
A CENTRAL LIMIT THEOREM FOR

RANDOM WALKS IN RANDOM LABYRINTHS

Carol Bezuidenhout and Geoffrey GrimmettAbstract. A beam of light shines through the lattice Zd, and is subjected to reflections

determined by a random environment of mirrors at the vertices of Zd. The behaviour of the
light ray is investigated under the hypothesis that the environment contains a strictly positive
density of vertices at which the light behaves in the manner of a random walk. When d ≥ 2 and

the density of non-trivial reflectors is sufficiently small, the environment contains a.s. a unique
infinite ‘inter-illuminating’ class of vertices. Furthermore, when the light beam originates within
this class, then its trajectory obeys a functional central limit theorem with a strictly positive

diffusion constant. These facts are obtained using percolation-type arguments, together with
the invariance principle proposed by Kipnis and Varadhan.

1. Introduction

What is the behaviour of a beam of light passing through a medium of reflecting bodies?
Such an investigation was initiated by Lorentz [26] nearly a century ago in a formulation
which has come to be known as the ‘Lorentz gas’. Suitably reformulated for the latter-day
mathematician, one version of the question becomes the following. Suppose that smooth
bodies are distributed randomly about d-dimensional space R

d according to some given
probability measure. A ray of light originates from a specified point of R

d, travelling initially
in a specified direction; this ray passes through R

d subject to reflections at the surfaces of
these bodies. We now ask for properties of the trajectory. For example, what can be said
about the displacement of the point which is distance t along the path, in the limit of large
t?

The work of Lorentz inspires a lattice model in which, conditional on the environment
of reflecting bodies, the trajectory of the light is deterministic. Remarkably little is known
about such systems in general, although some progress has been made in the special case of
the square lattice towards deciding whether or not the light beam is confined to a bounded
region of space; see [5, 17, 18, 28].

Several authors have considered stochastic relaxations of such lattice systems. In one
possible such relaxation, one allows random deviations from the rules whenever light impacts
on a mirror. Subject to certain conditions including one of irreducibility, the light ray then
(a.s.) illuminates the whole space and satisfies a central limit theorem; see [29].

We pursue another route here, namely that discussed in [2, 3, 21, 22] and involving the
introduction of a positive density of points (or ‘scatterers’) at which the light beam behaves
in the manner of a random walk. This leads to a model which is partially tractable using
probabilistic analysis, but which poses substantial difficulties arising from the geometrical
constraints of the environment of mirrors. We show in this paper how the geometry of the
environment may be controlled using ‘block’ arguments taken from percolation theory. In
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this way, we extend the non-localisation theorem of [21] in order to obtain a central limit
theorem. This last theorem may be viewed as a generalisation of certain results in [11, 22].

Next we present an illustration of such a stochastic relaxation associated with the two-
dimensional square lattice Z

2. Let prw, pnw, pne be non-negative numbers whose sum satisfies
prw + pnw + pne ≤ 1. Each vertex of Z

2 is allocated a random state from the local state
space {rw,nw,ne,+} where the probability of state σ is pσ, and where p+ = 1−prw −pnw −
pne; different vertices are allocated independent states. These states are interpreted in the
following way.

(a) A vertex labelled ‘rw’ is called a ‘random walk (rw) point’. Light incident with a rw
point behaves as a symmetric random walk, in the sense that it departs the vertex in
a direction chosen randomly from the set of four possible directions, this choice being
made independently of all vertex states and of all previous choices.

(b) A vertex labelled ‘nw’ is occupied by a NW mirror, which is to say that

northerly light is reflected westwards,

westerly light is reflected northwards,

southerly light is reflected eastwards,

easterly light is reflected southwards.

(c) A vertex labelled ‘ne’ is occupied by a NE mirror, which is defined similarly but with
north and south interchanged.

(d) A vertex labelled ‘+’ is called a ‘crossing’. Light incident with a crossing passes directly
through without deviation.

We now shine light from the origin in a specified initial direction, and first ask the
obvious question of whether or not the set of illuminated vertices is a.s. finite. The problem
of main interest for ergodic theorists is the case when prw = 0, for which, conditional on
the environment, the light behaves deterministically. Under the contrasting assumption
that prw > 0, it has been shown in [21] that the illuminated set is infinite with strictly
positive probability if pnw + pne is sufficiently small (and positive). In contrast to certain
other arguments which are specific to this two-dimensional system, the conclusion of ‘non-
localisation’ was obtained in [21] for general systems of reflectors in Z

d where d ≥ 2, whenever
the density prw of random walk points is strictly positive, and the density of non-trivial
reflectors (i.e., reflectors other than crossings) is sufficiently small.

Assume now that the number d of dimensions satisfies d ≥ 2. Let us consider a situation
in which prw > 0, and where light originating at the origin illuminates infinitely many
vertices. Let Y (n) be the (random) displacement of the light after it has travelled a total
distance n (i.e., it has traversed exactly n edges). Our purpose in this paper is to prove a
central limit theorem for Y (n). We shall prove, subject to suitable conditions, that the d
coordinates of Y (n) are (asymptotically) independent normal random variables with zero
mean and variance δn, where the diffusion constant δ depends on the parameters of the
system and is strictly positive.

We may think of the ‘random field’ of reflectors as a special type of random environment
having a great deal of rigidity. Our basic strategy in proving the central limit theorem is
to adapt the arguments proposed by Kipnis and Varadhan [24] and further developed by
DeMasi, Ferrari, Goldstein, and Wick [10, 11]. Substantial difficulties arise in following
this strategy. Whereas the above papers considered reversible random walks in a random
environment on Z

d, we shall need here to study the Markov chain embedded in the light
path by looking only at those times at which the light passes through rw points. The set of
rw points is a random set, and the geometry of this set will be controlled using percolation-
theoretic arguments. Indeed, the majority of this paper is devoted to obtaining and applying
estimates for the geometry of the environment. The technology for proving the central limit
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theorem is itself taken off the peg from [11, 24]; the main problems of the current paper are
to prove that the methods of [11, 24] are applicable in the current setting, and to verify that
the resulting diffusion constant is strictly positive.

It is a matter of substantial interest whether or not a light trajectory is ‘diffusive’ when
the density prw of rw points equals 0. Extensive Monte Carlo simulations have been carried
out ([7, 8, 9, 30, 31]), but little of mathematical rigour is currently known concerning this
hard question.

The requisite definitions are given in the next section, and the central limit theorem
is stated at the end of that section. In Section 3, we present certain lemmas concerning
the geometry of the set of points illuminated by light originating at the origin. Section
4 contains several estimates concerning the conductance of a certain disordered electrical
network derived from a random labyrinth. We prove the central limit theorem in Section
5, but reserve until Section 6 the proof that the diffusion constant is strictly positive. This
last step is achieved, as in [11], by utilising the electrical results of Section 4.

2. Random labyrinths

Random labyrinths were introduced in [2, 3, 21, 22] and discussed further in [18]. We
describe here a general labyrinthine model for the passage of light through the cubic lattice
in d dimensions, where d ≥ 2. By Z

d, we mean the set of all d-vectors v = (v1, v2, . . . , vd)

of integers. We shall use the norms |x| =
∑d
i=1 |xi| and ‖x‖ = sup{|xi| : 1 ≤ i ≤ d} for

x = (x1, x2, . . . , xd) ∈ Z
d. The set Z

d is turned into a graph by adding edges 〈x, y〉 between
all pairs x, y ∈ Z

d satisfying |x − y| = 1. The ensuing graph is denoted L
d = (Zd,Ed) and

the origin is written as 0.
Let I = {u1, u2, . . . , ud} where ui = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector in the ith

coordinate direction, and let I± = {−1,+1} × I be the set of all ±ui. We define a reflector
to be a map ρ : I± → I± with the property that ρ(−ρ(u)) = −u for all u ∈ I±, and we
write R for the set of all reflectors.

The physical interpretation of a reflector ρ is as follows. If light is incident at a vertex
x in direction u (∈ I±), the effect of reflector ρ at x is to deflect the light ray in such a
way that it departs x in direction ρ(u). The condition ρ(−ρ(u)) = −u is in response to the
reversibility of light paths, and it plays a role in the probabilistic arguments which follow.

We distinguish two special reflectors, as follows. The identity mapping on I± is called
the crossing , denoted by +. Crossings do not deflect light beams. The reflector ρ satisfying
ρ(u) = −u (for all u) is called the blocker , and is denoted by �. It has the effect of reflecting
any ray of light back upon itself.

Let µ be a probability measure on the set R ∪ {∅}. We place a member of R ∪ {∅} at
each vertex x, this member being sampled according to µ, and in such a way that different
vertices are occupied by independent members. That is, we consider the environment space

Ω =
{
R∪ {∅}

}Z
d

,

and let P be product measure on Ω with marginals µ. We introduce two parameters which
will play important roles later, namely

prw = µ({∅}), p+ = µ({+}),

the densities of the local states ∅ and + (recall that + denotes the crossing). The notation
will become clear soon.
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Fig. 1. There are 10 possible reflectors in two dimensions. The blocker is �, the
crossing +, and the other icons represent the more complicated reflectors.

Fig. 2. A sketch of some two-dimensional light paths joining rw points (represented
by •). Note the existence of loops, parallel paths, crossing paths, and blocked paths.

Given an environment ω (∈ Ω), we wish to construct a random walk in ω. Such a walk
will conform to the reflectors, but will behave in the manner of a symmetric random walk
whenever it arrives at a point in state ∅. See Figures 1 and 2 for illustrations of random
walks through two-dimensional labyrinths.

For ω = (ωx : x ∈ Z
d) ∈ Ω, let W(ω) = {x ∈ Z

d : ωx = ∅}, and call W(ω) the set of
random walk (or rw) points in the configuration ω. A path in L

d is an ordered sequence
v0, v1, . . . , vn of vertices (not necessarily distinct) such that 〈vk, vk+1〉 ∈ E

d for 0 ≤ k < n.
A light path in ω is a path v0, v1, . . . , vn with n ≥ 1 such that
(a) vk is a rw point if and only if k ∈ {0, n},
(b) for k ≥ 2, we have that vk − vk−1 = ωvk−1

(vk−1 − vk−2).

Informally, a light path is the trajectory of light which departs the rw point v0 in the
direction v1 − v0, up to the moment when the light illuminates a rw point for the next time.
Such a path is said to connect its endpoints.

For rw points x, y, let nω(x, y) be the number of light paths connecting x to y. For sets
A,B of rw points, we set

nω(A,B) =
∑

x∈A
y∈B

nω(x, y);

nω(x,B) and nω(A, y) are defined accordingly. We define an equivalence relation ‘↔’ on
W(ω) by x↔ y if either x = y, or there is a sequence x0 = x, x1, . . . , xm = y of rw points,
where m ≥ 1, such that

m∏

k=1

nω(xk−1, xk) > 0.

Any rw point x lies in some equivalence class Cω(x) of the relation ↔. We shall usually
write n and C for nω and Cω, except where such notation would be ambiguous for the
context.

Let ω ∈ Ω. We define a random walk in the labyrinth ω to be a Markov chain, denoted
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(Xω(n) : n ≥ 0), having state space W(ω) and transition matrix qω given by

(2.1) qω(x, y) =
nω(x, y)

2d
for x, y ∈ W(ω).

Such a random walk Xω is the main object of study of this paper. We denote by Pωx the
law of Xω conditional on Xω(0) = x.

One of the main properties of the chain Xω is its reversibility (relative to an appropriate
measure), and it is this that permits the use of the arguments of [11, 24]. If we were to
permit rules more general than those given above, then this vital property would generally
no longer hold.

It is clear from the definition of the equivalence relation ↔ that the communicating
classes of Xω are exactly the equivalence classes of ↔. The asymptotic behaviour of Xω(n)
for large n is an interesting object of study only if the starting point Xω(0) lies in an infinite
equivalence class of ↔. We therefore introduce the subspaces of Ω given by

(2.2) Ω∗ = {ω ∈ Ω : ω0 = ∅}, Ω∗∗ = {ω ∈ Ω∗ : |Cω(0)| = ∞},

and we write P
∗ and P

∗∗ for the measure P conditioned respectively on the events Ω∗ and
Ω∗∗. (These measures are defined whenever P(Ω∗) > 0 and P(Ω∗∗) > 0.)

We assume that Xω(0) = 0, and define the re-scaled variables

(2.3) Xε,ω(t) = εXω(⌊ε−2t⌋), ε > 0, t > 0.

By the term ‘standard Brownian motion’ we mean a Wiener process with the identity co-
variance matrix. If W is a standard Brownian motion in R

d and C is a real d× d matrix,
then CW is a Wiener process with covariance matrix CC′.

Throughout this paper, we write pc = pc(L
d, site) for the critical probability of site

percolation on L
d. The following theorem utilises a type of convergence denoted in the form

‘P∗∗-dp’; the appropriate definition appears after the statement of the theorem.

Theorem 2.1. Let prw > 0. There exists a strictly positive constant A = A(prw) such that
the following holds whenever either 1 − prw − p+ < A or prw > pc:
(a) P(Ω∗∗) > 0,

(b) as ε ↓ 0, the re-scaled process Xε,· converges P
∗∗-dp to

√
DW , where W is a standard

Brownian motion in R
d and D = D(µ) is a strictly positive constant.

