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Preface

Therandom-cluster model wasinvented by Cees[Kees] Fortuin and Piet Kasteleyn
around 1969 as a unification of percolation, Ising, and Potts models, and as an
extrapolation of electrical networks. Their original motivation was to harmonize
the series and parallel laws satisfied by such systems. In so doing, they initiated
a study in stochastic geometry which has exhibited beautiful structure in its own
right, and which has become a central tool in the pursuit of one of the oldest
challenges of classical statistical mechanics, namely to model and analyse the
ferromagnet and especially its phase transition.

The importance of the model for probability and statistical mechanics was
not fully recognized until the late 1980s. There are two reasons for this period
of dormancy. Although the early publications of 1969-1972 contained many of
the basic properties of the model, the emphasis placed there upon combinatorial
aspects may have obscured its potential for applications. In addition, many of
the geometrical arguments necessary for studying the model were not known
prior to 1980, but were developed during the ‘ decade of percolation’ that began
then. In 1980 was published the proof that p. = 3 for bond percolation on the
square lattice, and this was followed soon by Harry Kesten’s monograph on two-
dimensional percolation. Percolation moved into higher dimensionsaround 1986,
and many of the mathematical issues of the day were resolved by 1989. Interest
in the random-cluster model as a tool for studying the Ising/Potts models was
rekindled around 1987. Swendsen and Wang utilized the model in proposing an
algorithm for the time-evolution of Potts models; Aizenman, Chayes, Chayes, and
Newman used it to show discontinuity in long-range one-dimensional 1sing/Potts
models; Edwards and Sokal showed how to do it with coupling.

One of my main projects since 1992 has been to comprehend the (in)validity
of the mantra ‘ everything worth doing for Ising/Potts is best done via random-
cluster’. Thereisalottobesaidinfavour of thisassertion, but itsunconditionality
isitsweakness. Therandom-cluster representation hasall owed beautiful proofsof
important factsincluding: the discontinuity of the phasetransition for large values
of thecluster-factor g, theexistence of non-trandation-invariant  Dobrushin’ states
for large values of the edge-parameter p, the Wulff construction in two and more
dimensions, and soon. It hasplayed important rolesin the studiesof other classical
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viii Preface

and quantum systemsin statistical mechanics, including for example the Widom—
Rowlinson two-typelattice gasand the Edwards-A nderson spin-glassmodel. The
last model isespecially challenging becauseit isnon-ferromagnetic, and thusgives
rise to new problems of importance and difficulty.

The random-cluster model is however only one of the techniques necessary
for the mathematical study of ferromagnetism. The principal illustration of its
limitations concerns the Ising model. This fundamental model for a ferromagnet
has exactly two local states, and certain special features of the number 2 enable
abeautiful analysis viathe so-called ‘ random-current representation’ which does
not appear to be reproducible by random-cluster arguments.

In pursuing the theory of the random-cluster model, | have been motivated not
only by itsapplicationsto spin systems but also becauseit is a source of beautiful
problems in its own right. Such problems involve the stochastic geometry of
interacting lattice systems, and they are close relatives of those treated in my
monograph on percolation, published first in 1989 and in its second edition in
1999. There are many new complications and some of the basic questionsremain
unanswered, at least in part. The current work isprimarily an exposition of afairly
mature theory, but prominence is accorded to open problems of significance.

New problemshavearrived recently to join the old, and these concern primarily
the two-dimensional phase transition and its relation to the theory of stochastic
Lowner evolutions. SLE has been much developed for percolation and related
topics since the 1999 edition of Percolation, mostly through the achievements of
Schramm, Smirnov, Lawler, and Werner. We await an extension of the mathemat-
ics of SLE to random-cluster and | sing/Potts models.

Here are some remarks on the contents of this book. The setting for the vast
majority of the work reported here is the d-dimensional hypercubic lattice Z¢
where d > 2. This has been chosen for ease of presentation, and may usually
be replaced by any other finite-dimensional lattice in two or more dimensions,
although an extra complication may arise if the lattice is not vertex-transitive. An
exception to thisisfound in Chapter 6, where the self-duality of the square lattice
is exploited.

Following the introductory material of Chapter 1, the fundamental properties
of monotonic and random-cluster measures on finite graphs are summarized in
Chapters 2 and 3, including accounts of stochastic ordering, positive association,
and exponential steepness.

A principa feature of the model is the presence of a phase transition. Since
singularities may occur only on infinite graphs, one requires a definition of the
random-cluster model on an infinite graph. This may be achieved as for other
systemseither by passing to aninfinite-volumeweak limit, or by studying measures
which satisfy consistency conditions of Dobrushin—Lanford—Ruelle (DLR) type.
Infinite-volume measures in their two forms are studied in Chapter 4.

The percolation probability isintroduced in Chapter 5, and thisleadsto a study
of the phase transition and the critical point pc(q). When p < pc(q), one expects
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that the size of the open cluster containing a given vertex of Z9 is controlled
by exponentially-decaying probabilities. This is unproven in general, although
exponential decay is proved subject to a further condition on the parameter p.

The supercritical phase, when p > pc(q), has been the scene of recent major
developments for random-cluster and Ising/Potts models. A highlight has been
the proof of the so-called ‘Wulff construction’ for supercritical Ising models. A
version of the Wulff construction isvalid for the random-cluster model subject to
astronger condition on p, namely that p > Pc(q) where Pe(q) is (for d > 3) the
limit of certain slab critical points. We have no proof that Pc(q) = pc(q) except
when g = 1, 2, and to provethisis one of the principal open problems of the day.
A second problemisto provethe uniquenessof theinfinite-volumelimit whenever
P # Pe(Q).

The self-duality of the two-dimensional square lattice Z2 is complemented by
aduality relation for random-cluster measures on planar graphs, and this allows
a fuller understanding of the two-dimensional case, as described in Chapter 6.
There remain important open problems, of which the principal oneisto obtain a
clear proof of the ‘exact calculation’ pc(q) = ,/q/(1+ /0). Thiscalculationis
accepted by probabilistswhen q = 1 (percolation), g = 2 (Ising), and when q is
large, but the “exact solutions’ of theoretical physics seem to have no complete
counterpart in rigorousmathematicsfor general valuesof g satisfyingq € [1, o).
There is strong evidence that the phase transition withd = 2 and g € [1, 4) will
be susceptible to an analysis using SLE, and this will presumably enable in due
course a computation of its critical exponents.

In Chapter 7, weconsider duality inthreeand moredimensions. Thedual model
amountsto aprobability measureon surfacesand certaintopol ogical complications
arise. Two significant facts are proved. First, it is proved for sufficiently large q
that the phasetransitionisdiscontinuous. Secondly, itisprovedforq € [1, oo) and
sufficiently large p that there exist non-trandation-invariant ‘ Dobrushin’ states.

The model has been assumed so far to be static in time. Time-evolutions may
be introduced in several ways, as described in Chapter 8. Glauber dynamics and
the Gibbs sampler are discussed, followed by the Propp—Wilson scheme known
as ‘coupling from the past’. The random-cluster measures for different values of
p may be coupled via the equilibrium measure of a suitable Markov process on
[0, 1]E, where E denotes the set of edges of the underlying graph.

Theso-called* random-current representation’ wasremark ed abovefor thelsing
model, and a related representation using the ‘flow polynomia’ is derived in
Chapter 9 for the g-state Potts model. It has not so far proved possible to exploit
this in a full study of the Potts phase transition. In Chapter 10, we consider
the random-cluster model on graphs with a different structure than that of finite-
dimensional lattices, namely the complete graph and the binary tree. In each case
one may perform exact calculations of mean-field type.

The final Chapter 11 is devoted to applications of the random-cluster repre-
sentation to spin systems. Five such systems are described, namely the Potts
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and Ashkin-Teller models, the disordered Potts model, the spin-glass model of
Edwards and Anderson, and the lattice gas of Widom and Rowlinson.

Thereisan extensiveliterature associated with ferromagnetism, and | have not
aspired to a complete account. Salient references are listed throughout this book,
but inevitably there are omissions. Amongst earlier papers on random-cluster
models, the following include a degree of review material: [8, 44, 136, 149, 156,
169, 240].

| first encountered the random-cluster model one day in late 1971 when John
Hammersley handed me Cees Fortuin’sthesis. Piet Kasteleyn responded enthusi-
astically to my 1992 request for information about the history of the model, and
his letters are reproduced with his permission in the Appendix. The responses
from fellow probabilists to my frequent requests for help and advice have been
deeply appreciated, and the support of the community is gratefully acknowledged.
| thank Laantje Kasteleyn and Frank den Hollander for the 1968 photograph of
Piet, and Cees Fortuin for sending meacopy of theimagefromhis1971 California
driving licence. Raphaél Cerf kindly offered guidance on the Wulff construction,
and has supplied some of his beautiful illustrations of 1sing and random-cluster
models, namely Figures 1.2 and 5.1. A number of colleagues have generously
commented on parts of this book, and | am especially grateful to Rob van den
Berg, Benjamin Graham, Olle Haggstrom, Chuck Newman, Russell Lyons, and
Senya Shlosman. Jeff Steif has advised me on ergodic theory, and Aernout van
Enter has hel ped me with statistical mechanics. CatrionaByrne has been asource
of encouragement and support. | express my thanks to these and to others who
have, perhaps unwittingly or anonymously, contributed to this volume.

G.R.G.
Cambridge
January 2006

Note added at reprinting: Several friends and colleagues have kindly made sug-
gestions for improvements, and special mention is made of Markus Heydenreich
(and the reading group at the Technische Universiteit Eindhoven), Remco van der
Hofstad, Kenshi Hosaka, and Svante Janson.

May 2009
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Chapter 1

Random-Cluster M easures

Summary. The random-cluster model is introduced, and its relationship to
Ising and Potts models is presented via a coupling of probability measures.
Inthelimit asthe cluster-weighting factor tendsto O, one arrives at el ectrical
networks and uniform spanning trees and forests.

1.1 Introduction

In 1925 camethelsing model for aferromagnet, andin 1957 the percol ation model
for adisordered medium. Each hassince been the subject of intense study, and their
theories have become elaborate. Each possesses a phase transition marking the
onset of long-range order, defined in terms of correlation functions for the Ising
model and in terms of the unboundedness of paths for percolation. These two
phase transitions have been the scenes of notable exact (and rigorous) cal culations
which have since inspired many physicists and mathematicians.

