let Ω = {0, 1}E(G). Let (ω, α, ξ) ∈ Ω × Ξ × Ξ. We say that

a cycle c ∈ C is selected if: α(c) = 1 and, for all c′ ∈ C which have some vertex in

common with c, α(c′) = 0. We then define the diminished edge-set to be

(4.1) η∗(ω, α, ξ) =
{

e ∈ E(G) : ω(e) = 1
}∖

⋃

{

c ∈ C : c is selected, correctly configured (under ω) and ξ(c) = 1
}

,
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where the union of a set of cycles is here regarded as meaning the set of all edges

contained in at least one of the cycles. Those cycles contributing to this union are

said to be ‘diminished’.

We now place the product probability measure Pp,s = Pp × P1/2 × Ps on our

space Ω × Ξ × Ξ. The probabilities p and s play much the same rôle as before: p is

the probability than an edge is open in the undiminished configuration, and s is the

diminishment density. The density 1
2 in the central measure is arbitrary, and any

number r strictly between 0 and 1 would suffice. In a numerical study, it would be

reasonable to choose r as follows. Let D be the least integer such that any cycle in C

shares a vertex with at most D other cycles, and set r = (D+1)−1. The probability

that any given cycle is selected is at least {1 − (D + 1)−1}D/(D + 1) ∼ (eD)−1.

We write θ(p, s) for the probability that the origin belongs to an infinite cluster

in the diminished configuration η∗.

The proof of Theorem 2 now falls naturally into two parts. We must show first

that, if conclusion (i) of Theorem 2 does not hold (so that 0 < pbond
c < 1), then the

above diminishment changes the critical probability (cf. Theorem 4). We must also

show that site percolation with parameter p is dominated, in some useful sense, by

diminished bond percolation with a suitably chosen non-zero diminishment density

s. As in the proof of Theorem 1, the current proof will be complete once we have

proved the following two lemmas.

Lemma 11. Let G be a graph satisfying the conditions of Theorem 2, and such

that pbond
c (G) < 1. For any s > 0, there exists a non-empty interval [pbond

c , π(s)) of

values of p on which θ(p, s) = 0.

Lemma 12. Let G be a graph satisfying the conditions of Theorem 2. Then

θsite(p) ≤ θ(p,K−1).

Proof of Lemma 11. Let Bn be the set of vertices which can be reached from 0 by

a path of length n or less, and let ∂Bn be the set of vertices in Bn having some

neighbour outside Bn. We let An be the event that the diminished configuration

η∗(ω, α, ξ) contains an open path from 0 to some vertex in ∂Bn, and we write

θn(p, s) = Pp,s(An). We have that θn(p, s) ↓ θ(p, s) as n→ ∞.
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The event An is a cylinder event, whence θn(p, s) is a polynomial in p, s, and in

particular is differentiable. Our goal is to show that, for all n sufficiently large,

(4.2) −
∂θn

∂s
(p, s) ≥ g(p, s)

∂θn

∂p
(p, s),

for some function g(p, s) which is independent of n, and is continuous and strictly

positive on (0, 1)2.

Once (4.2) is proved, we argue in the manner of Aizenman and Grimmett (1991)

as follows. Let ǫ ∈ (0, s). By considering the behaviour of the function θn(p, s) on

a small square containing the point (pbond
c , s), one obtains by integrating (4.2) that,

for all sufficiently small δ > 0, independent of n (large), we have that

θn(pbond
c + δ, s) ≤ θn(pbond

c − δ, s− ǫ).

The right-hand side tends to zero as n → ∞, whence the left-hand side must also

do so, as required for the lemma.

