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ABSTRACT
Several results are presented for site percolation on quasi-transitive, planar graphs 𝐺 with one end, when properly embedded
in either the Euclidean or hyperbolic plane. If (𝐺1, 𝐺2) is a matching pair derived from some quasi-transitive mosaic 𝑀, then
𝑝u(𝐺1) + 𝑝c(𝐺2) = 1, where 𝑝c is the critical probability for the existence of an infinite cluster, and 𝑝u is the critical value for the
existence of a unique such cluster. This fulfils and extends to the hyperbolic plane an observation of Sykes and Essam (1964), and
it extends to quasi-transitive site models a theorem of Benjamini and Schramm (Thm. 3.8, Journal of the American Mathematical
Society 14 (2001): 487–507) for transitive bond percolation. It follows that𝑝u(𝐺) + 𝑝c(𝐺∗) = 𝑝u(𝐺∗) + 𝑝c(𝐺) = 1, where𝐺∗ denotes
the matching graph of 𝐺. In particular, 𝑝u(𝐺) + 𝑝c(𝐺) ≥ 1 and hence, when 𝐺 is amenable we have 𝑝c(𝐺) = 𝑝u(𝐺) ≥

1
2

. When
combined with the main result of the companion paper by the same authors (Random Structures & Algorithms (2024)), we obtain
for transitive𝐺 that the strict inequality𝑝u(𝐺) + 𝑝c(𝐺) > 1 holds if and only if𝐺 is not a triangulation. A key technique is a method
for expressing a planar site percolation process on a matching pair in terms of a dependent bond process on the corresponding dual
pair of graphs. Amongst other matters, the results reported here answer positively two conjectures of Benjamini and Schramm
(Conj. 7, 8, Electronic Communications in Probability 1 (1996): 71–82) in the case of quasi-transitive graphs.
MSC2020 Classification: 60K35, 82B43

1 | Introduction and Results

1.1 | Percolation on Planar Graphs

Percolation was introduced in 1957 by Broadbent and Hammer-
sley [1] as a model for the spread of fluid through a random
medium. Percolation provides a natural mathematical setting for
such topics as the study of disordered materials, magnetization,
and the spread of disease. See [2–4] for recent accounts of the
theory. We consider here site percolation on a graph 𝐺 = (𝑉, 𝐸),
assumed to be infinite, locally finite, connected, and planar. The
current work has two linked objectives.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2024 The Author(s). Random Structures & Algorithms published by Wiley Periodicals LLC.

Our major objective is to study the relationship between the
percolation critical point 𝑝c and the critical point 𝑝u marking
the existence of a unique infinite cluster. More specifically, we
establish the formula 𝑝site

u (𝐺1) + 𝑝
site
c (𝐺2) = 1 for a matching pair

(𝐺1, 𝐺2) of graphs arising from a quasi-transitive mosaic, appro-
priately embedded in either the Euclidean or hyperbolic plane.
See Section 1.2.

Setting (𝐺1, 𝐺2) = (𝐺, 𝐺∗) above, with 𝐺∗ the matching graph of
𝐺, we obtain

𝑝site
u (𝐺) + 𝑝site

c (𝐺∗) = 𝑝
site
u (𝐺∗) + 𝑝

site
c (𝐺) = 1.
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It follows that 𝑝site
u (𝐺) + 𝑝site

c (𝐺) > 1 if and only if the strict
inequality 𝑝site

c (𝐺∗) < 𝑝
site
c (𝐺) holds. Necessary and sufficient

conditions for the last inequality are established in [5] (for tran-
sitive graphs) and [6] (for quasi-transitive graphs). For transitive
𝐺, this implies that 𝑝site

u (𝐺) + 𝑝site
c (𝐺) > 1 if and only if 𝐺 is not a

triangulation.

Our second objective, which is achieved in the process of prov-
ing the above formula, is to validate Conjectures 7 and 8 of Ben-
jamini and Schramm [7] concerning the existence of infinitely
many infinite clusters. Details of these conjectures are found in
Section 1.3.

The organization of the article is presented in Section 1.4.

1.2 | Critical Points of Matching Pairs

Since loops and multiple edges have no effect on the existence
of infinite clusters in site percolation, the graphs considered in
this article are generally assumed to be simple (whereas their dual
graphs may be non-simple). The main results proved in this paper
are as follows (see Sections 2.1 and 2.2 for explanations of the
standard notation used here).

The word ‘transitive’ shall mean ‘vertex-transitive’ throughout
this work. We denote by

𝒢∶ all infinite, locally finite, planar, 2-connected, simple graphs,

𝒯∶ the subset of 𝒢 containing all such transitive graphs,

𝒬∶ the subset of 𝒢 containing all such quasi-transitive graphs.

Since the work reported here concerns matching and dual graphs,
the graphs in  will be considered in their plane embeddings.
The most interesting such graphs turn out to be those with one
end. We shall recall in Section 3.1 that one-ended graphs in
 have unique proper embeddings in the Euclidean/hyperbolic
plane up to homeomorphism, and hence their matching and
dual graphs are uniquely defined. The situation is more com-
plicated for one-ended graphs in , in which case we fix a
plane embedding of 𝐺 ∈  for which the dual graph 𝐺+ is
quasi-transitive. Such an embedding is called canonical; if 𝐺
has connectivity 2, a canonical embedding need not be unique
(even up to homeomorphism), but its existence is guaranteed by
Theorem 3.1(c).

Matching pairs of graphs were introduced by Sykes and Essam
[8] and explored further by Kesten [9]. Let 𝑀 ∈  be one-ended

and canonically embedded in the plane (we call 𝑀 a mosaic
following the earlier literature). Let 4 = 4(𝑀) be the set of
faces of 𝑀 bounded by 𝑛-cycles with 𝑛 ≥ 4, and let 4 = 𝐹1 ∪

𝐹2 be an arbitrary quasi-transitive partition of 4. The graph
𝐺𝑖 is obtained from 𝑀 by adding all diagonals to all faces in
𝐹𝑖 . The pair (𝐺1, 𝐺2) is called a matching pair. The matching
graph 𝐺∗ of a one-ended graph 𝐺 ∈  is obtained by adding all
diagonals to all faces in 4(𝐺). Thus, (𝐺, 𝐺∗) is an instance of
a matching pair. Two examples of matching pairs are given in
Figure 1.

The notation 𝑝u denotes the critical value for the existence of a
unique infinite cluster. Further notation and background for per-
colation is deferred to Section 2.2.

Theorem 1.1.

(a) Let (𝐺1, 𝐺2) be a matching pair derived from the mosaic𝑀 ∈

. We have that

𝑝site
u (𝐺1) + 𝑝

site
c (𝐺2) = 1. (1)

(b) Let 𝐺 ∈  be one-ended. Then

𝑝site
u (𝐺) + 𝑝site

c (𝐺) ≥ 1. (2)

If 𝐺 is transitive, equality holds in (2) if and only if 𝐺 is a
triangulation.

In the context of (1), Sykes and Essam [8, eq. (7.3)] presented
motivation for the exact formula

𝑝site
c (𝐺1) + 𝑝

site
c (𝐺2) = 1, (3)

and this has been verified in a number of cases when
𝐺 is amenable (see [10]). This formula does not hold for
non-amenable graphs. Equation (1) appears without proof in [11,
eq. (4)] for a restricted class of graphs.

Remark 1.1. (Strict inequality). Equation (2) follows from
(1) with (𝐺1, 𝐺2) = (𝐺, 𝐺∗), by the inequality 𝑝site

c (𝐺) ≥ 𝑝site
c (𝐺∗).