We recall that µ is the marginal measure of P. In saying that Xε,· converges P
∗∗-dp to√

DW , we mean that, as ε ↓ 0,

(2.4) Pω0
(
f(Xε,ω)

)
→ E

(
f
(√
DW

))
in P

∗∗-probability

for all bounded continuous functions f on the Skorohod space D([0,∞),Rd). [For any
random variable Z and appropriate probability measure P , we write P (Z) for the mean of
Z. Here, E is the expectation operator for the Brownian motion W .] In this two tiered
mode of convergence, the letters ‘dp’ stand for ‘in distribution in probability’.

Theorem 2.1 asserts a functional central limit theorem for the random walk Xω when it
is confined to an infinite equivalence class, under the assumption that the density of non-
trivial reflectors (i.e., reflectors other than the crossing) is sufficiently small. Note that Xω

does not conform to ‘real time’; that is, it jumps between rw points at unit times, rather
than following the light trajectory at constant velocity. Actually it may be viewed as the
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embedded chain obtained by observing a ‘real time’ process at the epochs of visits to rw
points. There is a central limit theorem for such a ‘real time’ process also.

Let ω ∈ Ω. We define a Markov chain (Zω(n) : n ≥ 0) on the state space I± × Z
d as

follows. Writing Zω(n) = (Uω(n), Y ω(n)) ∈ I± × Z
d, we require that

Y ω(n+ 1) = Y ω(n) + Uω(n+ 1),

Uω(n+ 1) = ωY ω(n)

(
Uω(n)

)
if Y ω(n) is not a rw point;

if Y ω(n) is a rw point, then Uω(n + 1) is chosen uniformly from I±, this choice being
independent of ω and of all earlier choices. As before, we set Y ε,ω(t) = ε−1Y ω(⌊ε−2t⌋).
Theorem 2.2. Let prw > 0 and let A = A(prw) be given as in Theorem 2.1. If either

1 − prw − p+ < A or prw > pc, then the re-scaled process Y ε,· converges P
∗∗-dp to

√
δW ,

where W is a standard Brownian motion in R
d and δ = δ(µ) is a strictly positive constant.

The two diffusion constants D and δ are related in the following way. Suppose 0 is a
rw point, and let x1, x2, . . . , x2d be the vertices x of Z

d (appearing with the appropriate
multiplicities) with the property that nω(0, x) > 0. Let l1, l2, . . . , l2d be the numbers of
edges in the corresponding light paths. Then δ = D/m where

(2.5) m = P
∗∗

(
1

2d

2d∑

k=1

lk

)
.

The proof of this theorem may be found in Section 7.
Our principal theorem, Theorem 2.1, concerns the discrete-time processXω(n). A similar

conclusion is valid for a process in continuous time. At one point in the proof, we shall need
to refer to such a process, and therefore we introduce it here. Specifically, we let (Xω

t : t ≥ 0)
be the ‘Poissonization’ of Xω given in the usual (following) way. Let (M(t) : t ≥ 0) be a
Poisson process with rate 1, independent of all random variables so far considered, and let
Xω
t = Xω(M(t)). Then Xω

t is a Markov process which follows the trajectories of Xω(·) but
with exponentially-distributed holding times at each rw point.

Finally in this section, we consider the special case when prw > pc and when all non-rw
points are (a.s.) blockers. In this case, the light moves in the manner of a random walk
between the rw points, and it experiences a delay whenever it exits a rw point in the direction
of a blocker. This process constitutes essentially a random walk on the infinite cluster of
a supercritical site percolation process, with holding times at each rw point x having a
distribution depending on the number of neighbouring blockers at x. Such a process was
considered in [11], and the results of the present paper contain a certain generalisation of
the corresponding central limit theorem presented there.

3. Geometrical properties of labyrinths

In order to establish results concerning a light path in a labyrinth, it is first necessary to
derive some geometrical properties of the labyrinth. Several basic properties will be required,
and we present these next.

Let ω ∈ Ω, and consider the equivalence relation ↔ on the set W(ω) of rw points.
Let M = M(ω) be the number of infinite equivalence classes. The following uniqueness
theorem will be proved later in this section using the approach of Burton and Keane [6],
with variations.
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Theorem 3.1. Suppose prw > 0. Then either P(M = 0) = 1 or P(M = 1) = 1.

It was proved in [21] that light paths are usually rather short in length. Let e = 〈u, v〉
be an edge. Either e lies in some light path v0, v1, . . . , vk where v0 and vk are rw points
(and where v0 = vk is allowed), or it does not. We write λ(e) = k if this path exists having
length k, and λ(e) = 0 otherwise. It is clear that λ(e) is well defined.

Theorem 3.2. For any edge e,

(3.1) P
(
λ(e) > 2k

)
≤ 2(1 − prw)(k−1)/(2d) for k ≥ 1.

The proof may be found in [18, 21], but for the sake of being complete we summarise
it here. Light passing along e from u to v will continue through Z

d until it meets a rw
point for the first time. At each new point that it encounters, this point is a rw point with
probability prw, and the chance that r new points are not rw points is therefore (1− prw)r.
The coefficient 2 arises because e may be traversed in either of two directions; the factor
(2d)−1 in the exponent arises since no vertex is visited more than 2d times by any given
light path.

We turn now to the sizes of the finite equivalence classes of (W(ω),↔). We augment
the equivalence class C(x) at each rw point x by adding all vertices of Z

d on all light paths
connecting vertices in C(x), and we denote the augmented set of vertices by C(x). The
radius of a set A of vertices containing the origin is given by

(3.2) rad(A) = max{|x| : x ∈ A},

and its boundary ∂A is the set of vertices x (∈ A) which are adjacent to some vertex y not
in A. Recall that P

∗ denotes P conditioned on the event Ω∗ that the origin is a rw point.

Theorem 3.3. Suppose that prw > 0. There exist strictly positive constants A = A(prw),
ψ = ψ(prw), such that P

∗(|C(0)| = ∞) > 0 and

(3.3) P
∗
(
k ≤ rad

(
C(0)

)
<∞

)
< e−kψ for k ≥ 1

whenever either 1 − prw − p+ < A or prw > pc.

Further geometrical properties of this type may be established, using comparisons with a
percolation process, but we shall use only the above. In proving Theorem 3.3 we shall make
use of a ‘block argument’ which has other applications too. This argument is similar to one
presented in [21].

Consider the box BN = [−N,N − 1]d. We shall introduce a property of BN which will
depend only on ω restricted to BN . Roughly speaking, this property is that: BN contains
no reflectors other than crossings, and light originating anywhere in BN will illuminate the
whole of BN . In order to achieve a proper definition, we introduce the following terminology.

For ω ∈ Ω, we use the term ω-path to mean a path v0, v1, . . . of Z
d with the property

that, for all j ≥ 1,

vj+1 − vj = ωvj
(vj − vj−1) whenever vj is not a rw point,

which is to say that the path conforms to the reflectors at all non-rw points. For x, y ∈ Z
d,

we write x ! y if there exists an ω-path with endpoints x and y. For any box T , we write
x !T y if there exists an ω-path with endpoints x and y which has at most one vertex
lying outside T \ ∂T . If T = BN , we write !N for !T .
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We declare the box BN to be good if the two following properties hold:
(a) BN contains only crossings and rw points,
(b) there exists a rw point x in BN/2 such that x !N y for all y ∈ ∂BN .

[We call any such point x a seed of the good box BN .] Similarly, we call a translate
T = v + BN good if it contains only crossings and rw points, and there exists a rw point
x ∈ v +BN/2 such that x !T y for all y ∈ ∂T = v + ∂BN ; such a point x is called a seed
of the translate.

Theorem 3.4. Suppose that prw > 0 and η > 0. There exists a strictly positive constant
A = A(prw, η) and a positive integer M such that

P
(
BN is good

)
> 1 − η for N ≥M

whenever 1 − prw − p+ < A.

The value of this theorem is as follows. For l ∈ Z
d, we colour l green if the translate

BNl = 2Nl + BN is good. By choosing η small enough, we can make the density of green
sites close to 1, and in particular bigger than the critical probability of site percolation on
Z
d. Furthermore, the definition of ‘good’ entails that any cluster of green sites corresponds

to a collection of good boxes in Z
d whose rw points lie in the same equivalence class of

(W(ω),↔). By using percolation estimates for such clusters, we obtain information about
the geometry of equivalence classes. In particular, if there exists an infinite cluster of green
sites on the renormalised lattice, then the corresponding region of the labyrinth contains an
infinite ‘inter-illuminating’ class of rw points.

Proof of Theorem 3.1. Since M is a translation-invariant function on Ω, and since P is
ergodic, we deduce that there exists a constant m ∈ {0, 1, 2, . . . } ∪ {∞} such that P(M =
m) = 1. We can rule out the possibility that 2 ≤ m < ∞ as follows. If 2 ≤ m < ∞, then
there exists an integer N such that

P
(
BN intersects m infinite equivalence classes

)
> 1

2 .

We may place a rw point at every vertex in BN , thereby causing the m infinite equiva-
lence classes to coalesce into a single such class. It would follow that P(M = 1) > 0, a
contradiction.

It remains to rule out the case m = ∞, and to this end we assume henceforth that
P(M ≥ 3) = 1. For any ω ∈ Ω and any finite box B, we denote by ω�

B the following
configuration:

(3.4) ω�

B(x) =

{
� if x ∈ ∂B,

ω(x) otherwise,

where � denotes the blocker. Let N be a positive integer, and call a translate E = v +BN

of the box BN an encounter zone if the following holds:
(a) E contains only rw points,
(b) the unique equivalence class of (W(ω),↔) containing points in E is infinite, and may be

partitioned as C1∪C2∪ . . .∪Cr∪F ∪E, where r = r(E) ≥ 3, and where C1, C2, . . . , Cr
are distinct infinite equivalence classes and F is a union of finite equivalence classes of
(W(ω�

E),↔).
Loosely speaking, an encounter zone E has the property that it ‘welds together’ three or
more infinite equivalence classes of Z

d \ E. Note that encounter zones may overlap one
another.
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Fig. 3. Two encounter zones, generating compatible partitions.

Some care is needed in order to follow the strategy laid down by Burton and Keane [6].
First, it follows by the construction given above that P

(
BN is an encounter zone

)
= η > 0

for some N , and we pick N accordingly. It follows by translation-invariance that

(3.5) P
(
E is an encounter zone

)
= η > 0

for all translates E = v +BN of BN .
Next, write ∆G for the set of edges of the lattice having exactly one endpoint in the set

G of vertices. We shall consider the set of encounter zones contained within a large box Bn.
Let E = v+BN be such an encounter zone, and let ∆nE be the set of edges e in ∆Bn with
the following properties:

(i) e belongs to some ω�
E -path which visits infinitely many distinct rw points, and

(ii) e lies in some ω-path π using edges of Bn only (apart from e itself), such that π has
an endpoint in E.

Using property (b) of the definition of encounter zone, we have that ∆nE may be partitioned
into the union of non-empty sets ∆nE

1, . . . ,∆nE
r where r = r(E) ≥ 3, and with the

following property: for every j, there exists an infinite equivalence class of (W(ω�
E),↔) such

that all edges in ∆nE
j lie in ω-paths joining rw points of this class.

Now let E1 and E2 be distinct encounter zones contained within Bn. (Note that E1

and E2 may have non-empty intersection.) It may be seen (aided perhaps by Figure 3)
that: either ∆nE1 ∩ ∆nE2 = ∅, or the partitions corresponding to ∆nE1 and ∆nE2 are
‘compatible’ in the sense that there exist orderings of the sequences ∆nE

1
1 ,∆nE

2
1 , . . . and

∆nE
1
2 ,∆nE

2
2 , . . . such that

∆nE
1
1 ⊇ ∆nE

2
2 ∪ ∆nE

3
2 ∪ · · · ∪ ∆nE

r
2 .

where r = r(E2).
Using the lemma of [6] (see also [18, Lemma 7.5]), suitably adapted to the present setting,

we deduce that the number Rn of encounter zones within Bn satisfies Rn ≤ |∆Bn|. Taking
expectations, we obtain from (3.5) that

P(Rn) = η(2n− 2N + 1)d ≤ |∆Bn| ≤ 2d2(2n)d−1,
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which is impossible for large n. We deduce by contradiction that P(M ≥ 3) = 0 as re-
quired. �

Proof of Theorem 3.4. A closely related proof may be found in [21]. Let prw, η > 0, and let
DN be the event that BN contains no reflectors other than crossings. Then

P(DN) = (prw + p+)(2N)d

.