We prove (4.2) via Russo’s formula. Given a configuration (ω, α, ξ) and an edge

e, we define W e(ω, α, ξ) to be the configuration obtained from (ω, α, ξ) by setting

ω(e) = 1; likewise We(ω, α, ξ) is obtained by setting ω(e) = 0. Similarly, given a

cycle c ∈ C, we define Xc(ω, α, ξ) (resp. Xc(ω, α, ξ)) to be the configuration obtained

by setting ξ(c) = 1 (resp. 0). We say that an edge e is (+)pivotal for an event A

if We(ω, α, ξ) /∈ A and W e(ω, α, ξ) ∈ A; we say that e is (−)pivotal if the reverse

holds, i.e., if We(ω, α, ξ) ∈ A and W e(ω, α, ξ) /∈ A. Similarly, a cycle c is (+)pivotal

if Xc(ω, α, ξ) /∈ A and Xc(ω, α, ξ) ∈ A, and is (−)pivotal if Xc(ω, α, ξ) ∈ A and

Xc(ω, α, ξ) /∈ A. We let N+
ω (A) (resp. N−

ω (A), N+
ξ (A), N−

ξ (A)) denote the total

number of (+)pivotal edges (resp. (−)pivotal edges, (+)pivotal cycles, (−)pivotal

cycles).

Let A = An, and note two points. First, the four random variables just defined

are all finite, since An depends only on the states of finitely many cycles and edges.

Secondly, N+
ξ (An) = 0, since switching on a diminishment can never help the con-

nectivity of the graph; however, N−
ω (An) can be non-zero, since switching off an

edge could prevent a cycle from being correctly configured and thereby cause some

further edges to be open in the diminished configuration η∗.
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Writing Ep,s for expectation, the following formulae follow by applications of

Russo’s formula (see Grimmett (1989), p. 35):

∂

∂p
Pp,s(An) = Ep,s(N

+
ω (An)) − Ep,s(N

−
ω (An))(4.3)

∂

∂s
Pp,s(An) = −Ep,s(N

−
ξ (An)).(4.4)

These equations may be verified either by the usual method of proof, or as follows.

Given α, Russo’s formula may be applied with the restriction that only selected

cycles may be diminished. Next, one averages over α. Since the distribution of α

is independent of p and s, the differential operators commute with the expectation,

and (4.3)–(4.4) follow.

Inequality (4.2) will follow from (4.3)–(4.4) once we have shown that

(4.5) Ep,s(N
−
ξ (An)) ≥ g(p, s)Ep,s(N

+
ω (An)),

for some suitable g, and sufficiently large n; in fact we assume n ≥ K. The main

idea for proving (4.5) is much as in Aizenman and Grimmett (1991): if an edge e is

(+)pivotal for An, then by making a bounded number of local adjustments to the

configuration we are able to create a (−)pivotal cycle within a bounded distance of

e. Note that there may exist (+)pivotal edges for An which lie outside Bn.

Let e be an edge and let (ω, α, ξ) be a configuration for which e is (+)pivotal for

An. We suppose for now that ω(e) = 0 so that (ω, α, ξ) /∈ An and W e(ω, α, ξ) ∈ An.

Suppose also that e is not within distance K/2 of the origin. In order to make local

adjustments to the edges, without resulting in complicated changes in whether or

not cycles are correctly configured and thereby diminishable, we wish to ‘switch off’

all nearby diminishments. If, in so doing, e ceases to be pivotal, then we will have

found a pivotal cycle along the way. Let Se = {c1, c2, . . . , cm} be the set of all cycles

which contain some vertex within distance K of e. Let (ω, α, ξi) be the configuration

obtained from (ω, α, ξ) by setting ξ(cj) = 0 for 1 ≤ j ≤ i. Let I = min{i ≤ m :

(ω, α, ξi) ∈ An}, with the usual convention that min(∅) = ∞.

If I < ∞ then cI is (−)pivotal for An in (ω, α, ξI). Since the configurations

(ω, α, ξi) are obtained from (ω, α, ξ) by altering a bounded number of state variables,

we deduce that there exists a function h1(p, s), continuous and strictly positive on
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(0, 1)2, such that

(4.6) Pp,s

(

e is (+)pivotal for An, ω(e) = 0, I <∞
)

≤ h1(p, s)Pp,s(Πe ≥ 1),

where Πe is the number of cycles which contain some edge within distance K of e

and which are (−)pivotal for An.