This weak inequality holds trivially since 𝐺 is a subgraph of 𝐺∗.
The corresponding strict inequality 𝑝site

c (𝐺) > 𝑝site
c (𝐺∗) is investi-

gated in the companion papers [5, 6], where necessary and suffi-
cient conditions are presented. By (1),

𝑝site
u (𝐺) − 𝑝site

u (𝐺∗) = 𝑝
site
c (𝐺) − 𝑝site

c (𝐺∗) ≥ 0,

FIGURE 1 | Two matching pairs derived from the square latticeℤ2. Each 3 × 3 grid is repeated periodically aboutℤ2. The pair on the right generates
ℤ2 and its matching graph.
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so that strict inequality for 𝑝site
c is equivalent to strict inequality

for 𝑝site
u .

Remark 1.2. (Canonical embeddings). When 𝐺 has con-
nectivity 2, it may possess more than one canonical embedding;
by Theorem 1.1, 𝑝site

c (𝐺∗) and 𝑝site
u (𝐺∗) are independent of the

choice of canonical embedding. This may be seen directly by
observing that, in situations where there is a choice of embed-
ding, the two-point connectivity functions are equal.

Remark 1.3. (Amenability). If 𝐺 ∈  is one-ended and in
addition amenable, by the uniqueness of the infinite cluster [12,
13], we have 𝑝site

c (𝐺) = 𝑝site
u (𝐺); in this case, 𝑝site

c (𝐺) ≥ 1
2

by (2). If
𝐺 is transitive, we have 𝑝site

c (𝐺) = 1
2

if and only if 𝐺 is the usual
amenable, triangular lattice.

The dual graph of a plane graph 𝐺 is denoted 𝐺+.

Remark 1.4. (Bond percolation). Theorem 1.1 may be com-
pared with the corresponding results for bond percolation. It is
proved in [14, Thm. 3.8] that

𝑝bond
c (𝐺) + 𝑝bond

u (𝐺+) = 1

for any non-amenable, transitive 𝐺 ∈  . If, instead, 𝐺 ∈ 

is amenable, it is standard that 𝑝bond
u (𝐺+) = 𝑝bond

c (𝐺+) = 1 −
𝑝bond

c (𝐺). These facts are extended to quasi-transitive graphs in
[4, Thm. 8.31]. We make use of some elements of [4, 14] here,
while studying the more general site percolation directly via the
concept of pairs of matching graphs.

1.3 | Existence of Infinitely Many Infinite
Clusters

A number of problems for percolation on non-amenable graphs
were formulated by Benjamini and Schramm in their influential
paper [7], including the following two conjectures.

Conjecture 1.1. ([7, Conj. 7]). Consider site percolation on
an infinite, connected, planar graph 𝐺 with minimal degree at
least 7. Then, for any 𝑝 ∈ (𝑝site

c , 1 − 𝑝site
c ), we have ℙ𝑝(𝑁 = ∞) =

1. Moreover, it is the case that 𝑝site
c < 1

2
, so the above interval is

invariably non-empty.

It was proved in [15, Thm. 2] that 𝑝site
c < 1

2
for planar graphs with

vertex-degrees at least 7.

Conjecture 1.2. ([7, Conj. 8]). Consider site percolation on
a planar graph 𝐺 satisfying ℙ 1

2
(𝑁 ≥ 1) = 1. Then ℙ 1

2
(𝑁 = ∞) =

1.

Percolation in the hyperbolic plane was later studied by Ben-
jamini and Schramm [14]. In the current paper, we extend cer-
tain results of [14] to amenable planar graphs and to site per-
colation, and we confirm Conjectures 1.1 and 1.2 for all planar,
quasi-transitive graphs.

Conjectures 1.1 and 1.2 were verified in [16] when 𝐺 is a regular
triangular tiling (or ‘triangulation’) of the hyperbolic plane  for

which each vertex has degree at least 7. A significant property of a
triangulation is that its matching graph is the same as the original
graph.

The next two theorems establish Conjectures 1.1 and 1.2 for pla-
nar, quasi-transitive graphs.

Theorem 1.2. Consider site percolation on a graph 𝐺 ∈ ,
each vertex of which has degree 7 or more.

(a) For every𝑝 ∈ (𝑝site
c , 1 − 𝑝site

c ), there exist,ℙ𝑝-a.s., infinitely
many infinite 1-clusters and infinitely many infinite
0-clusters.

(b) For every 𝑝 ∈ [0, 1], there exists, ℙ𝑝-a.s., at least one infi-
nite cluster that is either a 1-cluster or a 0-cluster.

Theorem 1.3. Consider site percolation on 𝐺 ∈ , and
assume that ℙ 1

2
(𝑁 ≥ 1) = 1. Then, ℙ 1

2
-a.s., there exist infinitely

many infinite 1-clusters and infinitely many infinite 0-clusters.

The approach to establishing Conjectures 1.1 and 1.2 is to clas-
sify  according to amenability and the number of ends, and
then prove these conjectures for each such subclass of graphs. We
recall the following well-known theorem.

Theorem 1.4. ([17, 18, Prop. 2.1]). A graph 𝐺 that
is infinite, connected, locally finite, and quasi-transitive has
either one or two or infinitely many ends. If it has two ends,
then it is amenable. If it has infinitely many ends, then it is
non-amenable.

Let 𝐺 ∈ . By Theorem 1.4, only the following cases may occur.

(i) 𝐺 is amenable and one-ended. This case includes the square
lattice, for which percolation has been studied extensively;
see, for example, [3, 9].

(ii) 𝐺 is non-amenable and one-ended. It is proved in [14] that
𝑝site

c < 𝑝site
u and 𝑝bond

c < 𝑝bond
u for this case.

(iii) 𝐺 has two ends, in which case there is no percolation phase
transition of interest.

(iv) 𝐺 has infinitely many ends.

We shall study percolation on each class of graphs listed above.
Matching graphs and dual graphs will play important roles in our
analysis.

1.4 | Organization of Material

Section 2 is devoted to basic notation for graphs and percola-
tion. In Section 3, we review certain known results that will be
used to prove the main results of Section 1.2. It is explained
in Section 4 how a site percolation process on a planar graph
may be expressed in terms of a dependent bond process on the
same graph; this allows a connection between site percolation
on the matching graph and bond percolation on the dual graph.
We prove Theorem 1.1(a) for amenable graphs in Section 5, and
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for non-amenable graphs in Section 6. Theorem 1.2 is proved in
Section 7, and Theorem 1.3 in Section 8.

2 | Notation

2.1 | Graphical Notation

Let Aut(𝐺) be the automorphism group of the graph 𝐺 = (𝑉, 𝐸).
A graph 𝐺 is called vertex-transitive, or simply transitive, if all
the vertices lie in the same orbit under the action of Aut(𝐺).
The graph 𝐺 is called quasi-transitive if the action of Aut(𝐺) on
𝑉 has only finitely many orbits. It is called locally finite if all
vertex-degrees are finite. An edge with endpoints 𝑢, 𝑣 is denoted⟨𝑢, 𝑣⟩, in which case we call 𝑢 and 𝑣 adjacent and we write 𝑢 ∼ 𝑣.
The graph-distance 𝑑𝐺(𝑢, 𝑣) between vertices 𝑢, 𝑣 is the minimal
number of edges in a path from 𝑢 to 𝑣.

A graph 𝐺 is planar if it can be embedded in the plane ℝ2 in
such a way that its edges intersect only at their endpoints; a pla-
nar embedding of such 𝐺 is called a plane graph. A face of a
plane graph 𝐺 is an (arc-)connected component of the comple-
ment ℝ2 ⧵ 𝐺. Note that faces are open sets, and may be either
bounded or unbounded. With a face𝐹, we associate the set of ver-
tices and edges in its boundary. The size of a face is the number of
edges in its boundary. While it may be helpful to think of a face
as being bounded by a cycle of 𝐺, the reality can be more compli-
cated in that faces are not invariably simply connected (if𝐺 is dis-
connected) and their boundaries are not generally self-avoiding
cycles or paths (if𝐺 is not 2-connected). A plane graph𝐺 is called
a triangulation it every face is bounded by a 3-cycle.