Let T be the minimum non-negative value of m such that the point (m, 0, 0, . . . , 0) is a
rw point, and write X = (T, 0, 0, . . . , 0). Since prw > 0, we may choose an integer t such
that P(T ≥ t) ≤ 1

4η. Note that

P
(
T ≥ t

∣∣DN

)
≤ P(T ≥ t) ≤ 1

4η for all N,

by the FKG inequality.
Let y ∈ ∂BN satisfy y = (y1, y2, y3, . . . , yd) 6= (±N, 0, 0, . . . , 0). For k ∈ {−N,−N +

1, . . . ,−1}∪{T+1, T+2, . . . ,N−1}, let Sk be the set of points (k, 0, 0, . . . , 0), (k, y2, 0, . . . , 0),
(k, y2, y3, 0, . . . , 0), . . . , (k, y2, y3, . . . , yd). Since Sk ∩ Sl = ∅ if k 6= l, the events Uk =
{all points in Sk are rw points} are conditionally independent given DN and the choice of
X; furthermore, the conditional probability of Uk is at least pdrw, since |Sk| ≤ d for all k. If
Uk occurs for some k, and also DN and {T < 1

2N}, then X !N y.

Now, if t < 1
2N ,

P
(
X !N y

∣∣T < t, DN

)
≥ P

(⋃

k

Uk

∣∣∣∣T < t, DN

)

= 1 −
∏

k:−N≤k<0
or t≤k<N

(
1 − P(Uk | DN)

)

≥ 1 − (1 − pdrw)2N−t.

We required above that y 6= (±N, 0, 0, . . . , 0). It is immediate however that X !N

(±N, 0, 0, . . . , 0) so long as T < t < 1
2N and DN occurs.

There are at most (2N)d possible choices for y. It follows that, for t < 1
2N ,

P

(
for all y ∈ ∂BN , X !N y

∣∣∣T < t, DN

)
≥ 1 − (2N)d(1 − pdrw)2N−t.

Therefore, for t < 1
2N ,

P
(
BN is not good

)
≤ 1

4η + (2N)d(1 − pdrw)2N−t + 1 − (prw + p+)(2N)d

.

We pick M (> 2t) such that (2N)d(1 − pdrw)2N−t < 1
4η for N ≥ M , and A = A(prw) such

that 1 − (1 −A)(2M)d

< 1
2η. The required conclusion follows. �

Proof of Theorem 3.3. Let prw > 0. By Theorem 3.4, there exists A = A(prw) > 0 and an
integer M such that

(3.6) P
(
BM is good

)
> pc(L

2, site),
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the critical probability of site percolation on L
2. We choose A and M accordingly, and

suppose for the moment that 1 − prw − p+ < A. With γ = P(BM is good), let θ(γ) be
the percolation probability of site percolation on L

2 with density γ. By the remarks after
the statement of Theorem 3.4, and the fact that θ(γ) > 0, we have that there exists a.s.
an infinite cluster of green sites in the renormalised lattice. Every corresponding box of
the labyrinth contains some rw point, and all such rw points lie in the same equivalence
class. Therefore, the labyrinth contains a.s. an infinite equivalence class. It follows that
P(|C(0)| = ∞) > 0.

Assume now that d ≥ 3. We shall use a slab argument, related to that used to prove
Theorem 6.48 of [17]. We build the set C(0) in a natural recursive manner. Let e1, e2, . . .
be a fixed ordering of the edges of L

d, and suppose that 0 is a rw point. We select the
earliest edge, e say, which is incident to 0, and we add, vertex by vertex, the unique light
path departing 0 in the direction e. Having completed this step, and obtained a pair {0, x}
of (possibly identical) rw points, we pick the earliest edge incident with 0 or x which has not
yet been traversed, and we iterate the procedure. Continuing likewise until all possibilities
have been exhausted, we have constructed the set C(0).

For k ≥ 1, let Lk be the region of Z
d containing all vertices v = (v1, v2, . . . , vd) satisfying

2kM < v1 ≤ 2(k + 1)M , and let Hk be the set of all v with v1 = k. If C(0) contains some
point w = (w1, w2, . . . , wd) with w1 > 2KM , then C(0) contains some path traversing every
‘slab’ L0, L1, . . . , LK−1. Now, by Theorem 3.4 and the remarks thereafter, each time that
the above construction encounters a new slab Lk for the first time, there is probability at
least θ(γ) that it intersects an infinite set of intercommunicating rw points contained in Lk.
It follows (by the argument given in [17, pp. 127–128]) that

P
∗
(
C(0) ∩H2KM+1 6= ∅, |C(0)| <∞

)
≤
(
1 − θ(γ)

)K
.

Therefore

P
∗
(
k ≤ rad

(
C(0)

)
<∞

)
≤ 2d

(
1 − θ(γ)

)⌊(k−1)/(2M)⌋

and the theorem is proved (when d ≥ 3).
We next present a sketch of the argument required when d = 2. For l = (l1, l2), let BMl

be the box 2Ml + BM , where M is chosen to satisfy (3.6). We colour l green if BMl is a
good box, and red otherwise. Using (3.6), there exists a.s. a unique infinite cluster I of green
vertices in the renormalised copy of L

2 obtained by replacing each BMl by the vertex l. Let

L be the set of all l such that BMl intersects C(0). If k ≤ rad(C(0)) <∞, then L contains a
path of L

2 whose endpoints are at least distance ⌊k/(2M)⌋ apart (in the norm | · |), and in
addition every BMl , for l ∈ L, either is red, or is green but lies in a finite green (site) cluster
of L

2. Therefore, the renormalised site 0 belongs to a ‘hole’ in I, this hole having diameter
at least ⌊k/(2M)⌋. The boundary of this hole contains a red circuit of L

2
∗, the matching

lattice obtained from L
2 by adding diagonals to each face; this red circuit has length at least

⌊k/(2M)⌋, and the origin lies in either the circuit or its interior. Using standard arguments
from percolation theory (see [23, eqn 3.89], [17, Sect. 9.4]), we deduce that the probability of
such a red circuit decays exponentially in k/(2M), so long as M has been chosen sufficiently
large that (3.6) holds.

Suppose now that prw > pc; we have from the definition of pc that P
∗(|C(0)| = ∞) > 0.

Assume that d ≥ 3, and let pc(M) be the critical probability of site percolation on the slab
LM = {v ∈ Z

d : 0 < v1 ≤M}. We pick M such that prw > pc(M). [This may be done since
pc(M) ↓ pc as M → ∞. See [18, 20].] We now repeat the slab argument presented above,
and (3.3) follows immediately.
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Finally consider the case when prw > pc and d = 2. Let An be the event that the annulus
[−2n, 2n]2 \ [−n, n]2 contains a circuit Cn of rw points having the origin in its interior
and such that Cn lies in an infinite connected cluster of rw points. On An, we have that
either |C(0)| = ∞ or rad(C(0)) < 2n. However, P

∗(An) ≥ 1 − e−nξ for some constant
ξ = ξ(prw) > 0, whence (3.3) follows.

In order to obtain the above bound for P
∗(An), we may use standard path-intersection

arguments from percolation; see [17, 23]. Briefly, if the annulus fails to contain a circuit of
rw points, then it is traversed in the matching lattice by a path of non-rw points. If such
a circuit exists but is not in an infinite cluster, then its external boundary corresponds to a
circuit of non-rw points in the matching lattice. Each of these two events has a probability
which decays exponentially quickly to 0 as n→ ∞. �

4. An electrical network

In the proof of Theorem 2.1, we shall require an estimate of the conductance of a certain
electrical network arising from the labyrinth. Such an estimate is necessary in proving that
the diffusion constants in Theorems 2.1 and 2.2 are strictly positive. The required notation
and estimate are presented in this section.

Let ω ∈ Ω and let N be a positive integer. Write BN = [−N,N − 1]d ⊆ Z
d as usual. The

pair (ω,N) gives rise to a periodic configuration ωN (∈ Ω) obtained by tiling Z
d with copies

of ω restricted to BN . More precisely, we first write x ∼ y if xi = yi mod 2N for 1 ≤ i ≤ d.
For each y ∈ Z

d, we find the unique x ∈ BN satisfying y ∼ x, and we set ωN (y) = ω(x).
We denote by [x] the equivalence class of a vertex x under the equivalence relation ∼.

In advance of studying the labyrinth generated by ωN , we need to eliminate certain bad
configurations. Suppose that prw > 0. Let 0 < ρ < 1, and consider the set of light paths of
ωN . Let ΩN = ΩN,ρ be the set of all ω (∈ Ω) for which every light path of ωN has length
not exceeding Nρ. We shall see at (4.7) that

(4.1) P(ΩN) ≥ 1 − cNd(1 − prw)
1
2
⌊Nρ⌋/d

where c = c(d) is a positive constant. Thus P(ΩN) is close to 1 for large N , and we shall
assume henceforth that the event ΩN occurs, i.e., that

(4.2) ω ∈ ΩN .

We shall concentrate on the set of rw points lying in BN , and write WN (ω) = W(ω)∩BN
(= W(ωN ) ∩ BN ) for this set. It will be useful to represent WN as the set of nodes of an
electrical network (illustrated in Figure 4). The ‘terminals’ of this network will be sets of
nodes near to the ‘left’ and ‘right’ faces of BN . We argue as follows in order to construct
these sets.

Suppose that x, y ∈ WN (ω) are such that nω
N

([x], [y]) > 0. Pick u ∈ [x], v ∈ [y] such

that nω
N

(u, v) > 0, and let π be a corresponding light path of ωN , directed from u to v. Let
us keep count of the number of times π intersects the set {x ∈ R

d : x1 ∈ (2Z + 1)N − 1
2};

each time π intersects this set in the direction of increasing first coordinate (resp. decreasing
first coordinate) we score +1 (resp. −1). We write s(π;u, v) for the total score. Using the
assumption that ω ∈ ΩN , we may see that s(π;u, v) can take only the values 0, ±1, and
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Fig. 4. An illustration of the electrical network constructed from an equivalence
class C which straddles BN . The open circles ◦ represent rw points in the left and

right ‘terminals’, and the dense circles • represent other rw points.

furthermore that s(π;u, v) depends only on x and y, and not further on the choice of u, v,
π. We define m(x, y) = s(π;u, v), and note that m(x, y) = −m(y, x).

For x, y ∈ WN (ω) satisfying nω
N

([x], [y]) = 0, we define m(x, y) = 0. Note that the
function m depends on N and ω, and we sometimes write m = mN,ω.

Suppose x, y ∈ WN (ω). We write x ↔N y if x ↔ωN

[y]. It is easily checked that ↔N

is an equivalence relation on WN (ω). Let C be an equivalence class of ↔N . We define the
‘right edge’ r and ‘left edge’ l of C as follows:

l = lN,ω,C = {x ∈ C : ∃ y ∈ C with m(x, y) = −1},
r = rN,ω,C = {x ∈ C : ∃ y ∈ C with m(x, y) = 1},(4.3)

M = MN,ω,C = C \ (l ∪ r) .

Under (4.2), we have that l∩ r = ∅ for large N ; note that l and r may be empty in general,
but that l = ∅ if and only if r = ∅. We shall consider in Section 6 a Markov chain on the
state space obtained from C by identifying all elements of l and all elements of r. To that
end, we define

(4.4) V = VN,ω,C = M∪ {r} ∪ {l}.

(We use the notation l (resp. r) to denote both a subset of C and an element of V . The
cardinality of a set A of vertices will be denoted by |A|.) A member of V is called a simple
state if it is a singleton and a composite state otherwise.

Let C be an equivalence class of rw points of BN under the relation ↔N , as above. Assume
that r 6= ∅ (and hence l 6= ∅) and that there exists a sequence v0, v1, . . . , vn in W(ωN )∩BN
such that

(i) v0 ∈ l, vn ∈ r, vi ∈ M for 1 ≤ i < n,
(ii) vi−1 ↔N vi for i = 1, . . . , n,
(iii) n ≥ 2.
Under these circumstances, we say that the equivalence class C straddles BN .

In studying the Markov chain on the state space V , we shall interpret V as the node-set of
a certain electrical network, and we shall estimate the conductance of this network between
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the composite nodes l and r. The edges of the network are placed as follows. For a, b ∈ V ,
with {a, b} 6= {l, r}, we place exactly κN (a, b) unit resistors in parallel between a and b,
where the symmetric function κN = κN,ω,C is given by

(4.5) κN (a, b) =

{
0 if {a, b} = {l, r}
nω

N

(a, [b]) otherwise.

(Recall that the composite nodes l and r are subsets of Z
d.)

Suppose that C is such that l and r are non-empty and disjoint. We have constructed a
certain electrical network between the two ‘terminals’ l and r, and this network has a certain
effective conductance denoted as σN = σN,ω,C. We shall prove a theorem concerning the
asymptotics of σN as N → ∞, for a suitably chosen equivalence class C of ωN . In advance
of stating this theorem, we present some further notation.

Let C1, C2, . . . ,Cs be the equivalence classes of WN under ↔N . Let N = CJ be an
equivalence class having maximal cardinality (if there are two or more such classes, we pick
one according to some predetermined rule).

Theorem 4.1. Suppose that prw > 0 and 0 < ρ < 1. Let A be given as in Theorem 3.4 with
(1 − η)2 = pc(L

2, site), and suppose that either 1 − prw − p+ < A or prw > pc. There exist
strictly positive constants ci such that the following statements are (simultaneously) valid
with P-probability approaching 1 as N → ∞.
(a) The event ΩN = ΩN,ρ occurs.
(b) We have that |N | ≥ c1N

d.