It has been known since at least 1847 that electrical networks satisfy so-called
‘series/parallel laws . Piet Kasteleyn noted during the 1960s that the percolation
and |Ising models also have such properties. This simple observation led in joint
work with Cees Fortuin to the formulation of the random-cluster model. This
new model has two parameters, an ‘edge-weight’ p and a ‘cluster-weight’ q.
The (bond) percolation model is retrieved by setting g = 1; when q = 2, we
obtain a representation of the Ising model, and similarly of the Potts model when
g =23, .... Thediscovery of the model is described in Kasteleyn's words in
the Appendix of the current work.

The mathematics begins with a finite graph G = (V, E), and the associated
Ising model® thereon. A random variable oy taking values —1 and +1 is assigned
to each vertex x of G, and the probability of the configuration o = (ox : X € V)
is taken to be proportional to e #H () where 8 > 0 and the‘energy’ H (o) isthe

1The so-called Ising model [190] was in fact proposed (to Ising) by Lenz. The Potts model
[205, 278] originated in a proposal (to Potts) by Domb.
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2 Random-Cluster Measures [1.1]

negativeof thesumof ox oy over all edgese = (x, y) of G. As g increases, greater
probability is assigned to configurations having a large number of neighbouring
pairs of vertices with equal signs. The Ising model has proved extraordinarily
successful in generating beautiful mathematics of relevanceto the physics, and it
has been useful and provocative in the mathematical theory of phase transitions
and cooperative phenomena (see, for example, [118]). The proof of the existence
of a phase transition in two dimensions was completed by Peierls, [266], by way
of hisfamous"argument”.

Therearemany possible generalizationsof thelsingmodel inwhichtheoy may
takeageneral number g of values, rather than q = 2 only. Onesuch extension, the
so-called ‘ Potts model’, [278], has attracted especial interest amongst physicists,
and has displayed acomplex and varied structure. For example, when g islarge, it
possesses a discontinuous phasetransition, in contrast to the continuoustransition
believedto take placefor small g. Ising/Pottsmodelsarethefirst of three principal
ingredients in the story of random-cluster models. Note that they are ‘vertex-
models’ in the sensethat they involve random variables o indexed by the vertices
x of the underlying graph. (Thereisarelated extension of the Ising model dueto
Ashkin and Teller, [21], see Section 11.3.)

The (bond) percolation model was inspired by problems of physical type, and
emerged from the mathematics literature? of the 1950s, [70]. In this model for
a porous medium, each edge of the graph G is declared ‘open’ (to the passage
of fluid) with probability p, and ‘closed’ otherwise, different edges having in-
dependent states. The problem is to determine the typical large-scale properties
of connected components of open edges as the parameter p varies. Percolation
theory is now a mature part of probability lying at the core of the study of ran-
dom media and interacting systems, and it is the second ingredient in the story of
random-cluster models. Note that bond percolationisan ‘edge-model’, in that the
random variablesareindexed by the set of edgesof theunderlying graph. (Thereis
avariant termed ‘ site percolation’ in which the vertices are open/closed at random
rather than the edges, see [154, Section 1.6].)

Thetheory of electrical networkson the graph G is of course more ancient than
that of 1sing and percolation models, dating back at |east to the 1847 paper, [215],
in which Kirchhoff set down a method for calculating macroscopic properties of
an electrical network in terms of itslocal structure. Kirchhoff’swork explainsin
particular the relevance of counts of certain types of spanning trees of the graph.
To import current language, an electrical network on a graph G may be studied
viathe properties of a‘uniformly random spanning tree’ (UST) on G (see [31]).

The three ingredients above seemed fairly distinct until Fortuin and Kasteleyn
discovered around 1970, [120, 121, 122, 123, 203], that each features within a
certain parametric family of models which they termed ‘ random-cluster models'.
They developed the basic theory of such models — correlation inequalities and
the like — in this series of papers. The true power of random-cluster models as

2See also the historical curiosity [323].
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[1.1] Introduction 3

amechanism for studying |sing/Potts model s has emerged progressively over the
intervening three decades.

The configuration space of the random-cluster model isthe set of all subsets of
the edge-set E, which we represent asthe set = {0, 1}F of 0/1-vectorsindexed
by E. An edge e istermed open in the configuration w € Q if w(e) = 1, and it
istermed closed if w(e) = 0. The random-cluster model is thus an edge-model,
in contrast to the Ising and Potts models which assign spins to the vertices of G.
The subject of current study isthe subgraph of G induced by the set of open edges
of a configuration chosen at random from @ according to a certain probability
measure. Of particular importanceis the existence (or not) of paths of open edges
joining given vertices x and y, and thus the random-cluster model is a model in
stochastic geometry.

The model may be viewed as a parametric family of probability measures ¢p q
on €, the two parameters being denoted by p € [0,1] and g € (0, 00). The
parameter p amountsto ameasure of the density of open edges, and the parameter
g isa‘cluster-weighting’ factor. When g = 1, ¢p q is aproduct measure, and the
ensuing probability spaceisusually termed apercolation model or arandom graph
depending onthe context. Theinteger valuesq = 2, 3, ... correspondinacertain
way to the Potts model on G with g local states, and thusq = 2 correspondsto the
Isingmodel. Thenature of these‘ correspondences’, asdescribedin Section 1.4, is
that ‘ correlation functions’ of the Potts model may be expressed as ‘ connectivity
functions' of therandom-cluster model. When extended to infinite graphs, it turns
out that long-range order in a Potts model correspondsto the existence of infinite
clusters in the corresponding random-cluster model. In this sense the Potts and
percolation phase transitions are counterparts of one another.

Therein liesamajor strength of the random-cluster model. Geometrical meth-
ods of some complexity have been derived in the study of percolation, and some
of these may be adapted and extended to more general random-cluster models,
thereby obtaining results of significancefor Ising and Potts models. Such hasbeen
the value of the random-cluster model in studying Ising and Potts models that it
is sometimes called smply the ‘FK representation’ of the latter systems, named
after Fortuin and Kasteleyn. We shall see in Chapter 11 that several other spin
models of statistical mechanics possess FK -type representations.

The random-cluster and |sing/Potts models on the graph G = (V, E) are de-
fined formally in the next two sections. Their relationship is best studied via a
certain coupling on the product {0, 1}E x {1, 2, ..., q}V, and thiscoupling is de-
scribed in Section 1.4. The ‘uniform spanning-tree’ (UST) measure on G isa
limiting case of the random-cluster measure, and this and related limits are the
topic of Section 1.5. This chapter ends with a section devoted to basic notation.
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4 Random-Cluster Measures [1.2]

1.2 Random-cluster model

Let G = (V, E) beafinitegraph. Thegraphsconsidered herewill usually possess
neither loops nor multiple edges, but we make no such general assumption. An
edge e having endvertices x and y is written ase = (x, y). A random-cluster
measure on G is amember of acertain class of probability measures on the set of
subsets of the edge set E. We take as state space the set = {0, 1}, members
of which are 0/1-vectorsw = (w(e) : e € E). We speak of the edge e as being
open (in w) if w(e) = 1, and as being closed if w(e) = 0. For w € Q, let
n(w) = {e € E : w(e) = 1} denote the set of open edges. There is a one-one
correspondence between vectors w € Q2 and subsets F C E, givenby F = n(w).
Let k(w) bethe number of connected components(or ‘ open clusters’) of the graph
(V, n(w)), and note that k(w) includes a count of isolated vertices, that is, of
vertices incident to no open edge. We associate with Q the o-field £ of all its
subsets.

A random-cluster measure on G has two parameters satisfying p € [0, 1] and
g € (0, 00), and is defined as the measure ¢p  on the measurable pair (2, )
given by

1
(2.1 ¢p,q(w) = Z—RC{H pa)(E‘)(l_ p)l—w(E‘)}qk(w)’ weQ,

ecE

where the ‘ partition function’, or ‘normalizing constant’, Zrc is given by

(1.2 Zrc = Zre(p, Q) = Z{H p“)(e)(]_ _ p)l—w(E)}qk(a)).

we “ecE

Thismeasurediffersfrom product measurethrough theinclusion of theterm gk(@).
Note the difference betweenthecasesq < 1and g > 1: theformer favoursfewer
clusters, whereas the latter favours a larger number of clusters. When q = 1,
edges are open/closed independently of one another. This very special case has
been studied in detail under the titles ‘ percolation’ and ‘ random graphs’, see[61,
154, 194]. Perhaps the most important values of q are the integers, since the
random-cluster model with q € {2, 3, ...} corresponds, in away described in the
next two sections, to the Potts model with q local states. The bulk of the work
presented in this book is devoted to the theory of random-cluster measures when
g > 1. Thecaseq < 1 seems to be harder mathematically and less important
physicaly. Thereis someinterestin thelimit asq | 0O; see Section 1.5.

We shall sometimes write ¢, p.q for ¢p g When the choice of graph G isto be
stressed. Computer-generated samples from random-cluster measures on Z2 are
presented in Figures 1.1-1.2. When g = 1, the measure ¢p q isaproduct measure
with density p, and we write ¢, p Or ¢, for this special case.
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Random-cluster model

[1.2]
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Figure 1.1. Samples from the random-cluster measure with q = 1 on a40 x 40 box of the

squarelattice. We haveset q

in this case. The critical value is pc(1)
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6 Random-Cluster Measures [1.3]

Figure1.2. A picture of the random-cluster model with free boundary conditions on a2048 x
2048 box of 1.2, with p = 0.585816 and q = 2. The critical value of the model with
q = 2ispc = v2/(1+ +/2) = 0.585786. .., and therefore the simulation is of a mildly
supercritical system. It was obtained by simulating the Ising model using Glauber dynamics
(see Section 8.2), and then applying the coupling illustrated in Figure 1.3. Each individual
cluster is highlighted with a different tint of gray, and the smaller clusters are not visible in
the picture. Thisand later simulations in Section 5.7 are reproduced by kind permission of
Raphadl Cerf.