A manifold 𝑀 is called plane if it is a surface and, for every
self-avoiding cycle𝜋 of𝑀,𝑀 ⧵ 𝜋 has exactly two connected com-
ponents. When a graph is drawn in a plane manifold 𝑀, the
terms embedding and face mean the same as when embedded
in the Euclidean plane. We say that an embedded graph 𝐺 ⊂

𝑀 is properly embedded if every compact subset of 𝑀 contains
only finitely many vertices of 𝐺 and intersects only finitely many
edges. Henceforth, all embeddings will be assumed to be proper.
The term plane shall mean either the Euclidean plane or the
hyperbolic plane, and each may be denoted  when appropriate.

A cycle (or 𝑛-cycle) 𝐶 of a simple graph 𝐺 = (𝑉, 𝐸) is a sequence
𝑣0, 𝑣1, . . . , 𝑣𝑛+1 = 𝑣0 of vertices 𝑣𝑖 such that 𝑛 ≥ 3, 𝑒𝑖 ∶= ⟨𝑣𝑖, 𝑣𝑖+1⟩
satisfies 𝑒𝑖 ∈ 𝐸 for 𝑖 = 0, 1, . . . , 𝑛, and 𝑣0, 𝑣1, . . . , 𝑣𝑛 are distinct.
Let 𝐺 be a plane graph, properly embedded in . In this case
we write 𝐶∘ for the bounded component of ℝ2 ⧵ 𝐶, and 𝐶 for
the closure of 𝐶∘. The ‘matching graph’ 𝐺∗ is obtained from 𝐺 by
adding all possible diagonals to every face of 𝐺. That is, let 𝐹 be
such a face, and let 𝜕𝐹 be the set of vertices lying in the boundary
of 𝐹. We augment 𝐺 by adding edges between any distinct pair
𝑥, 𝑦 ∈ 𝑉 such that (i) there exists a face 𝐹 such that 𝑥, 𝑦 ∈ 𝜕𝐹
and (ii) ⟨𝑥, 𝑦⟩ ∉ 𝐸. We write 𝐷 for the set of diagonals, so that
𝐺∗ = (𝑉, 𝐸 ∪ 𝐷). We recall from [19, Thm. 3] (see Remark 3.1(d))
that, for a 2-connected graph 𝐺, every face is bounded by either a
cycle or a doubly-infinite path.

Next we define a matching pair. Let𝑀 ∈  be one-ended (we fol-
low the earlier literature by calling 𝑀 a mosaic in this context).
By the forthcoming Remark 3.1(d), 𝑀 has an embedding in the

plane such that the dual graph 𝑀+ and the matching graph 𝑀∗

are quasi-transitive, and furthermore every face of𝑀 is bounded
by a cycle. Let 4 = 4(𝑀) be the set of faces of 𝑀 bounded by
𝑛-cycles with 𝑛 ≥ 4, and let 4 = 𝐹1 ∪ 𝐹2 be a partition of 4.
The graph 𝐺𝑖 is obtained from 𝑀 by adding all diagonals to all
faces in𝐹𝑖 , and we assume that Aut(𝑀) has some subgroup Γ that
acts quasi-transitively on each 𝐺𝑖 . The pair (𝐺1, 𝐺2) is said to be a
matching pair derived from 𝑀.

The graph 𝐺 is called amenable if its Cheeger constant satisfies

inf
𝐾⊆𝑉, |𝐾|<∞

|Δ𝐾||𝐾| = 0 (4)

where Δ𝐾 is the subset of 𝐸 containing edges with exactly one
endpoint in 𝐾. If the left side of (4) is strictly positive, the graph
𝐺 is called non-amenable.

Each 𝐺 ∈  is quasi-isometric with one and only one of the fol-
lowing spaces: ℤ, the 3-regular tree, the Euclidean plane, and
the hyperbolic plane; see [14, 18]. See [20, 21] for background on
hyperbolic geometry.

Recall that the number of ends of a connected graph is the supre-
mum over its finite subgraphs 𝐹 of the number of infinite com-
ponents that remain after removing 𝐹, and recall Theorem 1.4.
The number of ends of a graph is highly relevant to properties
of statistical mechanical models on the graph; see [22, 23], for
example, for discussions of the relevance of the number of ends
to the number and speed of self-avoiding walks.

2.2 | Percolation Notation

Let 𝐺 = (𝑉, 𝐸) be a connected, simple graph with bounded
vertex-degrees. A site percolation configuration on 𝐺 is an assign-
ment 𝜔 ∈ Ω𝑉 ∶= {0, 1}𝑉 to each vertex of either state 0 or state 1.
A cluster in 𝜔 is a maximal connected set of vertices in which
each vertex has the same state. A cluster may be a 0-cluster
or a 1-cluster depending on the common state of its vertices,
and it may be finite or infinite. We say that ‘percolation (or
1-percolation) occurs’ in 𝜔 if there exists an infinite 1-cluster
in 𝜔. For 𝜔 ∈ Ω𝑉 , we write 1 − 𝜔 for the configuration with
open/closed inverted.

A bond percolation configuration 𝜔 ∈ Ω𝐸 ∶= {0, 1}𝐸 is an assign-
ment to each edge in 𝐺 of either state 0 or state 1. A bond per-
colation model may be considered as a site percolation model on
the so-called covering graph (or line graph) 𝐺 of 𝐺. Therefore, we
may use the term 1-cluster (respectively, 0-cluster) for a maximal
connected set of edges with state 1 (respectively, state 0) in a bond
configuration. The size of a cluster in site/bond percolation is the
number of its vertices.

We call a vertex or an edge open if it has state 1, and closed
otherwise. Let 𝜇 be a probability measure on Ω𝑉 endowed
with the product 𝜎-field. The corresponding site model is the
probability space (Ω𝑉, 𝜇), with a similar definition for a bond
model (Ω𝐸, 𝜇). The central questions in percolation theory con-
cern the existence and multiplicity of infinite clusters viewed as
functions of 𝜇.
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A percolation model (Ω, 𝜇) is called invariant if 𝜇 is invari-
ant under the action of Aut(𝐺). An invariant measure is called
ergodic if there exists an automorphism subgroup Γ acting
quasi-transitively on𝐺 such that 𝜇(𝐴) ∈ {0, 1} for any Γ-invariant
event 𝐴. See, for example, [4, Prop. 7.3]. It is standard that the
product measureℙ𝑝 is ergodic if𝐺 is infinite and quasi-transitive.

Consider percolation on a graph 𝐺 = (𝑉, 𝐸). A site or bond con-
figuration 𝜔 induces open and closed subgraphs of 𝐺 in the
usual way, and we write 𝑁 (= 𝑁𝐺(𝜔)) for the number of infinite
1-clusters, and𝑁 (= 𝑁𝐺(𝜔)) for the number of infinite 0-clusters.
For site percolation on a graph 𝐺, we write 𝑁∗, 𝑁∗ for the corre-
sponding quantities on the matching graph 𝐺∗. A configuration
is in one–one correspondence with the set of elements (vertices
or edges, as appropriate) that are open in the configuration.

Let 𝑝 ∈ [0, 1]. We endow Ω𝑉 with the product measure ℙ𝑝 with
density 𝑝. For 𝑣 ∈ 𝑉, let 𝜃𝑣(𝑝) be the probability that 𝑣 lies in
an infinite open cluster. It is standard that there exists 𝑝site

c (𝐺) ∈

(0, 1] such that

for 𝑣 ∈ 𝑉, 𝜃𝑣(𝑝)

{
= 0 if 𝑝 < 𝑝site

c (𝐺),

> 0 if 𝑝 > 𝑝site
c (𝐺),

and 𝑝site
c (𝐺) is called the (site) critical probability of 𝐺.