Suppose next that I = ∞, and denote by (ω, α, ξ′) the altered configuration

(ω, α, ξm). Since I = ∞ we have that (ω, α, ξ′) /∈ An. It must also be the case that

W e(ω, α, ξ′) ∈ An, implying that e is (+)pivotal for An in the altered configuration

(ω, α, ξ′). Let V0 be the set of vertices connected to the origin by a path consisting

of edges in η∗(ω, α, ξ′) and let V1 be the set of vertices in Bn connected to ∂Bn by

such a path. Since (ω, α, ξ′) /∈ An, V0 and V1 are disjoint sets; since W e(ω, α, ξ′) ∈ A

and ξ(c) = 0 for every cycle c which contains e or is incident with e, we must have

e = v0v1 for some vertices v0 ∈ V0, v1 ∈ V1.

Let ce be a cycle of length at most K which contains the edge e. Let P0 be a

path from 0 to v0 consisting of edges in η∗(ω, α, ξ′); let P1 be a path from some

vertex of ∂Bn to v1 consisting of edges in η∗(ω, α, ξ′). Let wi be the first vertex of

Pi (i = 0, 1) lying on the cycle ce. Note that the assumption that e is not within

distance K/2 of 0 ensures that w0 6= 0; we also assume for now that w1 /∈ ∂Bn.

Let yi be the vertex on Pi immediately before wi. We now change the configuration

(ω, α, ξ′) within distance K of e in such a way that ce becomes (−)pivotal for An.

We do this by setting

(i) ω(e) = 0, and ω(f) = 1 for all edges f of ce other than e;

(ii) ω(y0w0) = ω(y1w1) = 1;

(iii) ω(f) = 0 for any other edge f incident with any vertex of ce;

(iv) α(ce) = 1; α(c) = 0 for all other cycles which share a vertex with ce.

Denote the configuration so obtained by (ω′, α′, ξ′). Note that (i)–(iii) ensure that

ce becomes correctly configured and that (iv) ensures it is selected. Note that any

other cycle c which becomes correctly configured, incorrectly configured, selected or

deselected by these changes must lie in Se and hence ξ′(c) = 0.

It is not hard to see that ce is a (−)pivotal cycle for the event An in the configu-

ration (ω′, α′, ξ′). To see this, note that η∗(Xce(ω′, α′, ξ′)) ⊆ η∗(ω, α, ξ′) so certainly

Xce(ω′, α′, ξ′) /∈ An. On the other hand, η∗(ω′, α′, ξ′) contains the edges of P0

up to v0, the edges of P1 up to v1, and a path from v0 to v1 within ce, whence
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(ω′, α′, ξ′) ∈ An.

There are several straightforward ways for dealing with the remaining two cases,

namely when e lies within distance K/2 of the origin, and when w1 ∈ ∂Bn, and

we consider these cases in turn. When e lies within distance K/2 of the origin we

let Se consist of all cycles containing a vertex within distance 3K/2 of the origin.

We then define I as before, and the case I < ∞ is dealt with in the same way as

above, with Πe defined as the number of (−)pivotal cycles for An within distance

3K/2 of the origin. If I = ∞ then we declare ω(e) = 1 and select a path P from 0

to ∂Bn consisting of edges in η∗(ω, α, ξ′). Let e′ be the last edge of this path which

is incident with both a vertex inside B⌊K/2⌋ and a vertex outside it; such an edge

certainly exists because n ≥ K. Let Q be any path within B⌊K/2⌋ from 0 to e′; note

that it may not be possible to choose Q to be a portion of P because P may exit

B⌊K/2⌋ several times. We now set ω(f) = 1 for all edges f of Q, we keep ω(e′) = 1,

and we set ω(g) = 0 for all other edges g incident with a vertex of B⌊K/2⌋. Now e′ is

(+)pivotal for An in the configuration (ω, α, ξ′), and we may proceed just as in the

I = ∞ case above.