(c) The sets l = lN,ω,N , r = rN,ω,N are non-empty and disjoint, and satisfy nω
N

(l, r) ≥
c2N

d−1.
(d) N is the unique equivalence class of BN , under ↔N , which straddles BN .
(e) The conductance σN = σN,ω,N satisfies σN ≥ c3N

d−2.

Before proving this, we make a remark concerning the value of A. We have not attempted
to ‘maximise’ this value in Theorem 4.1. A first step in this direction would be to note
that the conclusion of the theorem is valid with A replaced by the quantity A′ given as in
Theorem 3.4 with 1− η = pc(L

2, site). The proof of this stronger statement is slightly more
complicated, and follows well trodden paths of percolation theory.

Proof. Assume that prw > 0. Theorem 3.2 is not quite sufficient to imply that P(ΩN) → 1
as N → ∞, since ΩN is defined in terms of the periodic configuration ωN . However, the
argument of the proof may be used to obtain the following conclusion. Let λN (e) be the
number of edges in the light path of ωN containing the edge e, and let Re be the event that
at least one endvertex of e is a rw point. Then

(4.6) P
(
Re, λ

N (e) > k
)
≤ (1 − prw)k/(2d) for 0 ≤ k < 2N,

where we have used the fact that no light path of length less than 2N can visit any equivalence
class [x] at two or more different vertices. Therefore

(4.7) P(ΩN) ≥ 1 − 2d|BN |(1 − prw)⌊N
ρ⌋/(2d)

as required for (4.1).
Assume now that 1 − prw − p+ < A, where A is given in Theorem 3.4. Let M be the

integer given in the conclusion of Theorem 3.4. Following the discussion after that theorem,
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we colour the vertex v ∈ Z
d green if the translate BMv = 2Mv + BM is good, and red

otherwise. Since the colours of vertices are independent, and since

P(v is green) >
√
pc(L2, site) > pc(L

2, site) for v ∈ Z
d,

we deduce that there exists a.s. an infinite green cluster Γ of Z
d. By the definition of ‘good’,

the corresponding region ΓM = 2MΓ +BM is an infinite connected region of the labyrinth
every rw point of which lies in some infinite equivalence class E of the labyrinth, and every
other point of which belongs to some light path joining two rw points in E. In particular,
the labyrinth contains an infinite equivalence class E, which by Theorem 3.1 is a.s. unique.

For notational convenience, we shall assume that N = (2k + 1)M for some k ≥ 1;
equivalent arguments are valid without this assumption, but the notation becomes slightly
more complicated. Under this assumption, BN may be partitioned into exactly (2k + 1)d

translates of BM , namely the set 2MT +BM where T = [−k, k]d ⊆ Z
d.

For positive constants d = (di), let Tk(d) denote the intersection of the following events
(i)–(iii).

(i) After appropriate re-labelling, the green clusters Γ1,Γ2, . . . of T satisfy |Γ1| ≥ d1k
d,

|Γi| ≤ d2 log k for i 6= 1.
(ii) There exist at least d3k

d−1 pairs of points in Γ1 of the form (−k, t2, t3, . . . , td),
(k, t2, t3, . . . , td); we denote by L (resp. R) the set of all points t lying in this family
which satisfy t1 = −k (resp. t1 = k).

(iii) There exist at least d4k
d−1 site-disjoint paths of Γ1 each joining some site of L to some

site of R.
There exist positive constants d = (di) such that

(4.8) P
(
Tk(d)

)
→ 1 as k → ∞.

The principal arguments necessary to establish this are fairly standard in percolation theory,
and may be found in [17, 18]. We therefore omit a full proof, and choose d accordingly.
Here are some brief notes concerning parts (ii) and (iii). Let γ = P(0 is green), and note
that γ2 > pc(L

2, site). Let It be the indicator function of the event {t is green}. For t =
(t1, t2, . . . , td) ∈ T , let g(t) = (−t1, t2, . . . , td). Now define Jt = ItIg(t), noting that Jt = It if

t1 = 0, and that Jt dominates a site percolation process on the subset Λ = [−k, 0]×[−k, k]d−1

of T having intensity γ2. We call t (∈ T ) black if Jt = 1. Let ε > 0. Using arguments of [20],
we find that there exists a constant d3 such that Λ is traversed (in the short direction) by at
least d3k

d−1 site-disjoint black paths, with probability at least 1 − ε. Since Jt = Jg(t), the
reflections of these paths in the hyperplane H0 = {t ∈ T : t1 = 0} are black also. Therefore,
on the above event, T is traversed by at least d3k

d−1 site-disjoint black paths with the
following property: the two endpoints of each such path have the form (−k, t2, t3, . . . , td),
(k, t2, t3, . . . , td) for some t2, t3, . . . , td. Properties (ii) and (iii) follow, since Jt ≤ It.

On the event Tk(d), we have that BN contains an equivalence class C which includes all
rw points in the region 2MΓ1 +BM . Using the definition of ‘good’, this region contains at
least |Γ1| rw points, whence Tk(d) implies statement (b) of the theorem with an appropriate
c1 = c1(d1,M) > 0.

Clearly C, defined above, straddles BN . Next we prove that (with large probability) no
other equivalence class Ci straddles BN , and that C = N . There is a variety of ways of doing
this, of which we choose a simple one. Consider the event that the following four statements
hold:

• the vertex x ∈ BN is a rw point,
• x ∈ lN,ω,D for some equivalence class D of ↔N ,
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• D straddles BN ,
• ΩN occurs.

Suppose we ‘grow’ D in a recursive way starting from x (similar to the general method given
in the proof of Theorem 3.3). Since D straddles BN , and since ΩN occurs, this construction
must intersect every slab of the form Sr = 2MTr +BM , where Tr = {t ∈ T : t1 = r} and r
satisfies

−N +Nρ ≤ 2Mr −M < 2Mr +M ≤ N −Nρ.

In the construction of D, there occurs a first time that the light enters each Sr. On entering
Sr, there is a strictly positive probability θM that D enters some translate 2Mt + BM of
BM , with t ∈ Tr, such that t is green and t lies in a green cluster of Tr having cardinality
at least d5N

d−1 for some d5 > 0. On the event Tk(d), this green cluster must, by virtue
of its size (see (i) above), be a subset of Γ1. Using the usual slab argument (see [17, pp.
127–128]), we deduce that, for an appropriate constant c,

(4.9) P
(
ΩN ∩ Tk(d) ∩Ex

)
≤ c(1 − θM)⌊(N−Nρ)/M⌋,

where Ex is the event that x is a rw point belonging to an equivalence class other than C
which straddles BN . Therefore

P

(
ΩN ∩ Tk(d) ∩

(⋃

x

Ex

))
≤ c(2N)d−1Nρ(1 − θM )⌊(N−Nρ)/M⌋.

This implies that

P

(⋃

x

Ex

)
≤ c(2N)d−1Nρ(1 − θM )⌊(N−Nρ)/M⌋ + P

(
ΩN
)

+ P

(
Tk(d)

)
→ 0

as N → ∞. Therefore, with probability tending to 1 as N → ∞, we have that N = C, and
that no other equivalence class straddles BN .

If Tk(d) ∩ ΩN occurs, and in addition C = N , then statement (c) of the theorem follows
by (ii) above. It remains to show (e). This we do in the way laid down in [19]. Let l = lN,ω,C

and r = rN,ω,C, and assume that Tk(d) ∩ ΩN occurs.
Let π1, π2, . . . , πD be a collection of site-disjoint green paths of Γ1, each joining some

vertex of L to some vertex of R, where D is maximal. We write vi,j , 1 ≤ j ≤ Ji, for
the green sites of πi taken in order, so that vi,1 ∈ L and vi,Ji

∈ R. The corresponding
translates 2Mvi,j+B

M are good, and therefore each contains a seed. For each vi,j we pick a

corresponding seed si,j ∈ 2Mvi,j +BM/2. We think of the paths πi as joining the ‘leftmost
seeds’ L′ = {si,1 : i = 1, 2, . . . ,D} to the ‘rightmost seeds’ R′ = {si,Ji

: i = 1, 2, . . . ,D}.
Between any two consecutive seeds si,j , si,j+1 on any path πi, there is an ω-path of length
not exceeding 2|BM | = 2(2M)d = S, and therefore containing no more than S rw points.
The corresponding electrical path joining si,1 to si,Ji

has resistance not exceeding S(Ji−1).
Now each si,1 (resp. si,Ji

) is joined by some ω-path to a member of l (resp. r) lying in
2Mvi,1 + BM (resp. 2Mvi,Ji

+ BM), this path containing fewer than 1
2S rw points. Using

the Rayleigh monotonicity principle (see [13]), we deduce that the conductance σN satisfies

σN ≥
D∑

i=1

1

S(Ji − 1) + S

whence, by the arithmetic/harmonic mean inequality,

(4.10) σN ≥ D2/S
∑D
i=1 Ji

≥ (d4k
d−1)2/S

(2k + 1)d
≥ d6k

d−2 ≥ d7N
d−2



RANDOM WALKS IN RANDOM LABYRINTHS 17

for some strictly positive constants d6 and d7. Statement (e) of the theorem is therefore
valid with probability tending to 1 as N → ∞.

For the second part of the proof, we assume that prw > pc. We write Λ = [−N,−1] ×
[−N,N − 1]d−1 and R = [0,N − 1]× [−N,N − 1]d−1 for the left and right parts of BN , and
Ξ = [−2N,−N − 1] × [−N,N − 1]d−1. Then AN = Ξ ∪ Λ is a copy of BN . A left–right rw
crossing of Λ is a rw path of Λ (i.e., a path all of whose vertices are rw points in Λ) whose
endpoints x, y satisfy x1 = −N , y1 = −1; we make a similar definition for top–bottom rw
crossings of Λ, and also for crossings of other boxes in Z

d.
For positive constants d = (di), let UN (d) be the intersection of the following events.

(i) BN contains a rw cluster (i.e., a connected subgraph of L
d all of whose vertices are rw

points) of size at least d1N
d, and no other rw cluster of size exceeding 1

4N .

(ii) This large cluster contains at least d2N
d−1 left–right rw crossings of BN , and at least

one top–bottom rw crossing of each of the sets Λ and R.
(iii) AN contains at least d2N

d−1 left–right rw crossings, in the configuration ωN .
Using standard arguments (see [1, 20, 27]), there exist positive constants d such that
P(UN (d)) → 1 as N → ∞, and we choose d accordingly.

On the event ΩN ∩UN (d), we write C for the large cluster under (i) above. Let N be the
equivalence class of WN under ↔N which contains C.

Assume that ΩN ∩UN (d) occurs. If d = 2, then (ii) above precludes the existence of any
other equivalence class of WN which straddles Λ. When d ≥ 3, we follow the argument which
led to (4.9) in order to obtain the same conclusion. Let pc(M) be the critical probability of
site percolation on the slab LM = [0,M − 2]×Z

d−1. We choose M such that prw > pc(M);
this is possible since pc(M) → pc as M → ∞, see [20]. Let Ex be the event that x is a rw
point of BN which lies in an equivalence class other than C which straddles Λ. For d3 > 0
and x ∈ LM ∩BN , we let θM (x) be the probability that x lies in a rw cluster of LM ∩BN
having size at least d3N

d−1. We pick d3 (> 0) in such a way that

θM = inf
{
θM (x) : x ∈ LM ∩BN

}
> 0;

that this may be done is a consequence of the block construction of [20]. Now, as in (4.9),

P
(
ΩN ∩ UN (d) ∩Ex

)
≤ c(1 − θM )⌊(N−Nρ)/M⌋,

for some c > 0. Let SN (Λ) (resp. SN (R)) be the event that there exists no equivalence class
other than C which straddles Λ (resp. R). Arguing as following (4.9), we deduce that

(4.11) P
(
ΩN ∩ UN (d) ∩ SN (Λ) ∩ SN (R)

)
→ 1 as N → ∞,

which implies the validity of (d). Using (i) and (iii), we deduce that claim (c) holds on the
event ΩN ∩ UN (d) ∩ SN (Λ) ∩ SN (R).

It remains to establish claim (e), and to this end we employ a block argument. Here is
some notation. Let M be a positive integer. For α ∈ {−,+} and 1 ≤ j ≤ d, we define the
box

Jα,j =

{
[−M,M − 1]j−1 × [−2M,−M − 1] × [−M,M − 1]d−j if α = −
[−M,M − 1]j−1 × [M, 2M − 1] × [−M,M − 1]d−j if α = +,

and the face

Fα,j =

{
[−M,M − 1]j−1 × {−2M} × [−M,M − 1]d−j if α = −
[−M,M − 1]j−1 × {2M − 1} × [−M,M − 1]d−j if α = +,
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F−,1 F+,1

J−,1 J+,1BM

B2M

Fig. 5. The inner square BM has four ‘ears’ corresponding to the regions Jα,j for
α ∈ {−, +} and j = 1, 2.

See Figure 5 for an illustration of this definition when d = 2. We call the box B2M good in
ω if the following hold. [Here, d4 is a positive constant to be chosen shortly.]

• BM contains a unique rw cluster of size at least d4M
d, and no other rw cluster of size

exceeding 1
4M .