1.3 Ising and Potts models

In afamous experiment, apiece of ironisexposed to amagneticfield. Thefieldis
increased from zero to amaximum, and then diminished to zero. If thetemperature
is sufficiently low, theiron retains some residual magnetization, otherwiseit does
not. Thereisacritical temperature for this phenomenon, often called the Curie
point after Pierre Curie, who reported thisdiscovery in his 1895 thesis, [98]3. The

3In an example of Stigler's Law, [309], the existence of such a temperature was discovered
before 1832 by Pouillet, see [198].
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[1.3] Ising and Potts models 7

famous (Lenz-)Ising model for such ferromagnetism, [190], may be summarized
as follows. One supposes that particles are positioned at the points of some
lattice embedded in Euclidean space. Each particle may bein either of two states,
representing the physical states of ‘spin-up’ and ‘spin-down’. Spin-values are
chosen at random according to a certain probability measure, known as a ‘ Gibbs
state’, which is governed by interactions between neighbouring particles. The
relevant probability measureis given as follows.

Let G = (V, E) beafinite graph representing part of the lattice. We think of
each vertex x € V as being occupied by a particle having a random spin. Since
spins are assumed to come in two basic types, we take as sample space the set
¥ = {—1, +1}V. Theappropriate probability massfunction Ag,3,nON X hasthree
parameters satisfying 8, J € [0, oo) and h € R, and is given by

1
(1.3) Ag,an(0) = Ze*ﬁH("% oex,
|

where the partition function Z; and the ‘Hamiltonian’ H : ¥ — R are given by

(1.4) Zy =) e fi), H@)=-J Y  oxoy—h)> ox

oEX e=(x,y)eE xeV

The physical interpretation of 8 isasthereciprocal 1/ T of temperature, of J as
the strength of interaction between neighbours, and of h as the external magnetic
field. For reasons of simplicity, we shall consider here only the case of zero
external-field, and we assume henceforth that h = 0.

Each edge has equal interaction strength J in the above formulation. Since
B and J occur only as a product 8J, the measure g ;0 has effectively only a
single parameter 8J. In a more complicated measure not studied here, different
edges e are permitted to have different interaction strengths Je, see Chapter 9. In
the meantime we shall wrap 8 and J together by setting J = 1, and we write
A =Ap 10

As pointed out by Baxter, [26], the Ising model permits an infinity of general-
izations. Of these, the extension to so-called ‘ Potts models' has proved especially
fruitful. Whereas the Ising model permits only two possible spin-values at each
vertex, the Potts model [278] permits a general number q € {2,3,...}, and is
governed by a probability measure given as follows.

Let g beaninteger satisfying g > 2, and take as sample space the set of vectors
¥ ={1,2,...,q}Y. Thuseach vertex of G may bein any of q states. For an edge
e = (x,y) and aconfiguraiono = (ox : X € V) € X, we Write 8e(0) = Joy.0y
where § j isthe Kronecker delta. The relevant probability measureis given by

1 /
(15) ﬂﬁ’q(o‘) = Z—e_ﬂH (G), (S E,
=)

where Zp = Zp(8, q) istheappropriate normalizing constant and the Hamiltonian
H’ isgiven by

(1.6) H)=- ) b0

e=(x,y)eE
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In the special case q = 2, the multiplicative formula

(1.7) So.oy = 3(L+0y0y), ox. 0y € {—1, +1},

isvalid. It is now easy to see in this case that the ensuing Potts model is simply
the Ising model with an adjusted value of g, in that 5 > is the measure obtained
from g, by re-labelling the local states.

Hereisabrief mention of onefurther generalization of thel sing model, namely
the so-called n-vector or O(n) model. Letn € {1,2,...} and let I be the set
of vectors of R" with unit length. The n-vector model on G = (V, E) has
configuration space IV and Hamiltonian

Ha®=— Y scs. s=(s:veV)el’,
e=(x,y)eE

where s, - sy denotes the dot product. When n = 1, thisis the Ising model. It is
called the X/Y model when n = 2, and the Heisenberg model whenn = 3.

1.4 Random-cluster and Ising/Potts models coupled

Fortuin and Kasteleyn discovered that Potts models may be re-cast as random-
cluster models, and furthermore that the relationship between the two systems
facilitates an extended study of phase transitions in Potts models, see [121, 122,
123, 203]. Their methodswere elementary in nature. In amore modern approach,
we construct the two systems on a common probability space. There may in
principle be many ways to do this, but the standard coupling of Edwards and
Sokal, [108], is of specia value.

Letg € {2,3,...}, p € [0,1], and let G = (V, E) be afinite graph. We
consider the product sample space = x Q where = = {1,2,...,q}Y and Q =
{0, 1}E as above. We define a probability mass function i on & x Q by

(18) (o, 0) o [ [{(1— Poue.0+ Pue.ide@)}.  (0.0) € T xQ,
ecE

where, asbefore, Se(o) = Sox.oy fore = (x, y) € E. The constant of proportion-

ality is exactly that which ensures the normalization

Z wlo, w) = 1.
(0,0)eEL XN
By an expansion of (1.8),
p(o, w) X ¥ (o)pp(w)1r (o, w), (0,w) € T x Q,

where 1 is the uniform probability measure on X, ¢, is product measure on €
with density p, and 1 istheindicator function of the event

(19) F ={(0,0):de(0) = 1forany esatisfyingw(e) = 1} € = x Q.
Therefore, © may be viewed as the product measure i x ¢p conditioned on F.
Elementary calculationsreveal the following facts.
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(1.10) Theorem (Marginal measuresof ) [108]. Letq € {2,3,...}, p € [0, 1),
and supposethat p =1 — e #.

(@ Marginal on X. The marginal measure ui(o) = Y, cq 1(0, @) Oon X is
the Potts measure

pa(o) = Zip exp{ﬁzaew)}, o€X.

ecE

(b) Marginal on 2. Themarginal measure uz(w) = ), 5 n(o, w) onQisthe
random-cluster measure

1
o) = T e - 1—w(e>} K0 weq.
p2(w) ZRC{' [ P°©@-p q

ecE

(c) Partition functions. We have that

Z{]‘[ p”©@ (1 p)l—‘“@}qk““) = > []eplBsel0)-D], (111)

we “ecE oceX ecE

which isto say that
Zre(p, o) = e PIEIZp(B, q). (112

The conditional measures of . are given in the following theorem?, and illus-
trated in Figure 1.3.

(1.13) Theorem (Conditional measuresof u) [108]. Letq € {2,3,...},
p € [0, 1), and supposethat p = 1 — e #.

(8 For w € 2, the conditional measure (- | w) on X is obtained by putting
random spins on entire clusters of w (of which there are k(w)). These spins
are constant on given clusters, are independent between clusters, and each
isuniformly distributed onthe set {1, 2, ..., q}.

(b) For o € X, the conditional measure (- | o) on 2 is obtained as follows.
Ife = (x,y) issuchthat ox # oy, weset w(e) = 0. If ox = oy, we set

1 with probability p,
0 otherwise,

w(e = {

the values of different w (e) being (conditionally) independent randomvari-
ables.

4The corresponding facts for the infinite lattice are given in Theorem 4.91.
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*—7 [ ] [ ] 2. ------ 2. 4. 4.
[ ] 1. 2‘ ------ 2. 2.
1 2 2: 2
[J ®------- ®------- [ ]
1 4 2 2
[ ] [ ] *— [ ] [ ] @ ------ ®
2 2 4 4
[J [ ] [ ] [ ] *—ae *—ae
1 2 2 2
[J [ ] [ ] [ ] [ ] r—o——0
1 2 2 2
[ [ [ ] [ ] «
1 4 2 2
[ ] [ ] [ ] [ ] [ ]

Figure 1.3. The upper diagram is an illustration of the conditional measure of © on ¥ given
w, with @ = 4. To each open cluster of w is alocated a spin-value chosen uniformly from
{1, 2, 3, 4}. Different clustersareallocated independent values. Inthelower diagram, webegin
withaconfigurationo. Anedgeisplaced betweenverticesx, y with probability p (respectively,
0) if ox = oy (respectively, ox # oy), and the outcome has as law the conditional measure of
©nongQgveno.

In conclusion, the measure . is a coupling of a Potts measure 5. on V,
together with the random-cluster measure ¢p q on . The parameters of these
measures are related by the equation p = 1 — e #. Since0 < p < 1, we have
that0 < B < 0.

This specia coupling may be used in a particularly simple way to show that
correlations in Potts models correspond to open connections in random-cluster
models. When extended to infinite graphs, thiswill imply that the phasetransition
of a Potts model corresponds to the creation of an infinite open cluster in the
random-cluster model. Thus, arguments of stochastic geometry, and particularly
those developed for the percolation model, may be harnessed directly in order
to understand the correlation structure of the Potts system. The basic step is as
follows.

Let {X < y} denotethe set of all w € Q for which there exists an open path
joining vertex x to vertex y. The complement of the event {x <> y} is denoted by

X<y}
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[1.4] Random-cluster and Ising/Potts models coupled 11

The ‘two-point correlation function’ of the Potts measure mg q on the finite
graph G = (V, E) isdefined to be the function tg ¢ given by

1
(114) Tﬂ’q(x, y) = ﬂﬂ’q(o—x = Uy) — a, X, y S V

The term g~ 1 is the probability that two independent and uniformly distributed
spins are equal. Thus®,

1
(1.15) 78,q(X, y) = aﬂﬁ,q(qaax,ay -1.

The *two-point connectivity function’ of the random-cluster measure ¢p q is de-
fined asthe function ¢p (X <> y) for x, y € V, that is, the probability that x and
y are joined by a path of open edges. It turns out that these ‘ two-point functions
are (except for a constant factor) the same.

(1.16) Theorem (Correlation/connection) [203]. Letq € {2,3,...}, p € [0, 1),
and supposethat p =1 — e~ #. Then

g6 Y) =1 —q Hgpgx < y), X, yeV.

Thetheorem may be generalized asfollows. Supposewe are studying the Potts
model, and are interested in some ‘observable’ f : ¥ — R. The mean value of
f (o) sdtisfies

mpq(f) =) f(o)mpqlo) =) flo)u(o, w)
=Y F(@)¢pq(@) = ¢pq(F)

where F : Q — R isgiven by

Fl)=u(flo)=) f@u@ | o).