The case when w1 ∈ ∂Bn is easier. In this case, we simply do not have a vertex y1

and we obtain our configuration (ω′, α′, ξ′) exactly as above except that (ii) above is

replaced by ‘ω(y0w0) = 1’. The cycle ce is correctly configured with (ii)(b) (from the

definition at the beginning of this section) holding. It is a (−)pivotal cycle exactly

as in the case above.

In summary, there exists a function h2(p, s), continuous and strictly positive on

(0, 1)2, such that

(4.7) Pp,s

(

e is (+)pivotal for An, ω(e) = 0, I = ∞
)

≤ h2(p, s)Pp,s(Πe ≥ 1),

for all e. Note that Πe is defined slightly differently according to whether or not e is

within distance K/2 of the origin. In any case, however, Πe is the size of some subset

of the set of (−)pivotal cycles (for An) which contain some edge within distance 2K

of e.

Combining (4.6) and (4.7), we obtain that

Pp,s

(

e is (+)pivotal for An, ω(e) = 0
)

≤ h3(p, s)Pp,s(Πe ≥ 1),
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where h3 = h1 + h2. Since the pivotality of e is independent of ω(e), it follows that

Pp,s

(

e is (+)pivotal for An

)

≤
1

1 − p
h3(p, s)Pp,s(Πe ≥ 1).

Summing over all edges e we obtain

Ep,s(N
+
ω (An)) ≤

1

1 − p
h3(p, s)

∑

e

Ep,s(Πe) ≤
C

1 − p
h3(p, s)Ep,s(N

−
ξ (An)),

where C is an upper bound on the number of cycles of length K or less within

distance 2K of any one edge. This implies (4.5) as required. �

Proof of Lemma 12. As in the proof of Lemma 5, we make use of the dynamic

coupling between site percolation and (undiminished) bond percolation, and we

examine where we have room to spare. We begin with some key ideas before moving

to the details of the proof, which are more complicated than before.

We call an edge e examined if the coupling algorithm takes note of the state of

e in the relevant bond model, when constructing the associated site model. Since

each examined edge, at the moment of its examination, joins some active vertex to

some vertex whose state has not yet been determined, it is the case that the graph

of examined edges contains no cycle.

Consider a cycle c which is correctly configured. If it is correctly configured under

(ii)(b) of the definition at the beginning of this section, then any infinite path from

the origin using only open examined edges cannot use any edge of c; in this case, one

may diminish c and still remain ‘above’ the site model under construction. Suppose

now that c is correctly configured under (ii)(a) of the definition; we shall use the

notation of that definition. The cycle c consists of two disjoint paths from xi to xj .

By the observation of the last paragraph, there will be at least one edge of c which

the algorithm does not examine. Suppose this edge, and the unique closed edge of

c, lie on different xixj paths. Then any infinite path from the origin using only

open examined edges cannot use any edge of c. On this event, we may diminish c in

the original bond model, and still remain ‘above’ the site model under construction.

Some work is necessary in order to exploit these ideas rigorously.

More formally we proceed as follows. The basic sample space is the product

{0, 1} × Ω × Ξ ×

{

∏

c∈C

{1, 2, . . . , |c|}

}

× Ξ,
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members of which are quadruples (ζ, ω, α, π, ν); here, |c| denotes the number of edges

in a cycle c. We put a product probability measure P = Pp × Pp × P1/2 × Q1 × Q2

on this space, where Q1 and Q2 are themselves product measures satisfying

Q1

(

{π : π(c) = j}
)

=
1

|c|
for c ∈ C and 1 ≤ j ≤ |c|,

Q2

(

{ν : ν(c) = 1}
)

=
|c|

K
for c ∈ C.

For a configuration (ζ, ω, α, π, ν) and cycle c ∈ C, we define

(4.8) ξ(c) = ν(c)1{π(c)=|c|}.