• For every α ∈ {−,+} and j ∈ {1, 2, . . . , d}, the region BM ∪ Jα,j contains a unique
rw cluster Cα,j of size at least d4M

d, and no other rw cluster of size exceeding 1
4M .

Furthermore Cα,j contains a vertex lying in the face Fα,j.
Using arguments of percolation theory (see [1, 20, 27]), we may show the following. There
exists a strictly positive constant d4 such that: for all ε > 0, there exists M = M(ε)
satisfying

(4.12) P(B2M is good) > 1 − ε.

We pick d4 accordingly.
Any translate of B2M is called good if the corresponding facts hold for that translate.

We colour the vertex v ∈ Z
d blue if the translate B2M

v = 3Mv + B2M is good, and grey
otherwise.

We now assume that N = (3k + 2)M + 1 for some k ≥ 1, noting that BN−1 may be
expressed as the union of the set 3MT + B2M , where T = [−k, k]d ⊆ Z

d. Unlike in the
first part of this proof, these blocks may intersect one another; therefore the colours of the
points in T are dependent random variables. The event {t is blue} depends on the states of
vertices lying in the region

St = 3Mt+

{
BM ∪

(
⋃

α∈{−,+}
j∈{1,2,...,d}

Jα,j

)}
.

Since Sv ∩Sw = ∅ if |v−w| ≥ 2, these colours form a 1-dependent family of identically dis-

tributed random variables. Let π satisfy
√
pc(site,L2) < π < 1. Using the main conclusion

of [25], we may choose ε in (4.12) sufficiently small to ensure that these colours dominate
(stochastically) a site percolation process on T with density π.

We now follow the arguments presented after (4.8). Let Λk be a set (with maximal
cardinality) of site-disjoint blue paths traversing T between its left face {−k} × [−k, k]d−1
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and its right face {k} × [−k, k]d−1, and having the property that the two endpoints v and
w of every such path satisfy v1 = −k, w1 = k, vj = wj for 2 ≤ j ≤ d. Then

(4.13) P
(
|Λk| ≥ d5k

d−1
)
→ 1 as k → ∞

for some d5 > 0.
Let v and w be blue neighbours in L

d. Since Sv ∩ Sw is a box of dimensions M × 2M ×
· · · × 2M which is traversed by rw paths in its short direction, we find that the ‘large’ rw
clusters in these boxes form part of the same (larger) rw cluster in the union Sv ∪ Sw. It
follows that BN−1 contains at least |Λk| rw paths each of which has the property that its
endpoints x, y satisfy x1 = −N + 1, y1 = N − 2, |xj − yj | ≤ 4M for 2 ≤ j ≤ d.

For t ∈ T , we define the ‘left’ and ‘right’ edges of St by

Lt = 3Mt+ F−,1 − u1 = 3Mt+ {−2M − 1} × [−M,M − 1]d−1,

Rt = 3Mt+ F+,1 + u1 = 3Mt+ {2M} × [−M,M − 1]d−1.

[Here, u1 is a unit vector in the direction of increasing first coordinate.] Let V = {v(λ) :
λ ∈ Λk} be the set of left endpoints v(λ) of paths λ in Λk, and W = {w(λ) : λ ∈ Λk} the set
of right endpoints w(λ). For λ ∈ Λk, we define Iλ to be the indicator function of the event
that all vertices in Lv(λ) ∪ Rw(λ) are rw points. Conditional on Λk, the Iλ are identically
distributed random variables with

P(Iλ = 1) = p2(4M)d−1

rw > 0.

Let Λk be given. By Cramér’s theorem or otherwise, there exist strictly positive constants
ci such that

(4.14) P

(∑

λ∈Λk

Iλ ≥ c2|Λk|
∣∣∣∣Λk

)
≥ 1 − exp(−c3|Λk|).

If λ ∈ Λk and Iλ = 1, then λ gives rise to a left–right rw path of BN whose left and right
endvertices x, y satisfy xj = yj for 2 ≤ j ≤ d.

Suppose that the events in (4.11), (4.13), (4.14) occur. Combining the above observa-
tions, we conclude as in the first part of this proof that claim (e) is valid with probability
approaching 1 as N → ∞. �

5. Proof of Theorem 2.1

Our principal method is the general invariance principle of Kipnis and Varadhan [24] and
DeMasi, Ferrari, Goldstein, and Wick [11]; see also [16]. The proof that the diffusion constant
is strictly positive is distinct from the application of the general principle, and is contained
in Section 6. Since we shall make several appeals to this invariance principle, we begin by
stating it (Theorem 5.1 below).

We suppose that (ξ(n) : n ≥ 0) is a discrete-time Markov chain on a topological space Σ,
which is ergodic and reversible with respect to a given invariant measure ν. Let F be a Borel-
measurable function from Σ × Σ to R

d which is anti-symmetric (i.e., F (ω,ω′) = −F (ω′, ω)
for all ω,ω′). We define

I(n) = F
(
ξ(n− 1), ξ(n)

)
, n ≥ 1,(5.1)

X(n) =
n∑

k=1

I(k), n ≥ 0,(5.2)

Xε(t) = εX(⌊ε−2t⌋), ε > 0, t > 0.(5.3)
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Let Q be the transition probability measure for the chain ξ. Then Q may be regarded as
an operator on L2(Σ,B(Σ), ν), where B(Σ) is the collection of Borel subsets of Σ, by defining

(5.4) Qf(σ) =

∫
f(σ′)Q(σ, dσ′) = Eσ

(
f
(
ξ(1)

))

for f ∈ L2(Σ,B(Σ), ν), where Eσ is the law of ξ when ξ(0) = σ. We define the vector

(5.5) Φ(σ) = Eσ(I(1)) for σ ∈ Σ.

Finally, we write 〈f(ξ)〉ν for the mean of a function f of ξ, under the assumption that
ξ(0) has distribution ν. That is to say

〈f(ξ)〉ν = ν
(
Eσ
(
f(ξ)

))

for appropriate functions f . As usual, L2(Σ,B(Σ), ν) may be endowed with an inner product
〈·, ·〉ν by

〈f, g〉ν =

∫
f(σ)g(σ)dν(σ) =

〈
f(ξ(0))g(ξ(0))

〉

ν
.

With this notation, we have that

〈f,Qng〉ν =
〈
f(ξ(0))g(ξ(n))

〉
ν

for real-valued functions f and g.

Theorem 5.1. [11] Assume that 〈I(1)2〉ν < ∞. Let D be the real symmetric d× d matrix
whose entries Dij are given by

(5.6) Dij = 〈Ii(1)Ij(1)〉ν − 2〈Φi(1 −Q)−1Φj〉ν .

Then Xε converges ν-dp to D1/2W as ε ↓ 0, where W be a standard Brownian motion in

R
d, and D1/2 is a real symmetric square root of D. Furthermore, if u is a unit vector of

R
d, then

(5.7)
〈
(u ·Xε(t))2

〉
ν
→ (u′Du)t as ε ↓ 0.

As before, we say that Xε converges ν-dp to D1/2W if

Eσ
(
f(Xε)

)
→ E

(
f(D1/2W )

)
in ν-probability

for all bounded continuous functions f on the appropriate space.
We shall make several applications of this theorem in proving Theorems 2.1 and 2.2. The

basic method is similar to that used in [11, 24], namely to take Σ = Ω, and to let ξ(n) be the
environment seen from the position of the light ray at its nth visit to the set W of rw points.
We begin with an elementary lemma. We define translation operators on Ω as follows. For
x ∈ Z

d, let τx : Ω → Ω be given by (τxω)y = ωy−x for y ∈ Z
d. We call an environment

ω periodic if there exists x ( 6= 0) such that τxω = ω. The set of periodic configurations is
denoted T . We call the probability measure µ a point mass if there exists σ ∈ R∪{∅} such
that µ({σ}) = 1.



RANDOM WALKS IN RANDOM LABYRINTHS 21

Lemma 5.2. If µ is not a point mass, then P(T ) = 0.

Proof. Suppose that µ is not a point mass. Then

P(T ) ≤
∑

x∈Zd\{0}

P
(
ω(nx) = ω(0) for all n

)
= 0

as required. �

The only point mass which is consistent with the condition prw > 0 of Theorems 2.1 and
2.2 is the point mass on the state ω(x) = ∅ for all x. For this environment, the chain Xω is
the usual symmetric random walk, for which the claims are well known. Therefore we may
assume henceforth that µ is not a point mass.

In the light of Lemma 5.2, it suffices to prove a central limit theorem under the assumption

that the environment space is Ω̃ = Ω \ T . Suppose that 0 is a rw point. With Xω(0) = 0
and Xω defined as before (see equation (2.1)), we let ξ(n) be the environment seen from the
position Xω(n), that is, ξ(n) = τ−xω if Xω(n) = x. It may now be seen that (ξ(n) : n ≥ 0)

is a Markov chain on Ω∗ ∩ Ω̃ with transition function

(5.8) Q(ω, dω′) =
1

2d

∑

x∈W(ω)

nω(0, x)δτ−xω(dω′),

where δψ is the probability measure on Ω which places a unit of probability on the environ-
ment ψ.

Define F on Ω̃ × Ω̃ by

(5.9) F (ω,ω′) =

{
x if ω′ = τ−xω,

0 otherwise,

and let (I(n) : n ≥ 0), (X(n) : n ≥ 0), and (Xε(t) : t ≥ 0) be given by (5.1)–(5.3), and Φ as
in (5.5). Note that X(n) = Xω(n) −Xω(0) where ω = ξ(0), and that Xε(t) = Xε,ω(t) for
ω = ξ(0) ∈ Ω∗ (cf. (2.3) and the paragraph containing (2.1)).

It is now straightforward to verify that Theorem 5.1 may be applied to the process ξ with
either P

∗ or P
∗∗ in the place of ν. There follow some remarks about this.

In order to check that P
∗ and P

∗∗ are reversible invariant measures for ξ, one need only
check the detailed balance relation: for A,B ∈ B(Ω), and for P = P

∗,P∗∗,

∫∫
1A(ω)1B(ω′)Q(ω, dω′)P (dω) =

∫∫
1A(ω)1B(ω′)Q(ω′, dω)P (dω′);

this may be checked directly from the definition (5.8) of Q.
The proof that P

∗∗ is an ergodic invariant measure for the chain ξ follows exactly the
proof of the corresponding Lemma 5.9 in [11, p. 825]. In the present case, the argument
uses the fact proved in Theorem 3.1 that any infinite equivalence class of rw points is a.s.
unique.

The square integrability of I(1) under both P
∗ and P

∗∗ is a consequence of Theorem 3.2.
One may now apply Theorem 5.1 to the situation described in Theorem 2.1, thereby

obtaining as weak limit a Wiener process having covariance matrix D given by (5.6). In
order to show that D is diagonal, one proceeds just as in the proof of Theorem 5.6(iii) in
[11, p. 823].
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It follows that D = DI where I is the identity matrix, and

(5.10) D =
〈
i(1)2

〉
P∗∗ − 2

〈
φ(1 −Q)−1φ

〉
P∗∗

where i = I1 and φ = Φ1 (the subscript indicates that we are taking the first coordinate).
In the next section we prove that the constant D is strictly positive, under the conditions
appropriate for Theorem 2.1.

6. Strict positivity of the diffusion constant

This section is devoted to proving the following.

Lemma 6.1. Let prw > 0. There exists a strictly positive constant A = A(prw) such that
D > 0 whenever either 1 − prw − p+ < A or prw > pc.

This we prove by the general route described for Theorem 5.7 in [11, p. 828 et seq.],
and we begin with a sketch of the argument. Fix ω ∈ Ω. We shall approximate the
process Xω by another process (denoted XN,ω) which is constructed in a certain way on the

periodic configuration ωN (see Section 4). It will suffice to study the first coordinate XN,ω
1

of this process, and we shall study the asymptotic variance of XN,ω
1 by expressing it as an

additive functional of a certain ‘driving process’ ξN,ω. The latter process will be essentially a
random walk on the set WN (ω) of rw points in the box BN endowed with periodic boundary
conditions. This random walk will be reversible with respect to the uniform distribution on
WN .

Taking the above paragraph on trust for the moment, we may see that the asymptotics
of XN,ω

1 will be given in terms of the number of times that ξN,ω heads either eastwards from
the right (hyper)edge of BN , or westwards from the left (hyper)edge of BN (recall that we
are regarding BN as a torus).

There are complications in pursuing this strategy. First, we need to ‘recognise’ the effect

on XN,ω of transitions of ξN,ω. In order to do this, we shall assume that ω ∈ ΩN ∩ Ω̃, where
ΩN is defined above (4.1) with ρ chosen to satisfy

(6.1) 0 < ρ <
1

d+ 3
.

The assumed absence of long light paths will be relevant to the relationship of XN,ω to ξN,ω.
Secondly, the process ξN,ω is not generally ergodic, since its state space WN generally

contains a multiplicity of closed sets. These sets are exactly the equivalence classes of the
relation ↔N . Each such set D gives rise to a separate diffusion constant DN,ω,D. We shall
use Theorem 4.1 to show that DN,ω,D = 0 if D does not straddle BN , and that there is
(with probability tending to 1 as N → ∞) a unique D which straddles BN .