Theorem 1.16 is obtained by setting f (0) = 85,0, — 9.
The Potts models considered above have zero external-field. Some complica
tions arise when an external field is added; see the discussionsin [15, 44].

Proof of Theorem 1.10. (a) Let o € X begiven. Then

> o o) o Y [THE = Pouer.o+ Poue.1de(0)}

weR we ecE

= [ 11 - p+ pse(o)].

ecE

5If 11 is a probability measure and X arandom variable, the expectation of X with respect to
e iswritten w(X).

(©Springer-Verlag 2006



12 Random-Cluster Measures [1.4]

Now p=1—e*fand
1-p+ps=€efeD  5¢c{01),
whence
117) > [J{A— Puier.o+ Pdue.ade(@)} = [ | explB(de(o) — D].
we ecE ecE

Viewed asaset of weightson X, thelatter expression generatesthe Potts measure.
(b) Let w € Q be given. We have that

(118) [[{(1— Pduier.0+ Pouie.18e(a)} = p" @1 — p)EV@I1E (0, w),
ecE

where 1k (o, w) istheindicator function that e(c) = 1 whenever w(e) = 1, see
(2.9). Now, 1f (o, w) = 1if and only if o is constant on every open cluster of .
Therearek(w) such clusters, and therefore g qualifying spin-vectorso. Thus,

(119) D 1A= Puie.0+ Pouge.1de(@)} = p"@(1 — p)/EVI@Igh,
oce¥ ecE

This set of weights on @ generates the random-cluster measure.
(c) We obtain the same answer if we sum (1.17) over all o, or we sum (1.19) over

al w. d
Proof of Theorem 1.13. (a) Let w € Q2 be given. From (1.18)—(1.19),
1r (o, w)
plo | w) = ———, oEX,

whence the conditional measure is uniform on those o with 1 (o, w) = 1.
(b) Let o € X begiven. By (1.8),

pwwlo)=Ks J] doeo ] {@-0bue.0+ Poue.al}.
ecE: ée(0)=0 ecE: e(0)=1

where K, = K;(p, q). Therefore, u(w | o) isaproduct measure on Q with

_ - 0 ifde(0) =0,
w(e) =1 with probability ) O
p ifde(o) =1.

Proof of Theorem 1.16. By Theorem 1.13(a),
7640 Y) = Y {Lioy=ay)(0) — 4" (0. )

o,w

= ¢pa@) Y 10 | 0){lig=0y(0) — a7}
=Y tp.a@{(1 = 4 Hlxeoy (@) +0- Lixpy) (@)

=1 -q Hppqx <),
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[1.5] Thelimitasq | O 13

where 1 isthe above coupling of the Potts and random-cluster measures. O

Hereis afinal note. The random-cluster measure ¢ q has two parameters p,
g. Inamore general version, we replace p by avector p = (pe : € € E) of reds
each of which satisfies pe € [0, 1]. The corresponding random-cluster measure
¢p.q ON (Q, F) isgiven by

(1.20) ¢p.q(®) = %{]‘[ Py @1 - pe)lw@}qk(‘”), weQ,

ecE

where Z is the appropriate normalizing factor. The measure ¢p q is retrieved by
setting pe = pforal ee E.

15 Thelimitasq | O

Let G = (V, E) beafinite connected graph, and let ¢  be the random-cluster
measureon G with parameters p € (0, 1), g € (0, co). Weconsider inthissection
the set of weak limits which may ariseas q | 0. In preparation, we introduce
three graph-theoretic terms.

A subset F of the edge-set E iscalled:

e aforest of G if the graph (V, F) contains no circuit,

e aspanningtreeof G if (V, F) isconnected and contains no circuit,

e aconnected subgraph of G if (V, F) is connected.
In each case we consider the graph (V, F) containing every vertex of V; in this
regard, sets F of edges satisfying one of the above conditions are sometimes
termed spanning. Note that F is a spanning tree if and only if it is both a forest
and a connected subgraph. For @ = {0,1})F and w € Q, we call w a forest
(respectively, spanning tree, connected subgraph) if 1(w) isaforest (respectively,
spanning tree, connected subgraph). Write Qior, Qsg, Q¢ for the subsets of Q
containing all forests, spanning trees, and connected subgraphs, respectively, and
write USF, UST, UCS for the uniform probability measures® on the respective
Sets Qor, Qs Lcs.

We consider first theweak limit of ¢p q asq | Oforfixed p € (0, 1). Thislimit
may be ascertained by observing that the dominant termsin the partition function

weR

are those for which k(w) isaminimum, that is, those with k(w) = 1. It follows
that limg o ¢p,q is precisely the product measure ¢p = ¢p 1 (that is, percolation

6This usage of the term ‘uniform spanning forest' differs from that of [31].
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14 Random-Cluster Measures [1.5]

with intensity p) conditioned on the resulting graph (V, n(w)) being connected.
Thatis, ¢pq = ¢ asq | 0, wherer = p/(1— p),

1
—r@lif e Qs
(1.21) ¢;>S(w)={ Zes @ e
0 otherwise,

and Z¢s = Zs(r) is the appropriate normalizing constant. In the special case
p = 3, wehavethat ¢pq = UCSasq | 0.

Further limitsariseif we allow both p and g to convergeto 0. Suppose p = pq
isrelatedtoqinsuchaway that p — Oandq/p — Oasq | 0; thus, p approaches
zero dower than does q. We may write Zgc in the form

[n(@)|+k(w) 1_ k(w)
Zre(p. ) = (1— p)/E! Z (Tpp> <Q( p p)) .

weR

Note that p/(1 — p) — Oandq(1— p)/p — Oasq | 0. Now, k(w) > 1 and
In(w)|+k(w) > |V|forw € Q; thesetwo inequalitiesare satisfied simultaneously
with equality if and only if w € Qg. Therefore, inthelimitasq | O, the'mass is
concentrated on spanningtrees, and it iseasily seenthat thelimit massisuniformly
distributed. That is, ¢p q = UST.

Another limit emerges if p approaches O at the same rate as does q. Take
p = aq wherea € (0, oo) isconstant, and consider thelimitasq | 0. Thistime
we write

()|
Zre(p. @) = (1—aq)'® Y (1_"‘aq) gk
e

We have that |n(w)| + k(w) > |V| with equality if and only if @ € Qjqr, and it
followsthat ¢pq = #/, where

1 @) if
(122) ¢;Or(a)) _ ! m(x ITw € QfOI’a
0 otherwise,

and Zsor = Zsor(a) is the appropriate normalizing constant. In the special case
a = 1, wefind that ¢p q = USF.

Finally, if p approaches O faster than does q, inthat p/q — Oas p,q — O,
it is easily seen that the limit measure is concentrated on the empty set of edges.
We summarize the three special cases abovein atheorem.

(1.23) Theorem. We haveinthelimit asq | O that:

ucs ifp=3,
¢p,q:>{UST if p—~0andq/p — O,
USF ifp=aq.
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[1.6] Basic notation 15

Thespanning-treelimitisespecially interesting for historical and mathematical
reasons. As explained in the Appendix, the random-cluster model originated in
a systematic study by Fortuin and Kasteleyn of systems of a certain type which
satisfy certain parallel and series laws (see Section 3.8). Electrical networks
are the best known such systems: two resistors of resistancesr and rp in par-
allel (respectively, in series) may be replaced by a single resistor with resistance
(ryt 1,1~ (respectively, rq 4 r2). Fortuin and K asteleyn [123] realized that
the electrical-network theory of a graph G isrelated to the limit asq | O of the
random-cluster model on G, where pisgiven’ by p = A/ (1+./Q). Ithasbeen
known since Kirchhoff’s theorem, [215], that the electrical currents which flow
in anetwork may be expressed in terms of counts of spanning trees. We return to
this discussion of UST in Section 3.9.

The theory of the uniform-spanning-tree measure UST is beautiful in its own
right (see[31]), andislinked inanimportant way to the emergingfield of stochastic
growth processes of ‘stochastic Ldwner evolution’ (SLE) type (see [231, 284]),
to which we return in Section 6.7. Further discussions of USF and UCS may be
found in [165, 268].

1.6 Basic notation

We present some of the basic notation necessary for a study of random-cluster
measures. Let G = (V, E) beagraph, with finite or countably infinite vertex-set
V and edge-set E. If two verticesx and y arejoined by an edge e, wewritex ~ v,
and e = (X, y), and we say that x isadjacent to y. The (graph-theoretic) distance
8(x,y) from x to y is defined to be the number of edgesin a shortest path of G
fromxtoy.

The configuration space of the random-cluster model on G isthe set Q@ =
{0, 1}, points of which are represented asvectors w = (w(e€) : e € E) and called
configurations. For w € €2, wecall an edge e open (or w-open, when therole of w
isto be emphasized) if w(e) = 1, and closed (or w-closed) if w(e) = 0. We speak
of aset F of edgesasbeing ‘open’ (respectively, ‘closed’) in the configuration @
if o(f) =1 (respectively, w(f) =0) foradl f € F.

Theindicator function of asubset A of Q isthefunction1a : € — {0, 1} given
b
Y 0 ifwgA,

1 ifweA

Fore € E, wewrite Je = {®w € Q : w(e) = 1}, the event that the edge e is open.
We use Je to denoteal so theindicator function of thisevent, sothat Je(w) = w(€).
A function X : @ — R iscaled acylinder function if there exists a finite subset
F of E such that X (w) = X (') whenever w(e) = '(e) for e € F. A subset A
of Q iscalled acylinder event if itsindicator function is a cylinder function. We

1a(w) = {

"This choice of p is convenient, but actually one requires only that q/p — 0, see[166].
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16 Random-Cluster Measures [1.6]

take F to bethe o -field of subsets of 2 generated by the cylinder events, and we
shall consider certain probability measures on the measurable pair (22, 7). If G
isfinite, then F isthe set of al subsets of Q; al events are cylinder events, and
all functions are cylinder functions. The complement of an event A iswritten A°
or A.