More generally, consider (either bond or site) percolation on a
graph 𝐺 with probability measure ℙ𝑝. The corresponding critical
points may be expressed as follows:

𝑝site
c (𝐺) ∶= inf{𝑝 ∈ [0, 1] ∶ ℙ𝑝(𝑁 ≥ 1) = 1 for site percolation},

𝑝bond
c (𝐺) ∶= inf{𝑝 ∈ [0, 1] ∶ ℙ𝑝(𝑁 ≥ 1) = 1 for bond percolation},

and

𝑝site
u (𝐺) ∶= inf{𝑝 ∈ [0, 1] ∶ ℙ𝑝(𝑁 = 1) = 1 for site percolation},

𝑝bond
u (𝐺) ∶= inf{𝑝 ∈ [0, 1] ∶ ℙ𝑝(𝑁 = 1) = 1 for bond percolation}.

By the Kolmogorov zero–one law, ℙ𝑝(𝑁 ≥ 1) equals either 0 or 1.

The notation 𝑝c (respectively, 𝑝u) shall always mean the critical
probability 𝑝site

c (respectively, 𝑝site
u ) of the site model. For back-

ground and notation concerning percolation theory, the reader is
referred to the book [3].

3 | Background

We review certain known results that will be used in the proofs
of our main results.

3.1 | Embeddings of One-Ended Planar Graphs

We say that the 2-sphere, the Euclidean plane, and the hyper-
bolic plane constitute the natural geometries (see, e.g., Babai [18,
sect. 3.1]). The natural geometries are two-dimensional Rieman-
nian manifolds. An Archimedean tiling of a two-dimensional Rie-
mannian manifold is a tiling by regular polygons such that the
group of isometries of the tiling acts transitively on the vertices
of the tiling. An infinite, one-ended, transitive planar graph can

be characterized as a tiling of either the Euclidean plane or the
hyperbolic plane.

An embedding of a graph 𝐺 = (𝑉, 𝐸) (with underlying 1-complex
denoted |𝐺|) in a surface 𝑀 is a continuous map 𝜙 ∶ |𝐺| → 𝑀

such that the induced map |𝐺| → 𝜙(|𝐺|) is a homeomorphism.
An embedding 𝜙 is called cellular if 𝑀 ⧵ 𝜙(𝐺) is a disjoint union
of spaces homeomorphic to an open disc (see [24] and [25,
sect. 3.2]).

We shall consider embeddings of planar graphs in either the
Euclidean or hyperbolic plane, and we use the notation  to
denote either of these, as appropriate for the context.

Theorem 3.1.

(a) [18, Thms 3.1, 4.2]: If 𝐺 ∈  is one-ended, then 𝐺 may be
embedded in  as an Archimedean tiling, and all automor-
phisms of𝐺 extend to isometries of. If𝐺 ∈  is one-ended
and 3-connected, then 𝐺 may be embedded in  such that
all automorphisms of 𝐺 extend to isometries of .

(b) [24, p. 42]: Let 𝐺 be a 3-connected graph, cellularly embed-
ded in  such that all faces are of finite size. Then 𝐺 is
uniquely embeddable in the sense that for any two cellu-
lar embeddings 𝜙1 ∶ 𝐺 → 𝑆1, 𝜙2 ∶ 𝐺 → 𝑆2 into planar sur-
faces 𝑆1, 𝑆2, there is a homeomorphism 𝜏 ∶ 𝑆1 → 𝑆2 such
that 𝜙2 = 𝜏𝜙1.

(c) [4, Thm. 8.25 and Proof, pp. 288, 298]: If 𝐺 = (𝑉, 𝐸) ∈
 is one-ended, there exists some embedding of 𝐺 in
 such that the edges coincide with geodesics, the dual
graph 𝐺+ is quasi-transitive, and all automorphisms of 𝐺
extend to isometries of . Such an embedding is called
canonical.

(d) [26]: The automorphism group Aut(𝐺) of a quasi-transitive
graph𝐺 with quadratic growth contains a subgroup isomor-
phic to ℤ2 that acts quasi-transitively on 𝐺.

Remark 3.1. Some known facts concerning embeddings
follow.

(a) [27, Props 2.2, 2.2]: All one-ended, transitive, planar graphs
are 3-connected, and all proper embeddings of a one-ended,
quasi-transitive, planar graph have only finite faces.

(b) By Theorem 3.1(b), any one-ended 𝐺 ∈  has a unique
proper cellular embedding in  up to homeomorphism.
Hence, the matching and dual graphs of 𝐺 are independent
of the embedding.

(c) The conclusion of part (b) holds for any one-ended,
3-connected 𝐺 ∈ .

(d) For a one-ended 𝐺 ∈ , we fix a canonical embedding (in
the sense of Theorem 3.1(c)). With this given, the dual graph
𝐺+ and the matching graph𝐺∗ are quasi-transitive, and fur-
thermore (by [19, Thm. 3]) the boundary of every face is a
cycle of 𝐺.

Remark 3.2. (Proper embedding). Theorem 3.1(a) implies
in particular that every one-ended 𝐺 ∈  may be properly
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embedded in its natural geometry. Such an embedding is called
topologically locally finite (TLF) by Renault [28, Prop. 5.1, 29].
For a related discussion in the case of non-amenable graphs, see
[14, Prop. 2.1].

Remark 3.3. (Connectivity). Graphs with connectivity 1
have been excluded from membership of  (and therefore from
 and  also). Percolation on such graphs has little interest since
any finite dangling ends may be removed without changing the
existence of an infinite cluster. Moreover, let 𝐹 be a face of a
mosaic𝑀, such that 𝐹 contains some dangling end 𝐷. If (𝐺1, 𝐺2)

is a matching pair derived from 𝑀, the critical values 𝑝c(𝐺𝑖) are
unchanged if 𝐷 is deleted.

The representation of transitive, planar graphs as tilings of natu-
ral geometries enables the development of universal techniques
to study statistical mechanical models on all such graphs; see,
for example, the study [22] of a universal lower bound for
connective constants on infinite, connected, transitive, planar,
cubic graphs.

3.2 | Percolation

We assume throughout this subsection that the graph 𝐺 is infi-
nite, connected, and locally finite.

Lemma 3.1. ([30, Cor. 1.2, 31]). Let 𝐺 be quasi-transitive,
and consider either site or bond percolation on 𝐺. Let
0 < 𝑝1 < 𝑝2 ≤ 1, and assume that ℙ𝑝1

(𝑁 = 1) = 1. Then
ℙ𝑝2

(𝑁 = 1) = 1.

Definition 3.1. Let𝐺 = (𝑉, 𝐸) be a graph. Given𝜔 ∈ Ω𝑉 and
a vertex 𝑣 ∈ 𝑉, write Π𝑣𝜔 = 𝜔 ∪ {𝑣} (which is to say that 𝑣 is
declared open). For 𝐴 ⊆ Ω𝑉 , we write Π𝑣𝐴 = {Π𝑣𝜔 ∶ 𝜔 ∈ 𝐴}. A
site percolation process (Ω𝑉, 𝜇) on 𝐺 is called insertion-tolerant
if 𝜇(Π𝑣𝐴) > 0 for every 𝑣 ∈ 𝑉 and every event 𝐴 ⊆ Ω𝑉 satisfying
𝜇(𝐴) > 0.

A site percolation is called deletion-tolerant if 𝜇(Π¬𝑣𝐴) > 0
whenever 𝑣 ∈ 𝑉 and 𝜇(𝐴) > 0, where Π¬𝑣𝜔 = 𝜔 ⧵ {𝑣} for 𝜔 ∈
Ω𝑉 , and Π¬𝑣𝐴 = {Π¬𝑣𝜔 ∶ 𝜔 ∈ 𝐴}.

Similar definitions apply to bond percolation. We shall encounter
weaker definitions in Section 3.3.

Lemma 3.2. ([4, Thm. 7.8, 32, Thm. 8.1]). Let 𝐺 = (𝑉, 𝐸)
be a connected, locally finite, quasi-transitive graph, and let (Ω, 𝜇)
be an invariant (site or bond) percolation on 𝐺. Assume either or
both of the following two conditions hold:

(a) (Ω, 𝜇) is insertion-tolerant,

(b) 𝐺 is a non-amenable planar graph with one end.