Let N denote this unique straddling set, when it exists. We shall (in Lemma 6.2) relate
DN,ω,N to the conductance of N viewed as an electrical network (as in Section 4). In order to
utilise the theory of electrical networks, we recall from Section 4 the identifications of certain
sets of rw points near (respectively) the left and right edges of BN . These identifications
will contribute to the definition of the process XN,ω.

Let DN,ω denote the asymptotic diffusion constant for the process XN,ω
1 , suitably nor-

malised. Using Fatou’s lemma together with the formulae for D and DN , we shall obtain
that

(6.2) D ≥ lim sup
N→∞

P
N (DN),
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where P
N denotes P conditioned on ΩN , i.e., P

N (·) = P(· | ΩN ).
We shall next express DN,ω in terms of DN,ω,N , and shall apply Theorem 4.1 in order to

obtain that

(6.3) P
N (DN ≥ c) → 1 as N → ∞

for some strictly positive constant c. It will follow by (6.2) that D > 0.

6.1 A Process on a Strip

Let ρ satisfy (6.1), and let ΩN be the set of all ω ∈ Ω such that ωN has no light path of
length exceeding Nρ. We have from Theorem 4.1(a) that P(ΩN) → 1 as N → ∞. Assume
for now that

(6.4) ω ∈ ΩN ∩ Ω̃.

We shall work with the set WN (ω) of rw points lying in BN , and we follow the notation
of Section 4. As in that section, for any equivalence class C which straddles BN , we define
its left edge l = lN,ω,C and right edge r = rN,ω,C appropriately. With M = C \ (l ∪ r), we
shall construct a Markov chain on the state space

(6.5) V = VN,ω,C = M∪ {r} ∪ {l},

and we shall explain how this Markov chain is related to the electrical network on V studied
in Section 4.

We define the symmetric function nN = nN,ω,C : V × V → R by

(6.6)
nN (l, r) = nN (r, l) = nω

N

(r, [l]),

nN (v,w) = nω
N

(v, [w]) if {v,w} 6= {r, l},

and the function QN = QN,ω,C : V × V → R by

(6.7) QN (v,w) =
1

2d|v| n
N (v,w).

(We recall some notation. First, [w] = {y ∈ Z
d : yi = wi mod 2N for 1 ≤ i ≤ d}, and

[l] = {y ∈ Z
d : y ∈ [w] for some w ∈ l}. Secondly, |v| = 1 if v is a singleton, and otherwise

|v| is the cardinality of the subset v ofBN .) Note that nN agrees with the function κN defined
in (4.5), except for the terms nN (r, l), nN (l, r). Let XN = XN,ω,C = (XN,ω,C(n) : n ≥ 0) be
the Markov chain with state space V + 2NZu1 (where u1 is a unit vector in the direction of
increasing first coordinate), and with transition probabilities given as follows. For i, j ∈ Z,
define qN = qN,ω,C by

(6.8)

qN (r + 2Niu1, l + 2Nju1) = δi,j−1Q
N (r, l),

qN (l + 2Niu1, r + 2Nju1) = δi,j+1Q
N (l, r),

qN (v + 2Niu1, w + 2Nju1) = δi,jQ
N (v,w), if {v,w} 6= {r, l},

where δi,j is the Kronecker delta. That is to say, XN is a random walk on the set V+2NZu1.
At each stage, the walker departs the current rw point in a random direction, and proceeds
to the next rw point reached along the subsequent light path. The process XN is defined
on the strip BN + 2NZu1.
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From the process XN we obtain a new process ξN = ξN,ω,C by projecting XN onto V .
That is,

(6.9) ξN (n) = v if XN (n) = v + 2Niu1 for some v ∈ V , i ∈ Z.

It may be seen that ξN is a Markov chain on V having transition probabilities QN given by
(6.7).

Let (IN (n) : n ≥ 0) = (IN,ω,C(n) : n ≥ 0) be defined by:

(6.10)
IN (0) = 0

IN (n) = XN
1 (n) −XN

1 (n− 1) if n ≥ 1,

where the subscript indicates that we are taking the first coordinate, and we adopt the
convention that

(r + 2Nku1)1 = (1 + 2k)N, (l + 2Nku1)1 = (−1 + 2k)N, for k ∈ Z.

We have therefore that

(6.11) XN
1 (n) =

n∑

m=1

IN (m) =

n∑

m=1

FN (ξN (n− 1), ξN (n)),

where FN = FN,ω,C is given by

(6.12) FN (v,w) = w1 − v1 + 2NGN (v,w) for v,w ∈ V ,

and

GN (v,w) =





1 if (v,w) = (r, l),

−1 if (v,w) = (l, r),

0 otherwise.

Note that FN is anti-symmetric and bounded (for any given N).
We define a probability measure αN = αN,ω,C on V by

(6.13) αN (u) =
|v|
|C| , v ∈ V .

Then αN is a reversible ergodic invariant measure for the chain ξN . Since ω ∈ ΩN (cf. (6.5)),
the process XN

1 can be realised via (6.11) as an additive process in the sense of Theorem
5.1, with ξN and αN playing the roles of the driving process ξ and invariant measure ν
respectively, and with F replaced by FN .

We now apply Theorem 5.1 in this situation. The required square-integrability condition
is satisfied, since FN is bounded. We deduce an invariance principle for the process XN

1 ,
suitably re-scaled, having some diffusion constant DN = DN,ω,C.

We write

(6.14) φN (x) = φN,ω,C(x) = EN,x
(
IN (1)

)

where EN,x = EN,x,ω,C is the law of the chain ξN , with ξN (0) = x ∈ C. By (5.6), the
diffusion constant DN is given by

(6.15) DN =
〈
IN (1)2

〉
αN − 2

〈
φN (1 −QN )−1φN

〉
αN .
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Using (5.7), we remark that DN is also given as the a.s. limit of the sample variance,

DN = lim
n→∞

1

n

(
n∑

k=1

FN
(
ξN (k − 1), ξN (k)

)
)2

a.s.

Noting that

n∑

k=1

FN
(
ξN (k − 1), ξN (k)

)
= ξN1 (n) − ξN1 (0) + 2N

n∑

k=1

GN
(
ξN (k − 1), ξN (k)

)

and |ξN1 (n) − ξN1 (0)| ≤ 2N , we deduce that

(6.16) DN = 4N2 lim
n→∞

1

n

(
n∑

k=1

GN
(
ξN (k − 1), ξN (k)

)
)2

a.s.

6.2 Computing the Diffusion Constants

It was proved in Theorem 4.1 that, with probability tending to 1 as N → ∞, there exists a
unique equivalence class which straddles BN . It is clear from (6.16) that, on ΩN , we have
that DN = DN,ω,D = 0 for equivalence classes D which do not straddle BN .

Lemma 6.2. Assume that ω satisfies (6.4) and that C straddles BN . Then

(6.17) DN =
4N2σN

d|C| [1 + σN/nN(r, l)]
,

where σN = σN,ω,C is the electrical conductance introduced below (4.5).

Proof. Assume that C straddles BN . With

γN (x) = EN,x
[
GN

(
ξN (0), ξN (1)

)]
,

we have that

(6.18) γN (x) =





0 if x ∈ M,

QN (r, l) if x = r,

−QN (l, r) if x = l.

By (6.15)–(6.16) and Theorem 5.1,

(6.19) (2N)−2DN =
〈
GN

(
ξN (0), ξN (1)

)2〉
αN

− 2
〈
γN (1 −QN )−1γN

〉
αN .

The first term here is given by

(6.20)
〈
GN

(
ξN (0), ξN(1)

)2〉
αN

=
nN (r, l)

d|C| .

In order to study the last term in (6.19), we look for solutions χ to the equation

(6.21) (1 −QN )χ = γN .
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In particular,
[
(1 −QN )χ

]
(v) = 0 for v ∈ M; that is, χ is harmonic on M.

It turns out that such χ may be represented as the potential function of a certain electrical
network, namely the network introduced in Section 4. As we did there, we construct a

network having node set V by placing exactly κN (v,w) = nω
N

(v, [w]) unit resistors in
parallel between each pair v,w ∈ V satisfying {v,w} 6= {r, l}; we allow the case v = w. No
direct connection is made between r and l.

Let V be the potential function induced in this network when a unit potential difference
between r and l is established. That is,

[
(1−QN)V

]
(v) = 0 for all v ∈ M, and we shall take

V (r) = 1, V (l) = 0. We write σN = σN,ω,C for the conductance of the network between r
and l.

It follows from (6.18), (6.21), and the theory of electrical networks, that any solution χ
of (6.21) may be expressed in the form χ = aV + b for some constants a, b whose values are
to be determined. We prove next that b is arbitrary, and that

(6.22) a =
nN (r, l)

nN (r, l) + σN
.

It suffices to prove that aV + b satisfies (6.21) when (6.22) holds. Certainly aV + b satisfies
(6.21) at all nodes v ∈ M, since V is harmonic on M and b is a constant.

We have that

[
(1 −QN )V

]
(r) =

∑

v∈V

(
δr,v −QN (r, v)

)
V (v)(6.23)

= QN (r, l) +
∑

v∈M

QN (r, v)(1 − V (v)),

and

(6.24)
[
(1 −QN )V

]
(l) = −QN (l, r) −

∑

v∈M

QN (l, v)V (v).

The net current in the network at r equals the net current at l, and both are equal to
the effective conductance σN of the network. The current flowing along a light path is equal
to the potential difference between its endpoints. Therefore the net current at r equals the
sum over all paths ending in r of the potential differences between their endpoints, which
equals

(6.25)
∑

v∈M

nN (r, v)(1 − V (v)) = 2d|r|
∑

v∈M

QN (r, v)(1 − V (v)),

and similarly the net current at l equals

∑

v∈M

nN (v, l)V (v) = 2d|l|
∑

v∈M

QN (l, v)V (v).

Therefore

|r|
∑

v∈M

QN (r, v)(1 − V (v)) = |l|
∑

v∈M

QN (l, v)V (v) =
σN

2d
.

Since

|r|QN (r, l) = |l|QN (l, r) =
nN (r, l)

2d
,
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we have by (6.23)–(6.24) that

|r|
[
(1 −QN )V

]
(r) = −|l|

[
(1 −QN )V

]
(l) =

1

2d

[
nN (r, l) + σN

]
.

Hence aV + b satisfies (6.21) if and only if a is given by (6.22). We choose a accordingly.
Returning to the last term of (6.19), we have now that

2
〈
γN (1 −QN )−1γN

〉
αN = 2

〈
γN (aV + b)

〉
αN =

anN (r, l)

d|C| .

Combining this with (6.19) and (6.20), we deduce that

(2N)−2DN = (1 − a)
nN (r, l)

d|C|

whence (6.17) follows from (6.22). �

6.3 Comparison of D with the DN,ω,C

Let P
N be the measure P conditioned on the event ΩN (see the discussion above (6.4)), and

assume that ω ∈ ΩN . If C is an equivalence class of rw points of BN under the relation ↔N

(introduced above (4.3)), let VN,ω,C be as in (6.5) and αN,ω,C as in (6.13). Let

VN,ω =
⋃

C

VN,ω,C

where the union is over all such equivalence classes C, and define a measure αN,ω on VN,ω
by

αN,ω(x) =
|C|

|WN (ω)| α
N,ω,C(x) whenever x ∈ VN,ω,C.

We define the function φN,ω on VN,ω by

φN,ω(x) = φN,ω,C(x) whenever x ∈ VN,ω,C

where φN,ω,C is given in (6.14). Let (ξN,ω,C(n) : n ≥ 0) be as in (6.9), and define the process
(ξN,ω(n) : n ≥ 0) on VN,ω by letting ξN,ω(n) = ξN,ω,C(n) if ξN,ω(0) ∈ VN,ω,C. Next, let

iN,ω(1) = FN,ω,C(x, ξN,ω(1)) whenever ξN,ω(0) = x ∈ VN,ω,C,

where FN,ω,C is as in (6.12). Finally, for x ∈ VN,ω, letQN,ω(x, ·) be the transition probability
distribution on VN,ω defined by

QN,ω(x, dy) = QN,ω,C(x, dy) whenever x ∈ VN,ω,C,

where QN,ω,C is given by (6.7). Finally, let

(6.26) DN,ω =
〈
iN,ω(1)2

〉
αN,ω − 2

〈
φN,ω(1 −QN,ω)−1φN,ω

〉
αN,ω .

The next lemma is closely related to Proposition 5.13 of [11].
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Lemma 6.3. Let prw > 0, let Ψ = P
∗(Ω∗∗), and let D∗ be the analogue of D with P

∗∗

replaced by P
∗ in (5.10). Let A = A(prw) > 0 be given as in Theorem 3.3, and suppose that

either 1 − prw − p+ < A or prw > pc.
(i) We have that Ψ > 0 and D∗ = ΨD.
(ii) For a fixed integer k ≥ 0,

(6.27) lim
N→∞

P
N
(〈
φN,ω(QN,ω)kφN,ω

〉
αN,ω

)
=
〈
φQkφ

〉
P∗ ,

where φ = Φ1 as in (5.10).
(iii) We have that D∗ ≥ lim supN→∞ P

N (DN,ω).