For W C V, let Ew denote the set of edges of G having both endverticesin
W. We write F\w (respectively, Tw) for the smallest o-field of F with respect
to which each of the random variables w(e), e € Ew (respectively, e ¢ Ew), is
measurable. The notation #r, 7F isto be interpreted similarly for F C E. The
intersection of the 7 over all finite sets F iscalled thetail o-field and is denoted
by 7. Setsin 7 are called tail events.

Thereisanatural partial order ontheset 2 of configurationsgivenby: w1 < w>
if and only if w1(e) < wo(e) for al e € E. Rather than working always with the
vector w € 2, we shall sometimeswork with its set of open edges, given by

(1.24) nw)={ec E:we =1}.

Clearly,
w1 < w if and only if n(w1) € n(wy).

The smallest (respectively, largest) configuration is that with w(e) = 0 (respec-
tively, w(e) = 1) for all e, and thisis denoted by O (respectively, 1). A function
X :Q — Riscadledincreasing if X(w1) < X(w2) whenever w1 < w. Sim-
ilarly, X is decreasing if —X isincreasing. Note that every increasing function
X : @ — Risnecessarily bounded since X(0) < X(w) < X(1) foral w € Q.
A subset A of Q iscalled increasing (respectively, decreasing) if it hasincreasing
(respectively, decreasing) indicator function.

Forw € Q and e € E, let w® and we be the configurations obtained from w by
‘switching on’ and ‘ switching off’ the edge e, respectively. That is,

£) if f
wE(f)z{‘l"() fff#e’ for f € E.

if f=e
= (S .

ve 0 if f=e,

More generally, for J € E and K C E \ J, we denote by a)ﬁ the configuration
that equals 1 on J, equals 0 on K, and agrees with w on E \ (J U K). When J
and/or K contain only one or two edges, we may omit the necessary parentheses.
The Hamming distance between two configurationsis given by

(1.26) H(ww w2) =) loi(€) — w2(8)], w1, 02 € Q.

ecE

A path of G isdefined as an aternating sequence Xo, €, X1, €1, - . . , €n—1, Xn
of distinct vertices x;j and edges = (Xi, Xij+1). Such a path has length n and

(©Springer-Verlag 2006



[1.6] Basic notation 17

is said to connect xp to X,. A circuit or cycle of G is an aternating sequence
X0, €0, X1, - . ., €n—1, Xn, €n, Xo Of vertices and edges such that xo, €g, ..., €n—1,
Xn isapath and e, = (Xn, Xo); such acircuit haslengthn + 1. For w € ©, wecall
apath or circuit openif all itsedgesare open, and closed if all itsedgesare closed.
Two subgraphs of G are called edge-digoint if they have no edges in common,
and digoint if they have neither edges nor verticesin common.

Let w € Q. Consider the random subgraph of G containing the vertex set V
and the open edges only, that is, the edges in n(w). The connected components
of this graph are called open clusters. We write Cx = Cx(w) for the open cluster
containing the vertex x, and we call Cx the open cluster at x. Thevertex-set of Cy
istheset of al verticesof G that are connected to x by open paths, and the edges of
Cy arethose edges of 1 (w) that join pairs of such vertices. We shall occasionally
use the term Cy to represent the set of vertices joined to x by open paths, rather
than the graph of this open cluster. We shall be interested in the size of Cy, and
we denote by |Cx| the number of verticesin Cy. Notethat Cy = {x} whenever
X is an isolated vertex, which is to say that x is incident to no open edge. We
denote by k(w) the number of open clustersin the configuration w, that is, k(w) is
the number of components of the graph (V, n(w)). The random variable k plays
an important role in the definition of a random-cluster measure, and the reader
is warned of the importance of including in k a count of the number of isolated
vertices of the graph.

Letw € Q. If A and B are sets of vertices of G, wewrite' A <> B’ if there
exists an open path joining some vertex in A to somevertex in B; if AN B # @
then A < B trivially. Thus, for example, Cx = {y € V : X < y}. We write
‘A <5 B’ if there exists no open path from any vertex of A to any vertex of B,
and‘ A < B off D’ if there exists an open path joining some vertex in A to some
vertex in B that uses no vertex in the set D.

If W isaset of vertices of the graph, wewrite dW for the boundary of A, being
the set of verticesin A that are adjacent to some vertex notin A,

dW = {x € W : thereexistsy ¢ W such that x ~ y}.

We write AgW for the set of edges of G having exactly one endvertex in W, and
we call AgW the edge-boundary of W.

We shall be mostly interested in the case when G is a subgraph of a
d-dimensional lattice with d > 2. Rather than embarking on a debate of just
what congtitutes a ‘lattice-graph’, we shall, almost without exception, consider
only the case of the (hyper)cubic lattice. This restriction enables a clear exposi-
tion of the theory and open problems without suffering the complications which
arise through allowing greater generality.

Let d be a positive integer. WewriteZ = {...,—-1,0,1,...} for the set of
all integers, and 79 for the set of all d-vectors x = (X1, X2, . . ., Xq) With integral
coordinates. For x € 74, we generally write x; for thei th coordinate of x, and we
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18 Random-Cluster Measures [1.6]

define d
SO Y) =Y IXi = Yil-
i=1

Theoriginof Z9 isdenoted by 0. Theset {1, 2, . ..} of natural numbersis denoted
by N, and Z; = N U {0}. Theredl lineis denoted by R.

Weturn Z9 into agraph, called the d-dimensional cubic attice, by adding edges
between all pairs x, y of points of 9 with §(x, y) = 1. We denote this lattice by
L9, and we write Z9 for the set of vertices of 1%, and E® for the set of its edges.
Thus, L9 = (z9, EY). We shall often think of L9 as agraph embedded in RY, the
edges being straight line-segments between their endvertices. The edge-set Ey of
V < 79 isthe set of all edges of L9 both of whose endverticesliein V.

Letx, y beverticesof LY. The (graph-theoretic) distance from x to y issimply
3(x,y), and we write |x| for the distance §(0, x) from the origin to x. We shall
make occasional use of another distance function on Z9, namely

X[ = max{|xi| :i =1,2,...,d}, x e 79,
and we note that
IxIl < x| <dlx|.  xez

Forw e Q = {0, 1}Ed, we abbreviateto C the open cluster Cy at the origin.

A box of L9 isasubset of Z9 of the form

Aap={xez%: & <x <bifori=12...d} a,bezd,
and we sometimes write ]
Aap =] ]la. bi]
i=1

as a convenient shorthand. The expression A p IS used also to denote the graph
with vertex-set A p together with those edges of Ld joining two verticesin Aa p.
For x € 79, we write x + Aap for the trandlate by x of the box Aap. The
expression Ay, denotes the box with side-length 2n and centre at the origin,
(2.27) Ap =[—n, n]Cl ={xe 79 [IX]| < n}.
NOtethaI aAn == An \ Anfl.

Intakingwhat iscalled a‘thermodynamiclimit’, oneworksoften on afinite box
A of Z9, and thentakesthelimitas A 1 Z9. Suchalimitisto beinterpreted along
asequence A = (Ap:n=1,2,...) of boxessuch that: A, isnon-decreasingin
nand, foral m, A, 2 [-m, m]d for al large n.

For any random variable X and appropriate probability measure ., we write
w(X) for the expectation of X,

u(X) = / Xdpu.

Let |a] and [a] denotetheinteger part of thereal number a, and theleast integer
not less than a, respectively. Finally, a A b = min{a, b} and a v b = max{a, b}.

(©Springer-Verlag 2006



Chapter 2

Monotonic Measures

Summary. The property of monotonicity of measures leads naturally to
positive association and the FK G inequality. A monotonic measure may be
used asthe seed for aparametric family of measures satisfying probabilistic
inequalitiesincluding influence, sharp-threshold, and exponential-steepness
inequalities.

2.1 Stochastic ordering of measures

Thestochastic ordering of probability measures providesa techniquewhichisfun-
damental to the study of random-cluster measures. Let E be afinite or countably
infinite set, let @ = {0, 1}F, and let # be the o-field generated by the cylinder
eventsof Q. In applicationsof theargumentsof thissection, E will bethe edge-set
of agraph, and thus we refer to members of E as‘edges’, although the graphical
structure is not itself relevant at this stage.

The configuration space 2 is a partially ordered set with partial order given
by: w1 < wy if w1(€) < wa(e) foral e e E. A random variable X : Q@ — R
is called increasing if X(w1) < X(w2) whenever w1 < w2. An event A ¢
F is called increasing (respectively, decreasing) if its indicator function 14 is
increasing (respectively, decreasing). The set 2, equipped with the topology
of open sets generated by the cylinder events, is a metric space, and we speak
of arandom variable X : © — R as being ‘continuous’ if it is a continuous
function on this metric space. Since €2 is compact, any continuous function on
Q is necessarily bounded. In addition, any increasing function X : @ — R is
bounded since X(0) < X(w) < X (1) forw € Q.

Given two probability measures 1, w2 on (2, ), we write u1 <g u2 (or
w2 >« n1), and we say that 1 is stochastically smaller than o, if? u1(X) <
w2(X) for al increasing continuous random variables X on Q.

1Recall that 1(X) denotes the expectation of X under 1, that is, ;(X) = [ Xdu.
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20 Monotonic Measures [2.1]

For two probability measures ¢1, ¢2 on (2, ), a coupling of ¢1 and ¢1 is
a probability measure k on (2, F) x (2, F) whose first (respectively, second)
marginal is ¢1 (respectively, ¢2). There exist many couplings of any given pair
¢1, ¢2, and the art of coupling lies in finding one that is useful. Let w1, u2 be
probability measures on (€2, ). The theorem known sometimes as ‘ Strassen’s
theorem’ states that w1 <« w2 if and only if there exists a coupling « satisfying
k(S) = 1, where S = {(w1, w2) € 22 : w1 < wp} is the ‘sub-diagonal’ of the
product space 2. A useful account of coupling and its applicationsmay be found
in[237].

We call aprobability measure i on (2, ) dtrictly positiveif u(w) > 0for all
w € Q. For w1, wp € 2, wedenoteby w1 Vv wp and w1 A wp the ‘maximum’ and
‘minimum’ configurations given by

w1 V w2(€) = max{wi(e), wa(e)}, ecE,
w1 A w2(€) = minfw1(e), w2(e)}, ecE.