Then 𝜇(𝑁 ∈ {0, 1,∞}) = 1. If 𝜇 is ergodic, 𝑁 is 𝜇-a.s. constant.

The sufficiency of (a) is proved in [4, Thm. 7.8] for transitive
graphs, and the same proof is valid for quasi-transitive graphs.
The sufficiency of (b) is proved in [32, Thm. 8.1].

3.3 | Planar Duality

Let𝐺 = (𝑉, 𝐸) be a plane graph, and write for the set of its faces.
The dual graph 𝐺+ = (𝑉+, 𝐸+) is defined as follows. The sets 𝑉+
and  are in one–one correspondence, written 𝑣𝑓 ↔ 𝑓. Two ver-
tices 𝑣𝑓, 𝑣𝑔 ∈ 𝑉+ are joined by 𝑛𝑓,𝑔 parallel edges where 𝑛𝑓,𝑔 is
the number of edges of 𝐸 common to the faces 𝑓, 𝑔 ∈  . Thus,
𝐸+ and 𝐸 are in one–one correspondence, written 𝑒+ ↔ 𝑒.

For a bond configuration 𝜔 ∈ Ω𝐸 , we define the dual configura-
tion𝜔+ ∈ Ω𝐸+ by: for each dual pair (𝑒, 𝑒+) ∈ 𝐸 × 𝐸+ of edges, we
have

𝜔(𝑒) + 𝜔+(𝑒+) = 1. (5)

In the following, (Ω𝐸, 𝜇) is a bond percolation model on 𝐺 =

(𝑉, 𝐸). Similar definitions apply to site percolation.

Definition 3.2. A probability measure 𝜇 is called weakly
insertion-tolerant if there exists a function 𝑓 ∶ 𝐸 × Ω𝐸 → Ω𝐸
such that

(a) for all 𝑒 and all 𝜔 ∈ Ω𝐸 , we have 𝜔 ∪ {𝑒} ⊆ 𝑓(𝑒, 𝜔),

(b) for all 𝑒 and all 𝜔, the difference 𝑓(𝑒, 𝜔) ⧵ [𝜔 ∪ {𝑒}] is
finite, and

(c) for all 𝑒 and each event 𝐴 satisfying 𝜇(𝐴) > 0, the image of
𝐴 under 𝑓(𝑒, ⋅) is an event of strictly positive probability.

Definition 3.3. A probability measure 𝜇 is called weakly
deletion-tolerant if there exists a function ℎ ∶ 𝐸 × Ω𝐸 → Ω𝐸 such
that

(a) for all 𝑒 and all 𝜔 ∈ Ω𝐸 , we have 𝜔 ⧵ {𝑒} ⊇ ℎ(𝑒, 𝜔),

(b) for all 𝑒 and all 𝜔, the difference [𝜔 ⧵ {𝑒}] ⧵ ℎ(𝑒, 𝜔) is
finite, and

(c) for all 𝑒 and each event 𝐴 satisfying 𝜇(𝐴) > 0, the image of
𝐴 under ℎ(𝑒, ⋅) is an event of strictly positive probability.

Lemma 3.3. ([4, Thm. 8.30]). Let 𝐺 = (𝑉, 𝐸) ∈  be
non-amenable and one-ended, and consider 𝐺 embedded canon-
ically in the plane (such an embedding exists by Theorem 3.1(c)).
Let (Ω𝐸, 𝜇) be an invariant, ergodic, bond percolation on
𝐺, assumed to be both weakly insertion-tolerant and weakly
deletion-tolerant. For 𝜔 ∈ Ω𝐸 , let𝑁(𝜔) be the number of infinite
open components of 𝜔, and 𝑁+(𝜔) the number of infinite open
components of the dual process 𝜔+ given in (5). Then

𝜇
(
(𝑁,𝑁+) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

3.4 | Graphs With Two or More Ends

We summarise here the main results for critical percolation prob-
abilities on multiply-ended graphs.

Theorem 3.2. ([33, 34]). Let𝐺 ∈ have two ends. The crit-
ical percolation probabilities satisfy

𝑝bond
c (𝐺) = 𝑝site

c (𝐺) = 𝑝bond
u (𝐺) = 𝑝site

u (𝐺) = 1.
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Theorem 3.3. Let 𝐺 ∈  have infinitely many ends. Then

𝑝bond
c (𝐺) ≤ 𝑝site

c (𝐺) < 𝑝bond
u (𝐺) = 𝑝site

u (𝐺) = 1.

The standard inequality 𝑝bond
c ≤ 𝑝site

c holds for all graphs, and
was stated in [35]. The corresponding strict inequality was
explored in [36, Thm. 2] for bridgeless, quasi-transitive graphs.
The equalities 𝑝bond

u = 𝑝site
u = 1 were proved for transitive graphs

in [34, eq. (3.7)] (see also [33]), and feature in [4, Exer.
7.9] for quasi-transitive graphs. The inequality 𝑝site

c < 1 for
non-amenable graphs was given in [7, Thm. 2].

3.5 | FKG Inequality

For completeness, we state the well-known FKG inequality. See,
for example [3, sect. 2.2], for further details.

Theorem 3.4. (FKG inequality [37, 38]). Let𝜇 be a strictly
positive probability measure on Ω𝑉 satisfying the FKG lattice
condition:

𝜇(𝜔1 ∨ 𝜔2)𝜇(𝜔1 ∧ 𝜔2) ≥ 𝜇(𝜔1)𝜇(𝜔2), 𝜔1, 𝜔2 ∈ {0, 1}𝑉. (6)

For any increasing events𝐴, 𝐵 ⊆ {0, 1}𝑉 , we have that 𝜇(𝐴 ∩ 𝐵) ≥
𝜇(𝐴)𝜇(𝐵).

4 | Planar Site Percolation as a Bond Model

Let 𝑀 = (𝑉, 𝐸) ∈  be a mosaic, and let (𝐺1, 𝐺2) be a matching
pair derived from 𝑀 according to the partition 4(𝑀) = 𝐹1 ∪ 𝐹2.
If 𝐹𝑖 ≠ ∅, then 𝐺𝑖 is non-planar. This is an impediment to consid-
eration of the dual graph of 𝐺𝑖 , which in turn is overcome by the
introduction of so-called facial sites.

Let  = (𝑀) be the set of faces of 𝑀 (following [9], we include
triangular faces). The triangular faces of  do not appear in 𝐹1 ∪

𝐹2 = 4, but we allocate each such face arbitrarily to either 𝐹1 of
𝐹2 (for concreteness, we add them all to 𝐹1). One may replace the
mosaic𝑀 by the triangulation �̂� obtained by placing a facial site
𝜙(𝐹) inside each face 𝐹 ∈  , and joining 𝜙(𝐹) to each vertex in
the boundary of 𝐹 (see [9, sect. 2.3] and [5, sect. 4.2].).

When considering site percolation on 𝑀 (respectively, 𝑀∗), one
declares the facial sites of �̂� to be invariably closed (respectively,
open). Site percolation on 𝐺𝑖 is equivalent to site percolation on
�̂� subject to:

a facial site 𝜙(𝐹) is declared open if 𝐹 ∈ 𝐹𝑖 and closed if 𝐹 ∈ ℱ ⧵ 𝐹𝑖.
(7)

Note that, if𝐹 is a triangular face, the state of 𝜙(𝐹) is independent
of the connectivity of its other vertices.

The facial graph 𝐺𝑖 is obtained by adding to 𝑀 the facial sites
of 𝐹𝑖 only, together with their incident edges. We write 𝐺𝑖 =
(𝑉𝑖, 𝐸𝑖) ∶= (𝑉 ∪ Φ𝑖, 𝐸 ∪ 𝜂𝑖) where Φ𝑖 is the set of facial sites of 𝐺𝑖
and 𝜂𝑖 is the set of edges incident to facial sites. We shall con-
sider two site percolation processes, namely, percolation of open
sites on 𝐺1 and of closed sites on 𝐺2 (subject to (7)). To this end,

for 𝜔 ∈ Ω𝑉 , let 𝜔1 (respectively, 𝜔2) be the site configuration on
𝐺1 (respectively, 𝐺2) that agrees with 𝜔 on 𝑉 and is open on Φ1
(respectively, closed on Φ2).