Proof. The strict positivity of Ψ is given in Theorem 3.3. The remainder of part (i) follows
as for the proof of (4.26a) of [11, p. 825]. (See the proof of (4.37) on page 827 of [11].)
The argument given there uses the fact, implied by Theorem 3.3, that the radius of a finite
equivalence class containing the origin has a finite second moment under P

∗.
Next we prove (ii). Fix k ≥ 0. We define

(6.28) JN = {x ∈ BN : ‖x‖ ≤ N − (k + 2)Nρ}.

Then, for some constant C depending on k, |BN \ JN | ≤ CNd−1+ρ, since ρ < 1. It follows
that

(6.29)
〈
φQkφ

〉
P∗ = lim

N→∞

{ |JN |
|BN |

〈
φQkφ

〉
P∗

}
.

We turn now to the left side of (6.27). By the definition of αN,ω,

(6.30)
〈
φN,ω

(
QN,ω

)k
φN,ω

〉

αN,ω
=

1

|WN (ω)|
∑

x∈VN,ω

|x|φN,ω(x)
[(
QN,ω

)k
φN,ω

]
(x).

We split the last sum into two parts depending on whether or not x ∈ BN \JN . Since φN,ω

is uniformly bounded by Nρ under P
N , the first sum (over x ∈ BN \ JN and composite x)

is bounded above by

(6.31) N2ρ |W(ω) ∩ (BN \ JN )|
|WN (ω)| ≤ C1N

2ρ |BN \ JN |
N (1−ρ)d

≤ C2N
ρ(d+3)−1

P
N -a.s.,

for appropriate constants Ci (we have used the fact that, P
N -a.s., every sphere of radius Nρ

contains some rw point). This tends to 0 as N → ∞, since ρ < (d+ 3)−1; cf. (6.1).
Therefore,

(6.32) P
N
(〈
φN,ω(QN,ω)kφN,ω

〉
αN,ω

)

= o(1) + prw

∑

x∈JN

P
N
x

(
1

|WN (ω)|φ
N,ω(x)

[
(QN,ω)kφN,ω

]
(x)

)

where P
N
x denotes P

N conditioned on x being a rw point.
LetXN,ω be the Markov chain having state space VN,ω+2NZu1 and transition probability

measure qN,ω(x, ·) = qN,ω,C(x, ·) whenever x ∈ VN,ω,C+2NZu1 (see (6.8)). For given ω ∈ ΩN

and x ∈ WN (ω), the processes Xω and XN,ω may be coupled in such a way that

Xω(0) = XN,ω(0) = x, Xω(n) = XN,ω(n) for n < θN,x,ω,



RANDOM WALKS IN RANDOM LABYRINTHS 29

where
θN,x,ω = min{m ≥ 0 : Xω(m) ∈ ∂WN (ω)}

is the first hitting time by Xω of the set

∂WN (ω) =
{
x ∈ WN : ∃y /∈ BN with x↔ωN

y
}
;

note that θN,x,ω ≥ k + 1 for x ∈ JN , by (6.28). Hence, using (6.32),

P
N
(〈
φN,ω(QN,ω)kφN,ω

〉
αN,ω

)
= o(1) + prw

∑

x∈JN

〈
1

|WN (ω)|ψx(ω)

〉

PN
x

where ψx(ω) = φ(τ−xω)
[
Qkφ

]
(τ−xω). Replacing P

N
x by Px (i.e., P conditioned on x being a

rw point), we have that

P
N
( 〈
φN,ω(QN,ω)kφN,ω

〉
αN,ω

)
(6.33)

= o(1) +
1

|BN |P∗(ΩN )

∑

x∈JN

〈ψx〉Px
+RN (1) −RN (2)

= o(1) +
|JN |

|BN |P∗(ΩN )
〈ψ0〉P∗ +RN (1) −RN (2)

where

RN (1) =
1

|BN |P∗(ΩN )

∑

x∈JN

〈(
prw|BN |
|WN (ω)| − 1

)
ψx(ω)

〉

Px

RN (2) =
1

|BN |P∗(ΩN )

∑

x∈JN

〈
prw|BN |
|WN (ω)|(1 − 1{ΩN})ψx(ω)

〉

Px

.

Now P
∗(ΩN ) → 1 as N → ∞, whence, by (6.29),

(6.34)
|JN |

|BN |P∗(ΩN )
〈ψ0〉P∗ → 〈φQkφ〉P∗ as N → ∞.

Also, by the Cauchy–Schwarz inequality and properties of the binomial distribution,

|RN (1)| ≤ 1

|BN |P∗(ΩN )

∑

x∈JN

{
Px

([
prw|BN |
|WN | − 1

]2)
Px(ψ

2
x)

}1/2

→ 0

as N → ∞. (Remember that Px(ψ
2
x) = P0(ψ

2
0) <∞ by Theorem 3.2.) Secondly,

|RN (2)| ≤ 1

|BN |P∗(ΩN )

∑

x∈JN

{
Px

(
ΩN
)

Px

([
prw|BN |
|WN | ψx

]2)}1/2

.

Now

Px

(
ΩN
)
≤

P

(
ΩN
)

prw
→ 0 as N → ∞.
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We apply the Cauchy–Schwarz inequality once again, and use properties of the binomial
distribution together with the fact that Px(ψ

4
x) = P0(ψ

4
0) < ∞, obtaining thereby that

|RN (2)| → 0 as N → ∞. The required equation (6.27) follows from (6.29) and (6.33)–
(6.34).

Finally, we prove (iii). There is an argument using Fatou’s lemma which we seek to apply.
Unfortunately a minor difficulty arises, namely that

〈
φQkφ

〉
P∗ can be negative as well as

positive; certainly
〈
φQkφ

〉
P∗ ≥ 0 for even values of k, since P

∗ is stationary and reversible for
ξ, but the reverse inequality can hold when k is odd. In order to obviate this annoying detail,
we move from discrete to continuous time. Let M = (M(t) : t ≥ 0) be a Poisson process
having intensity 1 and right-continuous sample paths, independent of all random variables
discussed so far in this paper. For any sequence Z = (Z(n) : n ≥ 0), of random variables we
define the corresponding continuous-time process (Zt : t ≥ 0), by Zt = Z(M(t)).

Before continuing, we note one elementary property of the ‘Poissonised’ process.

Lemma 6.4. Let Z be a random sequence satisfying n−1E(Z(n)2) → σ2 as n → ∞. If M
is independent of the Z(n), then t−1E(Z2

t ) → σ2 as t→ ∞.

Proof. This follows in an elementary way from the fact that

E(Z2
t ) =

∞∑

n=0

E(Z(n)2)P
(
M(t) = n

)
. �

Central limit theorems are valid for Poissonised versions of the processes considered above.
As shown in [11, 24], there is a version of Theorem 5.1 for continuous time. We do not present
the full details of this, since they are very close to those presented already. However, we
shall make use of the following consequences.

Consider the two continuous-time processes Xω
1,t and XN,ω

1,t ; these are the first-coordinate

processes of Xω
t and XN,ω

t . These processes have zero means, which is to say that

P
∗
(
Pω0 (Xω

1,t)
)

=
〈
XN,ω

1,t

〉
αN,ω

= 0,

and their second moments satisfy

1

t
P
∗
(
Pω0
[
(Xω

1,t)
2
])

→ ∆∗,(6.35)

1

t

〈
(XN,ω

1,t )2
〉
αN,ω

→ ∆N,ω,(6.36)

as t→ ∞, for some constant ∆∗ and random variable ∆N,ω. Furthermore, by [11, Thm 2.2],
∆∗ and ∆N,ω may be represented as

∆∗ =
〈
i(1)2

〉
P∗ + 2

〈
φ,L−1φ

〉
P∗(6.37)

=
〈
i(1)2

〉
P∗ − 2

∫ ∞

0

〈φ,Qtφ〉P∗ dt,

∆N,ω =
〈
IN (1)2

〉
αN,ω + 2

〈
φN,ω, (LN )−1φN,ω

〉
αN,ω(6.38)

=
〈
IN (1)2

〉
αN,ω − 2

∫ ∞

0

〈
φN,ω,QNt φ

N,ω
〉
αN,ω dt,

where L and Qt (resp. LN = LN,ω and QNt = QN,ωt ) are the generator and transition

semigroup of Xω
t (resp. XN,ω

t ); cf. (5.10) and (6.15).
Parts (a, c) of the following lemma imply Lemma 6.3(iii).
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Lemma 6.5. Let prw > 0, and let A = A(prw) > 0 be given as in Lemma 6.3. Suppose that
either 1 − prw − p+ < A or prw > pc.
(a) We have that ∆∗ = D∗ and ∆N,ω = DN,ω.
(b) For a fixed time t ≥ 0,

(6.39)
〈
φN,ω,QNt φ

N,ω
〉
αN,ω ≥ 0, lim

N→∞
P
N
(〈
φN,ω,QNt φ

N,ω
〉
αN,ω

)
= 〈φ,Qtφ〉P∗ .

(c) We have that ∆∗ ≥ lim supN→∞ P
N (∆N,ω).

Proof. Part (a) is a consequence of Lemma 6.4. Turning to (b), we have by the fact that

XN,ω
t is reversible with respect to αN,ω that

〈
φN,ω,QN2tφ

N,ω
〉
αN,ω =

〈
QNt φ

N,ω,QNt φ
N,ω
〉
αN,ω ≥ 0

for any t ≥ 0. The second part of (6.39) follows thus from (6.27). Note first that, under the
conditions of the lemma, there exists a constant C such that

(6.40) P
N
(〈

(φN,ω)2
〉
αN,ω

)
≤ C,

〈
φ2
〉

P∗ ≤ C.

[Such inequalities may be obtained from (4.6) and Theorem 3.2 respectively.] Also,

〈
φN,ω,QNt φ

N,ω
〉
αN,ω =

∞∑

k=0

〈
φN,ω, (QN,ω)kφN,ω

〉
αN,ω P

(
M(t) = k

)

〈φ,Qtφ〉P∗ =
∞∑

k=0

〈
φ,Qkφ

〉
P∗ P

(
M(t) = k

)

whence, for K ≥ 1,
∣∣∣PN

( 〈
φN,ω,QNt φ

N,ω
〉
αN,ω

)
− 〈φ,Qtφ〉P∗

∣∣∣

≤
K∑

k=0

∣∣∣
〈
φN,ω, (QN,ω)kφN,ω

〉
αN,ω −

〈
φ,Qkφ

〉
P∗

∣∣∣P
(
M(t) = k

)

+
{

P
N
(〈

(φN,ω)2
〉
αN,ω

)
+
〈
φ2
〉

P∗

}
P
(
M(t) > K

)
.

Therefore, by (6.27),

lim sup
N→∞

∣∣∣PN
(〈
φN,ω,QNt φ

N,ω
〉
αN,ω

)
− 〈φ,Qtφ〉P∗

∣∣∣ ≤ 2CP
(
M(t) > K

)
,

which tends to 0 as K → ∞. This proves part (b).
Finally we prove (c). By (6.39) and Fatou’s lemma,

〈
φ,L−1φ

〉
P∗ = −

∫ ∞

0

〈φ,Qtφ〉P∗ dt(6.41)

= −
∫ ∞

0

{
lim inf
N→∞

P
N
(〈
φN,ω,QNt φ

N,ω
〉
αN,ω

)}
dt

≥ − lim inf
N→∞

∫ ∞

0

P
N
(〈
φN,ω,QNt φ

N,ω
〉
αN,ω

)
dt

= lim sup
N→∞

P
N
(〈
φN,ω, (LN )−1φN,ω

〉
αN,ω

)
,
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where we have used Fubini’s theorem at the last step. Moreover,
〈
IN (1)2

〉
αN,ω =

1

|WN (ω)|
∑

x∈VN,ω

|x|EN,x
[(
XN,ω

1 (1) −XN,ω
1 (0)

)2]
,

where EN,x is the law of the random walk on VN,ω starting at the (possibly composite) state
x; cf. (6.15). Arguing as in the proof of (6.27), we obtain that

lim
N→∞

P
N
(〈
IN (1)2

〉
αN,ω

)
= lim
N→∞

{
1

|BN |
∑

x∈JN

〈
Eωx

[(
Xω

1 (1)−Xω
1 (0)

)2]〉
Px

}(6.42)

=
〈
Eω0

[(
Xω

1 (1) −Xω
1 (0)

)2]〉
P∗

=
〈
i(1)2

〉
P∗ ,

where JN is given by (6.28) with k = 2, say. We obtain part (c) by combining (6.37)–(6.38)
and (6.41)–(6.42). �

6.4 Conclusion

Finally, we deduce that D > 0, as claimed in Lemma 6.1. Let prw > 0 and let A be chosen
as in Theorem 4.1. We note from (3.6) that this value of A may be taken from Theorem 3.3.
Assume that either 1− prw − p+ < A or prw > pc. When statements (a)–(e) of Theorem 4.1
hold, we have by Lemma 6.2 (together with the remark preceding it) and (6.26) that

DN,ω ≥
(

4N2(c3N
d−2)

d|N |[1 + c3Nd−2(c2Nd−1)−1]

) |N |
(2N + 1)d

≥ c4 > 0,

where N is the largest equivalence class of WN under ↔N . Therefore P(DN,ω > c4) → 1 as
N → ∞, whence

lim inf
N→∞

P
N (DN,ω) ≥ c4 > 0,

implying by Lemma 6.3(i, iii) that D = θD∗ > 0.