We suppose for the remainder of this section that E isfinite. Thereisa useful
sufficient condition for the stochastic inequality w1 <g 2, asfollows.

(2.1) Theorem (Holley inequality) [185]. Let u1 and w2 be strictly positive
probability measures on the finite space (2, ) such that

(2.2 (w1 vV w)pi(wr A w2) > pa(wi)pe(w2), w1, w2 € Q.

Then
1w1(X) < ua(X) for increasing functions X : Q — R,

whichisto say that 1 <g p2.

Thismay beextendedin (at least) two ways. Firstly, asimilar claimZisvalidin
themoregeneral settingwhere @ = T E and T isafinitesubset of R. Secondly, one
may relax the condition that the measures be strictly positive. See, for example,
[136, Section 4].

Let SC Q? (= Q x Q) bethe set of al ordered pairs (7, w) of configurations
satisfying # < w, as above. In the proof of Theorem 2.1, we shall construct a
coupling « of w1 and w2 such that «(S) = 1. It is an immediate consequence
that 1 <g u2. Thereisavariety of couplings of measures which play rolesin
the theory of random-cluster measures. Another may be found in the proof of
Theorem 3.45.

Condition (2.2) in key to Theorem 2.1, and it is equivalent to a condition of
monotonicity on the one-point conditional distributions.

2An application of such aclaim may be found in the analysis of the Ashkin—Teller model at
Theorem 11.12.
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[2.1] Sochastic ordering of measures 21

(2.3) Theorem. Let n1, u2 be strictly positive probability measureson (2, F).
The following are equivalent.

(8) Thepair w1, up satisfies (2.2).
(b) The one-point conditional probabilities are monotonic in that
p2(w@© =1|w(f)=¢(f)foral f € E\ {e})
> pui(w@ =1]o(f)y=¢(f) foral f e E\{e}) (24)

for all e € E, and all pairsé, ¢ € Q satisfyingé < ¢.
(c) Itisthe casethat

uac®) _ paE)
p2(te) ~ pi(ge)’

£<i ecE. (2.5)

Thefollowing is sufficient for (2.2).

(2.6) Theorem. Let w1, uo be strictly positive probability measures on (2, )
such that

(2.7) p2(w®)pu1(we) = p1(@®)pu2(we), weQ, ecE.

If either w1 or uo satisfies
(2.8) w@Hu(wer) > n@Huws), we. ef ek,

then (2.2) holds.

Proof of Theorem 2.1. The theorem amounts to a ‘mere’ numerical inequality
involving a finite number of positive reals. It may in principle be proved in a
totally elementary manner, using essentially no general mechanism. The proof
given here proceeds by constructing certain reversible Markov chains. Thereis
some extramechanism required, but the method isbeautiful, and in additionyields
a structure which finds applications el sewhere.

The main step of the proof is designed to show that, under condition (2.2), u1
and 2 may be ‘coupled’ in such away that the sub-diagonal S has full measure.
Thisisachieved by constructing acertain Markov chain with the coupled measure
asinvariant measure.

Hereisapreliminary calculation. Let © be astrictly positive probability mea-
sureon (€2, ). We may construct areversible Markov chain with state space Q2
and uniqueinvariant measure . by choosing a suitable generator (or * Q-matrix’)
satisfying the detailed balance equations. The dynamics of the chain involve the
“switching on or off’ of components of the current state. Let G : Q2 — R be
given by

_ wu(we)
pn(@®)’

(2.9 Gwe, %) =1, G(w® we) we, eckE.
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22 Monotonic Measures [2.1]

Welet G(w, ') = Ofor al other pairsw, " withw # «’. Thediagona elements
G(w, w) are chosen in such away that

ZG(a),a}’):O, w € Q.

o' €Q
It is elementary that
n(@)G(w, o) = p@)G', w), oo e,

and therefore G generatesaMarkov chain on the state space 2 whichisreversible
with respect to u. Thechainisirreducible, for the following reason. For w, o’ €
2, one may add edges one by one to n(w) thus arriving at the unit vector 1,
and then one may remove edges one by one thus arriving at «’. By (2.9), each
such transition has a strictly positive intensity, whence the chain isirreducible. 1t
follows that the chain has unique invariant measure w. Similar constructions are
explored in Chapter 8. An account of the general theory of reversible Markov
chains may be found in [164, Section 6.5].

Wefollow next asimilar routefor pairsof configurations. Let 1 and uo satisfy
the hypotheses of the theorem, and let S be the set of all ordered pairs (r, w) of
configurationsin Q satisfying 7 < w. WedefineH : Sx S— R by

(2.10) H (776, 0: 7%, 0®) = 1,
(2.11) H (7, 0% e, we) = MZ(we)’

p2(w®)
(2.12) H (78, ®; 1o, 0°) = ni(me)  p2(we)

(8 pa(w®)’

foral (, w) € Sand e € E; all other off-diagona valuesof H aresetto 0. The
diagonal terms H (7, w; 7, w) are chosen in such away that

Z H(r, w7, o) =0, (r,w) € S.

(n/,0')eS

Equation (2.10) specifiesthat, for r € Q and e € E, theedge eisacquired by =
(if it does not already containit) at rate 1; any edge so acquired is added also to w
if it does not already containit. (Here, we speak of aconfiguration ¥ ‘ containing
theedge €' if ¥ (e) = 1.) Equation (2.11) specifies that, for v € Q ande € E
with w(e) = 1, the edge e is removed from  (and also from x if w(e) = 1) at
the rate givenin (2.11). For ewith w(e) = 1, thereis an additional rate given in
(2.12) at which eisremoved from 7 but not from w. Thisadditional rateisindeed
non-negative, since the required inequality

(2.13) p2(wp1(me) = n1(r®u2(we)  Wheneverr < o,
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follows from (2.2) with w1 = 7€ and w2 = we.

Let (Yi, Zt)t>0 be aMarkov chain on S with generator H, and set (Yo, Zg) =
(0, 1), where 0O (respectively, 1) is the state of all zeros (respectively, ones). We
write P for the appropriate probability measure. Since all transitions retain the
ordering of the two componentsof the state, we may assumethat the chain satisfies
P(Y; < Zifordlt) = 1. By examination of (2.10)—«(2.12) we see that Y =
(Y; : t > 0) isaMarkov chain with generator given by (2.9) with u = u3, and
that Z = (Z; : t > 0) arisessimilarly with u = uo. Hereisabrief explanation of
this elementary step in the case of Y, asimilar argument holdsfor Z. For = € Q
ande e E,

P(Yerh =% Yy = 7e)
=D P(Yerh =7°| (Y, Z) = (e, ®))P(Zt = @ | Y = Te)

we

=) [h+oMPZi=w|Yi=m) by (210)
weR

=h + o(h).
Similarly, with Je the event that e is open,

P(Yiih =7e | Yo = 7®)
== Z ]P((Yt-‘rha Zt-l—h) = (ﬂe, Cl)/) | (Yta Zt) = (Treﬂ a)e))

we e, W' € xP(Zy = »® | Y = ”e)
= > [{H@® 0% me, we) + H (7% % 7e, ) }h + o(h)]
wede XP(Zy = 0% | Yy = %)
-y [’“(”i) h+ o(h)] P(Zi = 0®| Y =% by (2.11) and (2.12)
e ua(®)
_ n1(me) h + o(h)
a1 (®) '

Let « be an invariant measure for the paired chain (Y, Zt)t>0. SinceY and Z
have (respective) uniqueinvariant measures 1 and w2, the marginalsof « are 1
and 2. SinceP(Y; < Z; foralt) =1,

K9 =k({(r.0): 7 <w}) =1,

and « istherequired ‘coupling’ of w1 and .
Let (7, w) € Sbechosen according to the measure x. Then

n1(X) =k (X(r)) < k(X (w)) = p2(X),
for any increasing function X. Therefore 1 <g u2. O
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24 Monotonic Measures [2.1]
Proof of Theorem 2.3. Inequality (2.4) is equivalent to

12O [1aE®) + naGe)] = naE®)[1a(t®) + pa(se)l,

which isthe same as (2.5). Therefore, (b) and (c) are equival ent.

Itisclear that (a) implies (c). Suppose conversely that (c) holds. We identify
aconfiguration w €  with the set of indices n(w) at which » takes the value 1.
Let wy, wp € Q, and write Ax = n(wk). Let B = A1\ A = {b1, by, ..., b},
and write Bs = {by, by, ..., bs} for s > 1. Assume w1 # wy, and without loss of
generality thatr > 1. By (2.5),

pa(@1vwz)  pa(A2UB)  pa(A2UBr-1)  pa(A2U By)
po(w2)  p2a(A2UBr_1) u2(A2U Br_p) u2(A2)
pi((ALNA)UB)  pa((ALNA2) UBr-1)
T (AN A UBr—1) pi((ArN Az) UBr-2)
~ ma((ALN A) U By)

pni(A1 N Az)
__ ey
(w1 A w2)
asrequired for (a). The above may be called a ‘telescoping’ argument. O

Proof of Theorem 2.6. We prove first by a telescoping argument that (2.7) is
equivalent to

n2(¢) - n1(¢)

(2.14) > ,
w2(8) = pa)

£,0e€Q, §=¢.

Asabove, weidentify aconfigurationw € Q withtheset of indicesn (w) atwhichw
takesthevaluel. That (2.14) implies(2.7) isimmediateonsetting ¢ = w®, & = we.
Conversely, let £, ¢ € Q satisfy & < ¢. Let B =n(¢) \ n(€) = {by, bz, ..., br},
and write Bs = {by, by, ..., bs} for s > 0. We may assume & # ¢ sothatr > 1.
By (2.7),

pa(®) _ lL[ p2(n(§) U Bs)
n2(®) — o5 m2(n(€) UBs-1)

N lL[ pm@UBy) )
T i mE UBsy) i)

s=1

s=1

Inequality (2.8) may be written as

p@® m(@f)

2.15 ,
&5 w(wd) ~ mwer)

we, e fekE.
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Theedge f is‘switched on’ in both numerator and denominator of the left side,
and ‘switched off’ on theright side. Let&,¢ € Q andé < ¢. By asequentid
application of (2.15) toall edges (other thanpossibly €) inn(¢)\n(§),(2.8) implies

n(z® - n(E®)

2.16 , <¢,eekE.