(Here, 1A denotes the indicator function of the event A.) Note that the variables
(

ξ(c) : c ∈ C
)

are independent of one another and of the variables ζ, ω, α.

We now explain this in words:

• ζ is a 0/1-valued random variable with P(ζ = 1) = p;

• ω is a configuration of bond percolation with density p;

• α is a set of selection variables, one for each cycle c ∈ C, with P
(

α(c) = 1
)

= 1
2 ;

• π(c) is a random element of {1, 2, . . . , |c|};

• ν is a 0/1-valued random variable chosen such that P
(

ξ(c) = 1
)

= K−1;

• all components of the vectors ζ, ω, α, π, ν are independent.

We shall use these random variables in order to construct a site model and a

diminished bond model. The diminished bond model is exactly that given by (4.1),

and its diminishment density is given above as K−1. Next we construct the site

model, and then we shall show that the diminished bond model dominates the site

model, in the sense that, if 0 lies in an infinite active path of the site model, then it

lies in an infinite open path of the bond model.

Suppose we are given the configuration (ζ, ω, α, π, ν). We define edge variables

ω′(e) by: ω′(e) = ω(e) for all edges e except those belonging to cycles which are

selected. In order to define ω′(e) for edges belonging to selected cycles, we shall

adopt an algorithmic approach, as follows.

We start with a fixed enumeration of the vertices and of the edges and, as in the

proof of Lemma 5, we examine edges one by one, and we declare vertices to be active

or inactive as we proceed. We shall build a cluster at the origin comprising vertices

x with γ(x) = 1, whose external boundary comprises vertices y with γ(y) = 0. First
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we set γ(0) = ζ. If γ(0) = 0, we stop; otherwise, we find the earliest edge e = 0y

incident with 0, and we declare γ(y) = ω′(0y) (provided ω′(0y) has been defined). We

continue likewise, building up a set of active vertices (i.e., vertices y with γ(y) = 1)

and inactive vertices (with γ(y) = 0) based on sequential examination of the primed

configuration ω′, until either of two events occurs. If, at some point, there exists no

further unexamined edge uv such that γ(u) = 1 and γ(v) is undetermined, then we

stop the process. Alternatively, the algorithm may arrive at a stage when it seeks

to examine an edge e lying in a selected cycle, and hence for which ω′(e) has not

yet been defined. Prior to giving the definition of such ω′(e), we introduce a further

concept.

Suppose c = x1x2 . . . xnx1 is a correctly configured cycle under part (ii)(a) of

the definition at the beginning of this section; we shall use the notation of that

definition. Then xi and xj are the only vertices of the cycle which are joined by

open bonds (in ω) to vertices outside the cycle. (The less interesting case of (ii)(b)

may be handled in several different (and easier) ways. For simplicity, we create a

nominal xj ( 6= xi) and then behave as if we were in case (a): specifically, we let xj

be the earliest vertex of our cycle (in our given ordering of vertices) other than xi.)

The cycle c comprises two edge-disjoint paths A(c), B(c) joining xi to xj . We call

an edge e of c a completing edge (for the configuration (ζ, ω, α, π, ν)) if e is the first

edge examined by the algorithm with the following property: after the examination

of e, either all edges in A(c) or all edges in B(c) have now been examined. If e is

not a completing edge, we simply call e a non-completing edge.

We now return to the operation of the algorithm on encountering an edge e lying

in a selected cycle c.

(a) If c is not correctly configured, we set ω′(e) = ω(e).

(b) If c is correctly configured, we set

(4.9) ω′(e) =

{

1{π(c)6=k} if e is the kth non-completing edge of c examined,

1{π(c)6=|c|} if e is a completing edge.

We then perform a further step of the algorithm, defining γ(z) = ω′(e), where z is

the endvertex of e whose status is to be determined.