Given𝜔 ∈ Ω𝑉 , we construct a bond configuration 𝛽𝜔1
∈ Ω𝐸∪𝜂1

by

𝛽𝜔1
(𝑒) =

{
1 if 𝜔1(𝑢) = 𝜔1(𝑣) = 1
0 otherwise

(8)

where 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 ∪ 𝜂1. Let 𝛽+
𝜔1
∶= 1 − 𝛽𝜔1

be the correspond-
ing dual configuration on the dual graph 𝐺+1 = (𝑉

+
1 , 𝐸

+
1 ) of 𝐺1

as in (5). Let 𝐺1(𝛽𝜔1
) (respectively, 𝐺+1 (𝛽

+
𝜔1
)) be the graph with

vertex-set 𝑉1 (respectively, 𝑉+1 ) endowed with the open edges of
𝛽𝜔1

(respectively, 𝛽+
𝜔1

). Note that, if 𝜔 has law ℙ𝑝, then the law of
𝛽𝜔1

is one-dependent. We may identify the vector 𝛽𝜔1
with the set

of its open edges.

Lemma 4.1. Suppose 𝜔 ∈ Ω𝑉 has law ℙ𝑝 where 𝑝 ∈ (0, 1).
The law 𝜇 of 𝛽𝜔1

is weakly deletion-tolerant and weakly
insertion-tolerant. Moreover, 𝜇 is ergodic.

Proof. Let 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 ∪ 𝜂1 and 𝜔 ∈ Ω𝑉 . For 𝑤 ∈ 𝑉, let 𝐷𝑤
be the set of edges of𝐺1 of the form ⟨𝑤, 𝑥⟩with𝜔(𝑥) = 1. Select an
endvertex, 𝑢 say, of 𝑒 that is not a facial site (such a vertex always
exists), and define

𝑓(𝑒, 𝛽𝜔1
) = 𝛽𝜔1

∪ (𝐷𝑢 ∪ 𝐷𝑣 ∪ {𝑒}),

ℎ(𝑒, 𝛽𝜔1
) = 𝛽𝜔1

⧵ (𝐷𝑢 ∪ {𝑒}).

The edge-configuration 𝑓(𝑒, 𝛽𝜔1
) (respectively, ℎ(𝑒, 𝛽𝜔1

)) is that
obtained by setting 𝑢 and 𝑣 to be open (respectively, 𝑢 to be
closed). With these functions 𝑓, ℎ, the conditions of Definitions
3.2 and 3.3 hold since 𝐺 is locally finite. The ergodicity holds by
the assumed quasi-transitivity of𝐺1 and the fact that ℙ𝑝 is a prod-
uct measure (see the comment in Section 2.2). ◽

For 𝜔 ∈ Ω𝑉 , let 𝐺1(𝜔) be the subgraph of 𝐺1 induced by the
set of 𝜔1-open vertices (that is, the set of 𝑣 with 𝜔1(𝑣) =

1), and define 𝐺2(𝜔) similarly in terms of closed vertices of
𝜔2 in 𝐺2.

We make some notes concerning the relationship between𝐺1(𝜔),
𝐺2(𝜔), and 𝐺+1 (𝛽

+
𝜔1
), as illustrated in Figure 2. A cutset of a graph

𝐻 is a subset of edges whose removal disconnects some previ-
ously connected component of 𝐻, and which is minimal with
this property. Recall that a face of a plane graph 𝐻 = (𝑉′, 𝐸′) is
a connected component of  ⧵ 𝐸′. A face 𝐹 can be bounded or
unbounded, and it need not be simply connected. It has a bound-
ary Δ𝐹 comprising edges of𝐻; even when 𝐹 is bounded and sim-
ply connected, the set Δ𝐹 of edges need not be cycle of 𝐻 unless
𝐻 is 2-connected.

Proposition 4.1. Let 𝑀 = (𝑉, 𝐸) ∈  be one-ended and
embedded canonically in . Let 𝜔 ∈ Ω𝑉 , and let 𝐹 be a face
(either bounded or unbounded) of 𝐺1(𝜔).

(a) Let𝐶 be a cycle (respectively, doubly-infinite path) of𝐺1(𝜔).
The set of edges of 𝐺+1 intersecting 𝐶 forms a finite (respec-
tively, infinite) cutset of 𝐺+1 .
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FIGURE 2 | An illustration of the one–one correspondence between
𝐶1(𝐹) and 𝐶2(𝐹) of Proposition 4.1. The black line is the boundary of the
face 𝐹; the dashed lines are edges of𝑀 inside 𝐹; the dotted lines are edges
of 𝜂1. The shaded regions are faces of𝑀 that belong to𝐹1; the black points
are open vertices; the grey points are closed vertices; the white points are
dual vertices of 𝐺1. The green graph is the 0-cluster 𝐶2(𝐹) of 𝐺2(𝜔) (i.e.,
the 1-cluster of 𝐺2(1 − 𝜔)) that corresponds to the red cluster 𝐶1(𝐹) of
𝐺+1 (𝛽

+
𝜔1
).

(b) The set 𝐹 ∩ 𝑉+1 of dual vertices of 𝐺1 inside 𝐹, together
with the set of open edges of 𝛽+

𝜔1
lying inside 𝐹, forms a

non-empty, connected component 𝐶1(𝐹) of 𝐺+1 (𝛽
+
𝜔1
).

(c) The set 𝐹 ∩ (𝑉 ∪ Φ2) of vertices of 𝐺2 inside 𝐹 forms a (pos-
sibly empty) 0-cluster 𝐶2(𝐹) of 𝐺2(𝜔).

(d) Either each of 𝐹, 𝐶1(𝐹), 𝐶2(𝐹) is bounded or each is
unbounded.

Proof. (a) This is immediate by planar duality.

(b) Note first that every vertex𝑤 of𝑀 inside 𝐹 satisfies 𝜔(𝑤) = 0.
Since 𝐹 is bounded by a cycle of 𝐺1, it is a non-empty, disjoint
union 𝐹 =

⋃
𝑖∈𝐼 𝐴𝑖 of faces𝐴𝑖 of𝐺1 (more precisely, the two sides

of the equality differ on a set of Lebesgue measure 0). Each 𝐴𝑖
is bounded, and contains a (unique) dual vertex 𝑑𝑖 . It is standard
that the dual set𝐷 = {𝑑𝑖 ∶ 𝑖 ∈ 𝐼} induces a connected graph𝐶1(𝐹)

in 𝐹. Since no edge 𝑓 of 𝐶1(𝐹) intersects Δ𝐹, we have 𝛽+
𝜔1
(𝑓) = 1

for all such 𝑓.

(c) It can be the case that 𝐹 ∩ (𝑉 ∪ Φ2) = ∅, in which case we
take 𝐶2(𝐹) to be the empty graph (this is the situation if and
only if 𝐹 is a triangular face of 𝐺1(𝜔)). Suppose henceforth
that 𝐹 ∩ (𝑉 ∪ Φ2) ≠ ∅ and note as above that 𝜔(𝑤) = 0 for every
𝑤 ∈ 𝐹 ∩ (𝑉 ∪ Φ2). It is a standard property of matching pairs of
graphs that 𝐹 ∩ (𝑉 ∪ Φ2) induces a connected subgraph 𝐶2(𝐹)

of 𝐹 ∩ 𝐺2.

Parts (b) and (c) make use of two so-called ‘standard’ properties,
full discussions of which are omitted here. It suffices to prove
the ‘standard’ property of matching pairs, since the correspond-
ing property for dual pairs then follows by passing to covering
(or line) graphs (see, e.g., [9, sect. 2.6]). For matching pairs, an
early reference is [8, app.], and a more detailed account is found
in [9, sect. 3, app.] (see, in particular, Proposition A.1 of [9]). The
latter assumes slightly more than here on the mosaic 𝑀, but the
methods apply notwithstanding.