(216) wGo) - nE) " f

It follows by Theorem 2.3 that

2.17) w(wi Vv w2) . w(w1) ’ o1 w3 € Q.
w(w2) w(wi A w2)

Assumethat (2.7) holds,and et w1, wo € Q. If ug satisfies(2.8), thenit satisfies
(2.17), and (2.2) follows from (2.14) with ¢ = w1 V w2, § = wp. Similarly, if
w2 satisfies (2.8), it satisfies (2.17), and (2.2) follows from (2.14) with ¢ = w3,
& = w1 N w2. O

2.2 Positive association

Let E be afinite set as in the last section, and let Q@ = {0, 1}E. A probability
measure . on 2 issaid to havethe FKG lattice property if it satisfies the so-called
FKG lattice condition:

(2.18) w(w1 VvV w)pu(wr A w2) = p(wp) (), w1, w2 € Q.

It is a consequence of the Holley inequality (Theorem 2.1), as follows, that any
gtrictly positive probability measure with the FKG lattice property satisfies the
so-called FKG inequality. A stronger result will appear at Theorem 2.27.

(2.19) Theorem (FK G inequality) [124, 185]. Let u be a strictly positive prob-
ability measure on  satisfying the FKG lattice condition. Then

(2.20)  w(XY) = u(X)ucY) for increasing functions X, Y : Q — R.

There is an extensive literature on the FKG inequality® and its extensions.
See, for example, [2, 25, 184]. One may extend the inequality to probability
measures on sample spaces of theform T E with T afinite subset of R. Inaddition,
some of the results of this section are valid for measures that are not strictly
positive. Any probability measure u satisfying (2.20) is said to have the property
of ‘positive association’ or, more concisely, to be ‘positively associated’. We
consider in Section 4.1 the positive association of measureson = {0, 1}F when
E is countably infinite.

3The history and origins of the FKG inequality are described in the Appendix.
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26 Monotonic Measures [2.2]

Correlation-type inequalities play an important role in mathematical physics.
For example, the FKG inequality is a fundamental tool in the study of the Ising
and random-cluster models, see Chapter 3. There are many other correlation
inequalities in statistical physics (see [118]), but these do not generally have a
random-cluster equivalent and are omitted from the current work.

Proof. Since inequality (2.20) involves a finite set of real numbers only, it may
in principle be proved in atotally elementary manner, [280]. We follow here the
more interesting route via the Holley inequality, Theorem 2.1. Assume that
satisfiesthe FK G lattice condition (2.18), and let X and Y beincreasing functions.
Leta> O0andY =Y +a. Since

w(XY") = uX)uY) = n(XY) = u(X)u(Y),
it sufficesto prove (2.20) with Y replaced by Y’. We may pick a sufficiently large
that Y (w) > Oforal w € Q. Thus, it sufficesto prove (2.20) under the additional
hypothesisthat Y is strictly positive, and we assume henceforth that this holds.
Define the strictly positive probability measures wq and up on (2, F) by p1 = n
and
Y(w)p(w)

w2(w) Zw/gg Y@@’ w € Q.
SinceY isincreasing, inequality (2.2) followsfrom (2.18). By the Holley inequal-
ity, u2(X) > n1(X), whichisto say that

Y peo X(@)Y (@) p(w)

Y eq Y (@)@

> ) X)) O

we

If X isincreasing and Y is decreasing, we may apply (2.20) to X and —Y
to find, under the conditions of the theorem, that u(XY) < u(X)u(Y). Inthe
special case when X = 14, Y = 1, the indicator functions of events A and B,
we obtain similarly that

(2.21) w(ANB) > u(Au(B) for increasing events A, B.

Let X = (X1, X2, ..., X;) be avector of random variables taking values in
{0, 1}'. We speak of X as being positively associated if its law on {0, 1} is
itself positively associated. Let Y = h(X) whereh : {0,1}' — {0,1}5isa
non-decreasing function. It is standard that the vector Y is positively associated
whenever X ispositively associated. The proof is straightforward, as follows. Let
A, B beincreasing subsets of {0, 1}5. Then

P(Y e AnB) =P(X e {(h"*A} n {h~1B})
>P(X e htAPX e h™1B)
=P(Y € AP(Y € B),
sinceh~1A and h—1B areincreasing subsets of {0, 1}".
We turn now to a consideration of the FK G lattice condition. Recall the Ham-

ming distance between configurations defined in (1.26). A pair w1, w2 € Q is
called comparableif either w1 < w2 or w1 > w2, and incomparable otherwise.
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(2.22) Theorem. Astrictly positive probability measure u on (€2, ) satisfiesthe
FKG latticeconditionif and only theinequality of (2.18) holdsfor all incomparable
pairs i, wp € Q with H (w1, w2) = 2.

For pairs w1, wy that differ on exactly two edges e and f, the inequality of
(2.18) is equivalent to the statement that, conditional on the states of all other
edges, the states of e and f are positively associated.

Proof. Theinequality of (2.18) isatriviality when H (w1, w2) = 1, andtheclaim
now follows by Theorem 2.6 with u1 = pup = . Seeaso [257, Lemma6.5]. [J

TheFK Glatticeconditionissufficient but not necessary for positive association.
Itisequivalent for strictly positive measuresto a stronger property termed ‘ strong
positive-association’ (or, sometimes, ‘strong FKG’). For F C E and & € Q, we
write QF = {0, 1}F and

(2.23) Ol ={weQ:w@ =t@fordlecE\F},

the set of configurations that agree with & on the complement of F. Let « bea
probability measure on (€2, ), and let F, & be such that M(Qg,:) > 0. We define

the conditional probability measure /f,: on Qg by

p(wF x §)

o wF € QF,
n(2g)

(2.24) W (0F) = w(owr | ) =

where wg x & denotes the configuration that agrees with wg on F and with &€ on
its complement. We say that  isstrongly positively-associated if: forall F C E

and all £ € @ such that /L(Qi) > 0, the measure/ﬁ: is positively associated.
We call i monotonicif: foral F C E, al increasing subsets A of QF, and all
£,¢ € Qsuchthat w(Q%), u(Q%) > 0,

(2.25) WE(A) < pE(A)  whenever <.

Thatis, u ismonotonicif, foral F C E,

(2.26) uE <qpb  whenevers <¢.

We call u 1-monotonic if (2.26) holds for all singleton sets F. That is, u is

1-monotonic if and only if, for all f € E, w(Js | Qf) is a non-decreasing
function of £. Here, J; denotesthe event that f is open.
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(2.27) Theorem®. Let 1 be a strictly positive probability measure on (2, ).
The following are equivalent.

(8) w isstrongly positively-associated.

(b) u satisfiesthe FKG lattice condition.

(c) w ismonotonic.

(d) w is1-monotonic.

Itisanear triviality to check that any product measure on 2 satisfies the FKG
lattice condition, and thus product measures are strongly positively-associated.
Thisisthe q = 1 case of Theorem 3.8, and is usually referred to as Harris's
inequality, [181]. Wegivetwo examplesof probability measuresthat arepositively
associated but do not satisfy the statements of the above theorem.

(2.28) Example®. Lete, § € (0, 1), and let 110, 111 be the probability measures on
{0, 1}2 given by

no(010) = no(001) =4,  uo(000) =1 — 24,
pa(111) = p1(100) = 3.
Lete €[0,1] andset u = e + (1 — €)pu1. Notethat
w(011) = 1 (101) = u(110) = 0.

It may be checked that v does not satisfy the FK G lattice condition whereas, for
sufficiently small positive values of the constantse, §, the measure 1 is positively
associated. Notefrom the abovethat u isnot strictly positive. However, astrictly
positive example may be arranged by replacing w by the probability measure
w' = (1—mn)u+ nuz where

112(011) = 112(101) = p2(110) = 3

and n issmall and positive.

(2.29) Example®. Let X and Y be independent Bernoulli random variables with
parameter 3, so that
P(X:O):P(X:l):%,
and similarly for Y. Let Z = max{X, Y}. Itisclear that
PX=1|Z=1)>P(X=1), PX=1|Y=Z=1)=P(X=1).
4Closely related material isdiscussed in [204]. The equivalence of (a) and (b) is attributed in
[8] to J. van den Berg and R. M. Burton (1987). See[136] for a further discussion of monotonic
measures.

SProposed by J. Steif.
8Proposed by J. van den Berg.
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It is easy to deduce that the law p of thetriple (X, Y, Z) is not monotonic. Itis
however positively associated since the triple (X, Y, Z) isan increasing function
of the independent pair X, Y.

As in the previous example, u is not strictly positive, a weakness which we
remedy differently than before. Let X', Y’, Z’ (respectively, X", Y”, Z") be
Bernoulli random variableswith parameter § (respectively, 1 — §), and assume the
maximal amount of independence. Thetriple

(A, B,C) = ((XVX)AX", (YVY)AY" (ZVZ)A2Z")

isanincreasing function of positively associated random variables, and istherefore
positively associated. However, for small positive §, it isonly asmall (stochastic)
perturbation of the original triple (X, Y, Z), and one may check that (A, B, C) is
not monotonic. Itiseasily verifiedthat P((A, B, C) = w) > Oforal w € {0, 1}3.

Proof of Theorem 2.27. Throughout, n is assumed strictly positive.

(8 < (b). We provefirst that (a) implies (b). By Theorem 2.22, it sufficesto
prove (2.18) for two incomparable configurations w1, wy that disagree on exactly
two distinct edgese, f € E. Weorder E = (e, €2, ..., en) withe; = eand
e = f, and we express a configuration w asa‘word’ w(e1) - w(e2) - ...  w(em)
in the alphabet with two letters. Thusw1 =0-1-wandwy = 1-0- w for some
word w of length |E| — 2. By strong positive-association, «(Xy) = u(X -y - w)
satisfies

a(ll)[a(OO) + «a(01) + «x(10) + ot(ll)] > [a(Ol) + a(ll)][a(lO) + ot(ll)],
which may be simplified to obtain as required that
«(11)x(00) > «(01)x(10).