We note finally that the ω′(e) are not generally defined for all edges e. However,

they may be extended in the following manner to a full realisation of bond percolation
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on Zd. For edges e which do not lie in selected, correctly configured cycles, we set

ω′(e) = ω(e), as before. For each selected correctly configured cycle, c, we list the

edges e of c for which ω′(e) has not yet been defined, in the order given by the

pre-determined enumeration. We label these edges el+1, el+2, . . . , em, where l is the

number of non-completing edges of c examined during the building up of the active

cluster at the origin. (So m = |c| if there was no completing edge and m = |c| − 1

otherwise.) We treat these edges much as if they were non-completing edges in the

previous procedure by setting ω′(ei) = 1{π(c)6=i}. The final result of this procedure

is a family (ω′(e) : e ∈ E), which agrees with ω except on edges of selected correctly

configured cycles; on such cycles, both ω and ω′ have precisely one closed edge. If

we were to apply the algorithm of the proof of Lemma 5 to the family (ω′(e)), the

resulting active cluster at the origin would be precisely the same as that obtained

by the algorithm just described.

This terminates the construction of the algorithm applied to the configuration

(ζ, ω, α, π, ν). Note that although we have defined ω′ for all edges, γ has only been

defined on the cluster of active vertices at the origin and their neighbours. We claim

that the set of active vertices (i.e. vertices y with γ(y) = 1) has the same distribution

as the cluster at 0 of a site percolation model. In order to prove this, it suffices to

show that, if we let f ′1, f
′
2, . . . be a listing of the edges examined by the algorithm

in building up the active cluster (in order of examination) then, for any ǫi ∈ {0, 1},

and any n,

(4.10) P
(

ω′(f ′i) = ǫi for 1 ≤ i ≤ n
)

= pk(1 − p)n−k

where k = #{i : ǫi = 1}. Note that (4.10) implies that each examined edge is open

with probability p, independently of the states of previous edges examined.

In order to show that (4.10) holds, we compare the algorithm described above,

which we shall call Algorithm A, with a more familiar algorithm which we shall

call Algorithm B. The probabilities of corresponding events for the two algorithms

will be unchanged, but the corresponding version of (4.10) is transparently valid for

Algorithm B.

Algorithm B is simply the usual edge testing algorithm, employed in the proof

of Lemma 5. It uses the same predetermined ordering of vertices and edges as

Algorithm A (it does not matter what this ordering is) but unlike Algorithm A does
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not behave differently on selected correctly configured cycles. So, at each stage of

the algorithm (other than the start) we look for the first edge (in our ordering) uv

such that γ(u) = 1 and γ(v) is undetermined, and we set γ(v) = ω(uv).

We let f1, f2, . . . be the sequence of edges examined by Algorithm B in building

up the cluster at the origin. Since the (ω(e) : e ∈ E(G)) are mutually independent

and independent of ζ, we have that (4.10) holds for Algorithm B (with ω′ replaced

by ω and f ′i replaced by fi).

Abbreviating ‘selected correctly configured cycle’ by ‘SCCC’, let F be the σ-field

generated by the events {e is in a SCCC} and {ω(e) = 1 and e is not in a SCCC},

as e ranges over all edges of the graph, together with the single event {ζ = 1}. We

let

ψ(e) =

{

2 if e is in a SCCC,

ω(e) otherwise,

so that F is generated by ζ and the ψ(e). For any events A,B, we define the

conditional probability

P(A | B,F) =
E(1A1B | F)

E(1B | F)
,

whenever the denominator is non-zero. [Here, E denotes the expectation operator

and 1A the indicator function of A. Such conditional probabilities are only defined

‘almost surely’, but we overlook this in the following.]

Let ǫi ∈ {0, 1} for i ≥ 1, and let G′
i = {ω′(f ′i) = ǫi} and Gi = {ω(fi) = ǫi}. We

may compute probabilities of the form P
(

G′
n+1

∣

∣G′
n ∩G′

n−1 ∩· · ·∩G′
1,F

)

as follows.