(d) When 𝐹 is finite, so must be 𝐶1(𝐹) and 𝐶2(𝐹), since
the embedding of 𝑀 is proper. When 𝐹 is infinite, the same
holds of 𝐶1(𝐹) and 𝐶2(𝐹), since the faces of 𝐺 are uniformly
bounded. ◽

Recall the notation 𝑁𝐺(𝜔) from Section 2.2.

Proposition 4.2. Let 𝑀 = (𝑉, 𝐸) ∈  be one-ended and
embedded canonically in , and let 𝜔 ∈ Ω𝑉 . Then,

𝑁𝐺1
(𝜔) = 𝑁𝐺1

(𝜔) = 𝑁𝐺1
(𝛽𝜔1

),

𝑁𝐺2
(1 − 𝜔) = 𝑁𝐺2

(1 − 𝜔) = 𝑁𝐺+1 (𝛽
+
𝜔1
).

(9)

Proof. Equation (9) holds by the definition of 𝛽𝜔1
, and from

Proposition 4.1 on noting (for given 𝜔) the one–one correspon-
dence between infinite clusters of 𝐺2(1 − 𝜔) and of 𝐺+1 (𝛽

+
𝜔1
). The

facial site in any face of𝑀 is a surrogate for the diagonals of that
face. ◽

Remark 4.1. (Conformality). It is classical that every bond
percolation model may be phrased as a site model on the so-called
covering (or line) graph (see, e.g., [3, p. 24]). While the converse
is generally false, using definition (8) we obtain a one-dependent
bond model from the site model on the same graph; furthermore,
the connectivity relations of these two processes are identical.
It was proved by Smirnov [39] that critical site percolation on
the triangular lattice 𝕋 satisfies Cardy’s formula, and moreover
has properties of conformal invariance (see also [40, 41]). By the
above observation, the dependent bond process on 𝕋 has similar
properties, and its dual process on the hexagonal lattice.

5 | Amenable Planar Graphs With One End

In this section, we prove Theorem 1.1(a) for amenable, one-ended
graphs; see Remark 1.1 for an explanation of part (b) of the
theorem. It is standard that such graphs are properly embeddable
in the Euclidean plane, denoted  in this section.

Recall first that, for any infinite, quasi-transitive, amenable graph
𝐺, and invariant, insertion-tolerant measure 𝜇, the number 𝑁𝐺
of infinite open clusters satisfies 𝜇(𝑁𝐺 ≤ 1) = 1 (see [4, Thm.
7.9] for the transitive case, the quasi-transitive case is similar).
As in Section 2.2, 𝑁𝐺 denotes the number of infinite closed
clusters.

Lemma 5.1. Let 𝑀 = (𝑉, 𝐸) ∈  be amenable, one-ended,
and embedded canonically in , and let (𝐺1, 𝐺2) be a matching
pair derived from𝑀. Let (Ω𝑉, 𝜇) be an ergodic, insertion-tolerant
site percolation on 𝑀 satisfying the FKG lattice condition (6).
Then

𝜇
(
(𝑁𝑀,𝑁𝑀) = (1, 1)

)
= 𝜇

(
(𝑁𝐺1

, 𝑁𝐺2
) = (1, 1)

)
= 0. (10)

A pair 𝛾, 𝛾′ of isometries of ℝ2 is said to act in a doubly periodic
manner on 𝐺 (in its canonical embedding) if they generate a sub-
group of Aut(𝐺) that is isomorphic to ℤ2, and the embedding is
called doubly periodic if such a pair exists. In preparation for the
proof of Lemma 5.1, we note the following.
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Theorem 5.1. Let 𝐺 ∈  be amenable and one-ended. A
canonical embedding of 𝐺 in ℝ2 is doubly periodic.

Proof. This may be proved in a number of ways, including
using either Bieberbach’s theorem on crystalline groups [42,
43] or Selberg’s lemma [44]. Instead, we use a more direct
route via the main theorem of Seifter and Trofimov [26] (see
Theorem 3.1(d)).

Viewed as a graph, 𝐺 has quadratic growth. This standard fact
holds as follows. By [18, Thm. 1.1], 𝐺 has either linear, or
quadratic, or exponential growth. As noted at [45, Thm. 9.3(b)],
being one-ended, it cannot have linear growth. Finally, we rule
out exponential growth. Since 𝐺 is quasi-transitive, there exists
𝑅 < ∞ such that, for all edges ⟨𝑥, 𝑦⟩ of 𝐺, the distance between
𝑥 and 𝑦 in ℝ2 is no greater than 𝑅. Therefore, the 𝑛-ball cen-
tred at vertex 𝑣 is contained in 𝐵𝑛(𝑣) ∶= 𝑣 + [−𝑛𝑅, 𝑛𝑅]

2. By
quasi-transitivity again, there exists 𝐴 < ∞ such that, for all 𝑣,
𝐵𝑛(𝑣) contains no more than 𝐴(𝑛𝑅)2 vertices.

The theorem of [26] may now be applied to find that Aut(𝐺) has
a finite-index subgroup 𝐹 isomorphic to ℤ2. Thus 𝐹 is generated
by a pair of automorphisms which, by Theorem 3.1(c), extend to
isometries of the embedding of 𝐺. ◽

Proof of Lemma 5.1. By insertion-tolerance and ergodic-
ity, the four random variables featuring in (10) are each
𝜇-a.s. constant and take values in {0, 1}. By Theorem 5.1 and [46,
Thm. 1.5],

𝜇
(
(𝑁𝐺1

, 𝑁𝐺2
) = (1, 1)

)
= 0. (11)

Arguments related to but weaker than [46, Thm. 1.5] are found in
[3, 47–50]. Note that [46, Thm. 1.5] deals with bond percolation
on planar graphs, whereas (11) is concerned with site percola-
tion on non-planar graphs. The site model may be handled either
by adapting the arguments of [46] to site models, or by applying
[46, Thm. 1.5] to the one-dependent bond model constructed in
the manner described in Section 4 (see (8) and Proposition 4.2).
Non-planarity is avoided by working with the facial graphs of
Section 4. The remaining part of (10) follows from the fact that
𝑁𝑀∗

= 1 𝜇-a.s. on the event {𝑁𝑀 = 1}. ◽

Corollary 5.1. Let 𝐺 ∈  be amenable and one-ended, and
consider site percolation on 𝐺. Then ℙ 1

2
(𝑁 = 0) = 1.

Proof. Suppose that ℙ 1
2
(𝑁 ≥ 1) > 0, so that ℙ 1

2
(𝑁 ≥ 1) = 1 by

ergodicity. By amenability and symmetry, we have that ℙ 1
2
(𝑁 =

𝑁 = 1) = 1. This contradicts Lemma 5.1. ◽

Lemma 5.2. Let 𝑀 = (𝑉, 𝐸) ∈  be amenable, one-ended,
and embedded canonically in , and let (𝐺1, 𝐺2) be a matching
pair derived from 𝑀. We have for site percolation that ℙ𝑝(𝑁𝐺2

=

1) = 1 for 𝑝 < 𝑝site
c (𝐺1).

Proof. Let 𝑝 ∈ (0, 𝑝site
c (𝐺1)) be such that ℙ𝑝(𝑁𝐺2

= 1) < 1. By
amenability and ergodicity, we have that

ℙ𝑝(𝑁𝐺2
= 0) = 1. (12)

Therefore, ℙ𝑝(𝑁𝐺1
= 𝑁𝐺2

= 0) = 1. There is a standard geomet-
rical argument based on subcritical exponential decay that leads
to a contradiction, as follows.