7. Proof of Theorem 2.2

We shall deduce Theorem 2.2 from Theorem 2.1 with the aid of the ergodic theorem. In
order to achieve this, we shall adapt various standard arguments used to prove functional
central limit theorems. These arguments may be found in [4, 12, 15].

Let ω ∈ Ω∗∗ and u ∈ I± = {±ui : 1 = 1, 2, . . . , d}. We define l(ω, u) to be the number of
edges in the light path starting at the origin 0, heading off in the direction u, and ending at
the first rw point encountered subsequently. Then

(7.1) m = P
∗∗

(
1

2d

∑

u∈I±

l(ω, u)

)
= P

∗∗(l(ω, u1)).

Cf. (2.5). Let W = (Wt : t ≥ 0) be a standard Brownian motion in R
d, let D be as in

Theorem 2.1, and write Vt =
√
DWt/m. We shall prove that Y ε,· converges P

∗∗-dp to the
process V .

We begin by stating some general facts. Let (S, ρ) be a complete separable metric space,
and B(S) the set of its Borel subsets. Let P(S) be the collection of probability measures on
(S,B(S)), and topologise P(S) by the topology of weak convergence. (See [4], pp. 236–239.)
Let B(P(S)) be the corresponding Borel subsets of P(S). Let (Ω,F ,P∗∗) be a probability
space and suppose that, for ε > 0, the mapping ω 7→ νεω is a measurable function from
(Ω,F) to (P(S),B(P(S))).
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Lemma 7.1. Let ν ∈ P(S). The following statements are equivalent.
(a)

∫
fdνεω →

∫
fdν in P

∗∗-probability as ε → 0, for all bounded continuous functions f
on S.

(b)
∫
fdνεω →

∫
fdν in P

∗∗-probability as ε → 0, for all bounded uniformly continuous
functions f on S.

(c) π(νεω, ν) → 0 in P
∗∗-probability as ε→ 0, where π is the Prohorov metric on P(S).

Proof. Suppose T is any topological space, ν ∈ T , and (for ε > 0) νε is a T -valued random
variable on the probability space (Ω,F ,P∗∗). Let Nν be a sub-basis for the topology at ν.
Then νε → ν in P

∗∗-probability if and only if

(7.2) P
∗∗(νε ∈ N) → 1 as ε→ 0, for every N ∈ Nν .

By results in [4] (pp. 236–239, and Theorem 1.2 on p. 8), (a)–(c) may each be rephrased in
the form (7.2) for a suitable choice of sub-basis Nν for the topology of weak convergence on
T = P(S) at ν. �

If (a)–(c) hold, we say that νεω converges weakly in P
∗∗-probability to ν, written νεω → ν

P
∗∗-wp.
Now suppose that (Ω′,F ′,P′) is another probability space and that, for ε > 0, the mapping

(ω,ω′) 7→ Xε
ω,ω′ is a measurable function from the product space (Ω × Ω′,F × F ′) to

(S,B(S)). Let ν ∈ P(S). We shall say that Xε ‘converges in distribution in P
∗∗-probability’

(abbreviated to ‘P∗∗-dp’) to ν (as ε → 0) if P
′
(
{ω′ : Xε

ω,ω′ ∈ · }
)
→ ν(·) P

∗∗-wp. We note

that it is a consequence of Fubini’s theorem that the mapping ω 7→ P
′
(
Xε
ω, · ∈ ·

)
is a

measurable function from (Ω,F) to (P(S),B(P(S))).
The next lemma follows from the characterisation of weak convergence contained in

Lemma 7.1(b) (cf. Corollary 3.2 of [15], p. 110).

Lemma 7.2. Let ν ∈ P(S). Suppose that, for ε > 0, both Xε
ω,ω′ and Y εω,ω′ are measurable

maps from (Ω × Ω′,F × F ′) to (S,B(S)), and that

Xε → ν P
∗∗-dp as ε→ 0,

P
′
(
ρ(Xε

ω, · , Y
ε
ω, · ) > η

)
→ 0 in P

∗∗-probability as ε→ 0, for all η > 0.

Then Y ε → ν P
∗∗-dp as ε→ 0.

We now return to the particular situation discussed in this paper. We claim first that
since Xε,ω converges P

∗∗-dp to
√
DW (as ε→ 0), the process (Xε,ω(t/m) : t ≥ 0) converges

in P
∗∗-probability to (

√
DW (t/m) : t ≥ 0). We next indicate why this holds. Let f

be a bounded continuous real-valued function on the Skorohod space ∆ = D([0,∞),Rd).
The function on ∆ defined by (X(t) : t ≥ 0) 7→ f ((X(t/m) : t ≥ 0)) is also bounded and
continuous.

Note also that if T > 0 and X,Y ∈ ∆, then

ρ(X,Y ) < e−T + sup
0≤t≤T

|X(t) − Y (t)|,

where ρ is the Skorohod metric on ∆ (see [15], p. 117). Therefore, by Lemma 7.2, it suffices
to show that, for fixed η > 0 and T > 0,

(7.3) Pω0

(
sup

0≤t≤T
|Y ε,ω(t) −Xε,ω(t/m)| > η

)
→ 0 in P

∗∗-probability, as ε→ 0.
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To this end, let θ0, θ1, . . . be the successive times n at which Y ω(n) ∈ W(ω). We shall
couple the processes Xω and Y ω together by setting Xω(k) = Y ω(θk). For t ≥ 0, let N(t)
be the number of renewals of the sequence θ0, θ1, . . . up to time t, i.e., N(t) = sup{k ≥
0 : θk ≤ t}; we define a process X̃ω by X̃ω(n) = Xω(N(n)). For ε > 0 and t ≥ 0, define

X̃ε,ω(t) = εX̃
(⌊
ε−2t

⌋)
. In order to prove (7.3), it suffices to show that, for η, T > 0,

(7.4) Pω0

(
sup

0≤t≤T
|Y ε,ω(t) − X̃ε,ω(t)| > η

)
→ 0 in P

∗∗-probability as ε→ 0

and

(7.5) Pω0

(
sup

0≤t≤T
|X̃ε,ω(t) −Xε,ω(t/m)| > η

)
→ 0 in P

∗∗-probability as ε→ 0.

Now,

sup
0≤t≤T

∣∣Y ε,ω(t) − X̃ε,ω(t)
∣∣ ≤ max

0≤s≤ε−2T

{
ε|Y ω(s) − X̃ω(s)|

}

≤ ε max
k:θk+1≤ε−2T

max
θk≤s≤θk+1

|Y ω(s) − Y ω(θk)|

≤ ε max
k:θk+1≤ε−2T

∣∣∣longest light path from Xω(k) to Xω(k + 1)
∣∣∣

≤ εΛ,

where Λ is the length of the longest light path intersecting the box [−ε−2T, ε−2T ]d. Therefore

Pω0

(
sup0≤t≤T |Y ε,ω(t) − X̃ε,ω(t)| > η

)
= 0 unless Λ > η/ε. It follows that

P
∗∗

[
Pω0

(
sup

0≤t≤T
|Y ε,ω(t) − X̃ε,ω(t)| > η

)
> δ

]
≤ P

∗∗
(
Λ >

η

ε

)
≤
(
2Tε−2

)d
e−ξη/ε,

by Theorem 3.1, where ξ > 0 is a constant. Equation (7.4) follows.
In proving (7.5), we use the following result, which follows by: standard manipulations

using characterisation Lemma 7.1(c), the Arzelà–Ascoli characterisation of compact subsets
of C([0,∞),Rd), and the definition ([15], p. 117) of the Skorohod metric ρ on the space
∆ = D([0,∞),Rd). We omit the details of the proof.

Lemma 7.3. For given T, δ, η > 0, there exists γ > 0 such that

P
∗∗

[
Pω0

(
sup

0≤s,t≤T,|s−t|<γ
|Xε,ω(t) −Xε,ω(s)| > η

)
> δ

]
→ 0 as ε→ 0.

If 0 < γ < T , we have that

sup
0≤t≤T

|X̃ε,ω(t) −Xε,ω(t/m)|

= max

{
sup

0≤t≤γ
|X̃ε,ω(t) −Xε,ω(t/m)|, sup

γ≤t≤T
|X̃ε,ω(t) −Xε,ω(t/m)|

}
.

Note that N(n) ≤ n, so that ε2N
(⌊
ε−2t

⌋)
≤ t for t ≥ 0. Since m ≥ 1, X̃ε,ω(t) =

Xε,ω
(
ε2N

(⌊
ε−2t

⌋))
, Xε,ω(0) = 0, we have that

sup
0≤t≤γ

|X̃ε,ω(t) −Xε,ω(t/m)| ≤ sup
0≤t≤γ

|Xε,ω(t)|+ sup
0≤t≤γ

|Xε,ω(t/m)|

≤ 2 sup
0≤t≤γ

|Xε,ω(t)| ≤ 2 sup
0≤s,t≤T
|s−t|≤γ

|Xε,ω(s) −Xε,ω(t)|.



RANDOM WALKS IN RANDOM LABYRINTHS 35

If |ε2N
(⌊
ε−2t

⌋)
− t/m| ≤ γ for γ ≤ t ≤ T , then

sup
γ≤t≤T

|X̃ε,ω(t) −Xε,ω(t/m)| = sup
γ≤t≤T

|Xε,ω(ε2N
(
⌊ε−2t⌋

)
) −Xε,ω(t/m)|

≤ sup
0≤s,t≤T
|s−t|≤γ

|Xε,ω(s) −Xε,ω(t)|.

Therefore,

Pω0

(
sup

0≤t≤T
|X̃ε,ω(t) −Xε,ω(t/m)| > η

)
≤ Pω0


 sup

0≤s,t≤T
|s−t|≤γ

|Xε,ω(s) −Xε,ω(t)| > 1
2η




+ Pω0

(
sup

γ≤t≤T

∣∣∣mε2N(⌊ε−2t⌋) − t
∣∣∣ > mγ

)
.

By Lemma 7.3, it suffices to show that, for γ, η > 0 and T > γ,

Pω0

(
sup

γ≤t≤T

∣∣∣mε2N
(⌊
ε−2t

⌋)
− t
∣∣∣ > η

)
→ 0 in P

∗∗-probability as ε→ 0.

This follows if we can show that, for η > 0,

Pω0

(
sup
s≥S0

∣∣∣∣
mN (⌊s⌋)

s
− 1

∣∣∣∣ > η

)
→ 0 in P

∗∗-probability as S0 → ∞.

Using standard arguments from renewal theory, it suffices to prove that, for δ > 0,

(7.6) Pω0

(
sup
k≥K0

∣∣∣∣
θk
k

−m

∣∣∣∣ > δ

)
→ 0 in P

∗∗-probability as K0 → ∞.

It remains to establish (7.6). Let

fK = sup
k≥K

∣∣∣∣
θk
k

−m

∣∣∣∣ .

Since a.s. convergence implies convergence in probability, it suffices to show that, for P
∗∗-a.e.

ω, we have that fK → 0 Pω0 -a.s.; the rest of the proof is devoted to proving this fact.
Suppose ξ0 ∈ Ω∗∗ = {ω ∈ Ω : 0 ∈ W(ω), |C0(ω)| = ∞} is distributed according to P

∗∗,
and suppose that η0, η1, . . . is a sequence of random variables independent of ξ0 and of each
other, each of which is uniformly distributed on the set I± = {±ui : i = 1, 2, . . . , d}. For
n ≥ 0, let ξn+1 = τ−xξn where x ∈ Z

d is the first rw point encountered when proceeding
along the light path starting at 0 in the direction ηn, within the environment ξn. [The shift
τ−x was defined above Lemma 5.2.]

Let ζn = (ξn, ηn). Then (ζn : n ≥ 0) is a stationary Markov chain on ℵ∗∗ = Ω∗∗ × I±

having invariant measure P
∗∗ × ν, where ν is the uniform measure on I±. Let Ã ⊆ ℵ∗∗ be

invariant under the action of the chain (ζn). It may be shown that Ã has the form A× I±

for some A (⊆ Ω∗∗) which is invariant under the action of the chain (ξn). It follows from the
fact that the chain (ξn) is ergodic that (ζn) is an ergodic chain also. Following the argument
of [12] (Thm 1.1, and the preceding remarks on pp. 459–460) we deduce that (ζn) is an
ergodic stationary sequence.
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Let λn = l(ζn) where l : ℵ∗∗ → N was defined at the beginning of this section. Since (ζn)
is an ergodic stationary sequence, the same is true of (λn). Therefore,

1

n
θn =

1

n

n∑

k=0

λk → m a.s.

by (7.1) and the ergodic theorem. Using Fubini’s theorem, the ‘a.s. a.s.’ version of (7.6)
follows.
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