If f ′n+1 lies in a SCCC we write c′ for this cycle, we let Ic′ = {i ≤ n : f ′i ∈ c′} and

let k = |c′| − |Ic′ |. We then have that

P
(

ω′(f ′n+1) = 1
∣

∣G′
n ∩G′

n−1 ∩ · · · ∩G′
1,F)

=















ψ(f ′n+1) if ψ(f ′n+1) ∈ {0, 1},

k − 1

k
if ψ(f ′n+1) = 2 and ǫi = 1 for all i ∈ Ic′ ,

1 if ψ(f ′n+1) = 2 and ǫi = 0 for some i ∈ Ic′ .

Equality holds here also with ω′, f ′i , c
′ replaced by ω, fi, c, where c is defined where

necessary as the SCCC containing fn+1.

We note that f ′n+1 = fn+1 whenever ω′(f ′i) = ω(fi) for 1 ≤ i ≤ n. Therefore, for



SITE AND BOND CRITICAL PERCOLATION PROBABILITIES 29

any given ǫ1, ǫ2, . . . such that the conditional probabilities are defined,

P
(

G′
n+1

∣

∣G′
n∩G

′
n−1∩· · ·∩G

′
1,F

)

= P
(

Gn+1

∣

∣Gn∩Gn−1∩· · ·∩G1,F
)

for all n ≥ 1.

Hence, by induction on n,

P
(

G′
n ∩G′

n−1 ∩ · · · ∩G′
1

∣

∣F
)

= P
(

Gn ∩Gn−1 ∩ · · · ∩G1

∣

∣F
)

for all n ≥ 1.

Taking expectations, we deduce that

P(G′
n ∩G′

n−1 ∩ · · · ∩G′
1) = P(Gn ∩Gn−1 ∩ · · · ∩G1),

which is equivalent to

(4.11) P
(

ω′(f ′i) = ǫi for 1 ≤ i ≤ n
)

= P
(

ω(fi) = ǫi for 1 ≤ i ≤ n
)

.

Since the equivalent of (4.10) holds for Algorithm B, we deduce (4.10) for Algorithm

A from (4.11).

We complete the proof of Lemma 12 by showing the required domination. Write

I = {y : γ(y) = 1}, and suppose that |I| = ∞. There must exist an infinite path

P of edges e which were examined by the above algorithm and for which ω′(e) = 1.

We shall show that the diminished bond model η∗(ω, α, ξ), given in (4.1), necessarily

contains an infinite path of open edges.

First consider edges e of P which lie in no cycle c which is both selected and

correctly configured. We have that ω(e) = ω′(e) = 1, and furthermore that e lies in

no diminished cycle. Therefore e lies in η∗(ω, α, ξ).

The path P will generally visit certain selected, correctly configured cycles. We

claim that every such cycle is necessarily undiminished, and that the segment of

P within such a cycle c may be replaced by a sequence of edges of c which are

open in ω. Suppose that P intersects a selected, correctly configured cycle c =

x1x2 . . . xnx1. Note that the origin cannot be in a correctly configured cycle, by

part (iii) of the definition given at the beginning of this section. Therefore c must

be correctly configured under part (ii)(a) of the definition. Adopting the notation of

that definition, the infinite path P must enter the cycle at either xi or xj (say xi),

it must move around the cycle to xj via either A(c) or B(c), and then it must leave

the cycle. Hence, either all the edges of A(c) or all the edges of B(c) belong to P .
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Therefore, the path contains some completing edge f . By (4.8)–(4.9), if ξ(c) = 1,

then necessarily ω′(f) = 0, a contradiction. It follows that ξ(c) = 0, and that c was

not diminished. Since c is correctly configured, it contains a path Qc joining xi to

xj , all of whose edges g satisfy ω(g) = 1. We now replace the segment of P within

c by the path Qc. After this has been done for every selected, correctly configured

cycle (note that two such cycles cannot intersect), we achieve an infinite open path

of the diminished set η∗(ω, α, ξ). The conclusion of Lemma 12 follows. �
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