Fix a vertex 𝑣0 of 𝑀 = (𝑉, 𝐸), and let 𝛾 be a semi-infinite
geodesic of 𝑀 with endvertex 𝑣0. Let 𝑛 ≥ 1, and let Λ𝑛 = {𝑢 ∈
𝑉 ∶ 𝑑𝑀(𝑢, 𝑣0) ≤ 𝑛}. By [9, Prop. 2.1], if 𝜕Λ𝑛 intersects no infinite
closed path of 𝐺2, there exists some open circuit of 𝐺1 with Λ𝑛 in
its inside. There exists 𝑐 = 𝑐(𝑀) > 0 such that, if the last event
occurs, then for some 𝑘 ≥ 1 and some 𝑣 ∈ 𝛾 ∩ 𝜕Λ𝑛+𝑘 , we have
that 𝑣 lies in an open path of 𝐺1 of length at least 𝑐(𝑛 + 𝑘). By
[51, Thm. 3] for example, and (12), there exist𝐴, 𝑎 > 0 such that,

1 ≤
∑
𝑘≥1
𝐴𝑒−𝑎(𝑛+𝑘).

This cannot hold for large 𝑛, and the lemma is proved. ◽

We turn to Equation (1). In this amenable case, this is equivalent
to the following extension of classical results of Sykes and Essam
[8] (see also [10]).

Theorem 5.2. Let 𝑀 = (𝑉, 𝐸) ∈  be amenable, one-ended,
and embedded canonically in , and let (𝐺1, 𝐺2) be a matching
pair derived from 𝑀. Then

𝑝site
c (𝐺1) + 𝑝

site
c (𝐺2) = 1.

Proof. By Lemma 5.1, whenever 𝑝 > 𝑝site
c (𝐺1), we have 1 − 𝑝 ≤

𝑝site
c (𝐺2), which implies 𝑝site

c (𝐺1) + 𝑝
site
c (𝐺2) ≥ 1. By Lemma 5.2,

whenever 𝑝 < 𝑝site
c (𝐺1), we have 1 − 𝑝 ≥ 𝑝site

c (𝐺2), which implies
𝑝site

c (𝐺1) + 𝑝
site
c (𝐺2) ≤ 1. ◽

6 | Non-Amenable Graphs With One End

In this section, we prove Theorem 1.1(a) for non-amenable,
one-ended graphs 𝐺 = (𝑉, 𝐸) ∈ ; see Remark 1.1 for an expla-
nation of part (b) of the theorem. Recall from Section 2.2 that 𝑁
(respectively, 𝑁) denotes the number of 1-clusters (respectively,
0-clusters).

Lemma 6.1. Let 𝑀 = (𝑉, 𝐸) ∈  be one-ended and embed-
ded canonically in the hyperbolic plane, and let (𝐺1, 𝐺2) be a
matching pair derived from𝑀. For 𝜔 ∈ Ω𝑉 ,

ℙ𝑝
(
(𝑁𝐺1

, 𝑁𝐺2
) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

Proof. We fix a canonical embedding of 𝑀. By Proposition 4.2,

𝑁𝐺1
(𝜔) = 𝑁𝐺1

(𝛽𝜔1
), 𝑁𝐺2

(1 − 𝜔) = 𝑁𝐺+1 (𝛽
+
𝜔1
).

By Lemma 4.1, the law of 𝛽𝜔1
is weakly deletion-tolerant,

weakly-insertion tolerant, and ergodic, and the claim follows by
Lemma 3.3. ◽

Proof of Theorem 1.1(a). By Lemmas 3.5 and 3.7, we have the
following for site percolation on either 𝐺1 or 𝐺2:

if 𝑝 < 𝑝c, ℙ𝑝(𝑁 = 0) = 0

if 𝑝c < 𝑝 < 𝑝u, ℙ𝑝(𝑁 = ∞) = 1

if 𝑝 > 𝑝u, ℙ𝑝(𝑁 = 1) = 1
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where 𝑝c, 𝑝u are the critical values appropriate to the graph in
question.

By Lemma 6.1, 𝑁𝐺1
= 1 if and only if 𝑁𝐺2

= 0, whence 𝑝u(𝐺1) =

1 − 𝑝c(𝐺2). ◽

Corollary 6.1. Let 𝐺 ∈  be one-ended and embedded
canonically in , and suppose 𝐺 is non-amenable. Then

ℙ𝑝
(
(𝑁,𝑁) ∈ {(0, 0), (0, 1), (1, 0), (0,∞), (∞, 0), (∞,∞)}

)
= 1.

Proof. By Lemma 3.2, ℙ𝑝-a.s. the pair (𝑁,𝑁) takes some given
value in the set {0, 1,∞}2. We need to eliminate the vectors
(1, 1), (1,∞), and (∞, 1). If either of the vectors (1, 1) and (1,∞)
have strictly positive probability, then ℙ𝑝(𝑁 = 1, 𝑁∗ ≥ 1) > 0,
in contradiction of Lemma 6.1 applied to the matching pair
(𝐺, 𝐺∗). By symmetry, ℙ𝑝((𝑁,𝑁) ≠ (∞, 1)) = 1, and the corollary
follows. ◽

7 | Proof of Theorem 1.2

Let 𝐺 be a graph satisfying the assumptions of the theorem. We
work with the largest finite connected subgraph 𝐺𝐵 of 𝐺 con-
tained in a large bounded region 𝐵 (with boundary 𝜕𝐵) of the
natural geometry of 𝐺, and shall let 𝐵 expand to fill the space.
The numbers of finite faces, vertices, edges of 𝐺𝐵 satisfy Euler’s
formula:𝑓𝐵 + 𝑣𝐵 = 𝑒𝐵 + 1. Since the smallest possible face is a tri-
angle, we have 𝑓𝐵 ≤

2
3
𝑒𝐵; since the degree of interior vertices is 7

or more, there exists 𝑐 > 0 such that 𝑒𝐵 ≥
7
2
(𝑣𝐵 − 𝑐|𝜕𝐵|). This con-

tradicts Euler’s formula unless 𝑒𝐵∕|𝜕𝐵| is bounded above, which
is to say that the natural geometry is the hyperbolic plane. Hence,
𝐺 is non-amenable. By [15, Thm. 2], we have 𝑝site

c = 𝑝site
c (𝐺) < 1

2
.

By the symmetry of the interval (𝑝site
c , 1 − 𝑝site

c ) around 1
2

, it suf-
fices to show that ℙ𝑝(𝑁 = ∞) = 1 for 𝑝 ∈ (𝑝site

c , 1 − 𝑝site
c ). This in

turn is implied by Lemma 3.1 and the inequality

1 − 𝑝site
c ≤ 𝑝site

u . (13)

Inequality (13) holds by (2) when is 𝐺 non-amenable and
one-ended. In the remaining case when 𝐺 has infinitely many
ends, (13) is trivial since 𝑝site

u = 1 by Theorem 3.3.

8 | Proof of Theorem 1.3

Let 𝐺 be a graph satisfying the assumptions of the theorem,
and embedded canonically. By Lemma 3.2, symmetry, and the
assumption ℙ 1

2
(𝑁 ≥ 1) = 1,

ℙ 1
2

(
(𝑁,𝑁) ∈ {(1, 1), (∞,∞)}

)
= 1 (14)

By Theorem 1.4, the following four cases may occur:

(a) 𝐺 is amenable and one-ended. By Lemma 5.1, ℙ 1
2
(𝑁 = 0) =

1. Hence, in this case, the hypothesis of the theorem is
invalid.

(b) 𝐺 is non-amenable and one-ended. By Corollary 6.1 and
(14), subject to the percolation assumption, we have
ℙ 1

2
(𝑁 = 𝑁 = ∞) = 1.

(c) 𝐺 has two ends. By Theorem 3.2, 𝑝site
c = 1. Hence ℙ 1

2
(𝑁 =

0) = 1, and the hypothesis is invalid.

(d) 𝐺 has infinitely many ends. By Theorem 3.2, 𝑝site
u = 1.

Under the hypothesis of the theorem, it follows by symme-
try that ℙ 1

2
((𝑁,𝑁) = (∞,∞)) = 1.
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