We prove next that (b) implies (). Suppose (b) holds, and let F € E and
& € Q. Itisimmediate from (2.24) that

/fp (w1V a)Z)M?: (w1 A w2) = /fp (wl)/fp (w2), w1, w2 € QF.

By Theorem 2.19, M?: is positively associated.
() = (c). By the Holley inequality, Theorem 2.1, it suffices to prove for
wF, pF € QF that

IE(@F V pF)IE (@F A pF) > 1E (0F) U (pF)  Whenever & < ¢.

Thisis, by (2.24), an immediate consequence of the FK G lattice property applied
tothepair wg x ¢, pp x &.
(c) = (d). Thisistrivial.
(d) = (b). Let u be 1-monotonic. By Theorem 2.3, the pair u, n satisfies
(2.2), which isto say that u satisfies the FK G lattice condition. O
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2.3 Influence for monotonic measures

Let N > 1, andlet E bean arbitary finiteset with |[E| = N. WewriteQ2 = {0, 1}E
as usual, and ¥ for the set of all subsetsof 2. Let . be aprobability measure on
(2, F), and A an increasing event. The (conditional) influence on A of the edge
e € E isdefined by

(2.30) Ia(® =n(AlJe=1 —u(A| Je=0),

where J = (Je : e € E) denotes’ the identity function on 2. There has been an
extensive study of the largest influence, maxe | a(€), when p isaproduct measure,
and this has been used to obtain concentration theorems for ¢p(A) viewed as
afunction of p, where ¢p denotes product measure with density p on Q. Such
results have applicationsto several topicsincluding random graphs, random walks,
and percolation. Theorems concerning influence were first proved for product
measures, but they may be extended in a natural way to monotonic measures.

(2.31) Theorem (Influence) [141]. Thereexistsaconstant csatisfyingc € (0, co)
suchthat thefollowingholds. Let N > 1, let E beafinitesetwith |E| = N, andlet
Abeanincreasing subset of © = {0, 1}E. Let u beastrictly positive probability
measure on (2, ) that is monotonic. There exists e € E such that

. logN
Ia(e) = cmin{u(A), 1— u(A)}gT.

Thereare several useful references concerning influencefor product measures,
see [125, 126, 200, 201, 329] and their bibliographies. The order of magnitude
N~Llog N isthe best possible, see[34].

Proof. Let i bestrictly positiveand monotonic. Theideaisto encode  intermsof
L ebesgue measure A on the Euclidean cube[0, 1] &, and then to apply theinfluence
theorem® of [67]. Thiswill be done viaa certain function f : [0, 1]& — {0, 1}E
constructed next. A similar argument will be used to prove Theorem 3.45.

We may suppose without loss of generdlity that E = {1,2,..., N}. Letx =
(xi:i=12...,N)e[0,1F, andlet f(x) = (fix):i =1,2,...,N) e RE
be given recursively asfollows. Thefirst coordinate f1(x) is defined by:

1 if 1-—ay,
232) with ai=p(hi=1), let f100 = { =t
0 otherwise.
Suppose we know thevalues f; (x) fori =1,2,...,k— 1. Let
(2.33) a=un(k=1F=ficofori =12 ..., k—1),

"Thus, Je denotes both the event {w € Q : w(e) = 1} and its indicator function.
8An interesting aspect of the proof of this theorem is the use of discrete Fourier transforms
and hypercontractivity.
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and define

224 ; 1 ifxk>1-a,
(2:34) k) = { 0 otherwise.

It may be shown as follows that the function f : [0, 1] — {0, 1}F is non-
decreasing. Let x < X/, and write ax = ax(x) and &, = ax(x’) for the values
in (2.32)«2.33) corresponding to the vectors x and x'. Clearly a; = a3, o that
f1(x) < f1(xX). Since u is monotonic, a; < a,, implying that f2(x) < f2(x').
Continuing inductively, we find that fx(x) < fx(x’) for al k, which isto say that
f(x) < f(X).

Let A € F beanincreasing event, and let B bethe increasing subset of [0, 1]F
givenby B = f~1(A). We make four notes concerning the definition of f.

(a) For givenx, each ax dependsonly on x1, Xo, . . ., Xk—1.
(b) Since p isstrictly positive, the ay satisfy 0 < ax < 1forall x e [0, 1]N and
k e E.
(c) Forany x € [0, 1]N and k € E, thevalues fx(x), fkr1(X), ..., fn(X) de-
pendonxi, X2, ..., Xk—1 only throughthevalues f1(x), f2(x), ..., fk—1(X).
(d) Thefunction f and the event B depend on the ordering of the set E.
LetU = (U :i =1,2,..., N) betheidentity function on [0, 1]&, so that U
haslaw A. By the definition of f, f(U) haslaw u. Hence,
(2.35) w(A) = A(f(U) e A) =AU e f71(A) = A(B).
Let

Kg()=A(B|Ui =1 —-AB|Ui =0),

where the conditional probabilities are interpreted as

A(B | Ui =u) =Ii[BA(B|Ui €(U—€,Uu+e).
€

By [67, Thm 1], there exists a constant ¢ € (0, co), independent of the choice
of N and A, such that: there existse € E with

(2.36) Ks(e) > cmin{x(B),l—x(B)}'oiN.
We choose e accordingly. We claim that
(2.37) Ia(j) = Kg(j)  forjeE.

By (2.35) and (2.36), it sufficesto prove (2.37). We provefirst that
(2.38) la(l) > Kg(1),
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which is stronger than (2.37) with j = 1. By (b) and (c) above,

(2.39) IA) = (Al =1 —u(Al L =0)
=MB| f1U)=1) - AB| f1(U) =0
=AB|Ur>1-a)—-rBUi=<1-a)
=A(B|U1=1)—-1(B|U1=0)
= Kg(1).

We turn to (2.37) with j > 2. We re-order the set E to bring the index j to
the front. That is, we let F be the re-ordered index set F = (kq, ko, ..., kn) =
(,4,2,...,j—1j+1,...,N). Letg= (g : r =1,2,..., N) denote the
associated function given by (2.32)—(2.34) subject to the new ordering, and let
C =g 1(A). Weclaim that

(2.40) Kc(k1) > Kg(j).

By (2.39) with E replaced by F, Kc (k1) = 1a(j), and (2.37) follows. It remains
to prove (2.40), and we use monotonicity again for this. It sufficesto prove that

(2.41) MC|Uj=1)=xrxB|Uj=1,
together with the reversed inequality given Uj = 0. Let
(2.42) U = (Uq, Ug,...,Uj—1, L Ujqa, ..., Un).

The0/1-vector f(U) = (fi(U) :i =1, 2,..., N) isconstructed sequentially (as
above) by consideringtheindices1, 2, ..., Ninturn. Atstagek, wedeclare fx(U)
equal to 1 if Uy exceeds a certain function ay of the variables fj (U), 1 <i < k.
By the monotonicity of u, thisfunction is non-increasing in these variables. The
index j plays a specia rolein that: (i) fj(U) = 1, and (ii) given this fact, it is
more likely than before that the variables fi(U), | < k < N, will take the value
1. Thevalues fc(U), 1 < k < | are unaffected by the value of Uj.

Consider now the 0/1-vector g(U) = (g, (U) : 1 =1,2,..., N), constructed
in the same manner as above but with the new ordering F of the index set E.
First we examineindex k; (= j), and we automatically declare gy, (U) = 1 (since
Uj = 1). We then construct gy, U),r =2,3,..., N, insequence. Since the ax
are non-decreasing in the variables constructed so far,

(2.43) gk (U) > fi, (U), r=2,3...,N.
Therefore, g(U) > f(U), and hence
(244) AMC|Uj=1) =xrgU)e A >rfU)e A =irB|Uj=1).

Inequality (2.41) has been proved. The same argument implies the reversed in-
equality obtained from (2.41) by changing the conditioningto Uj = 0. Inequality
(2.40) follows, and the proof is complete. O
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2.4 Sharp thresholds for increasing events

We consider next certain families of probability measures (., indexed by a pa-
rameter p € (0, 1), and we prove a sharp-threshold theorem subject to a hypoth-
esis of monotonicity. The ideais as follows. Let A be a non-empty increasing
event in Q = {0, 1}N. Subject to a certain hypothesis on the wp, the function
f(p) = up(A) isnon-decreasingwith f (0) = Oand f (1) = 1. If Ahasacertain
property of symmetry, the sharp-threshold theorem asserts that f (p) increases
steeply from O to 1 over ashort interval of p-valueswith length of order 1/log N.

We use the notation of the previous section. Let u be aprobability measure on
(2, F). For p € (0, 1), let up be the probability measure given by

(245)  pp(o) = Ziu(w) :]"[ PO - p>1w<e>} . weQ,
p

ecE

where Zp, is the normalizing constant

Zp =) ) :]—[ P (L p)l‘”(e)} :

weR ecE

It is elementary that © = i, and that (each) p.pp is strictly positive if and only

if u is dtrictly positive. It is easy to check that (each) pp satisfies the FKG
lattice condition (2.18) if and only if u satisfies this condition, and it follows by
Theorem 2.27 that, for strictly positive u, 1 ismonotonicif and only if (each) wp
is monotonic. In order to prove a sharp-threshold theorem for the family pp, we
present first adifferential formulaof thetypereferred to as Russo’sformula, [ 154,
Section 2.4].

(2.46) Theorem [39]. For arandomvariable X : @ — R,

d
47)  —up(X) =

i covp(|nl, X), pe (01,

1
pd—p

where covy, denotes covariance with respect to the probability measure 1, and
n(w) isthe set of w-open edges.

We note for later use that

(2.48) covp(|nl, X) = Z covp(Je, X).

ecE

Proof. We follow [39, Prop. 4] and [156, Section 2.4]. Write
vp(@) = P — Nl @), we,
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<0 that
1
(2.49) Hp(X) = — > X(@)vp(®).
P weR
It is elementary that
(2.50)
d 1 In(@)] N —[n)| Z,
apte®) = z_p(;z( T 1-p >X(w>vp(w) 71X,

where Z;, = dZp/dp. Setting X = 1, wefind that

1 /
0= —— up(n| — pN) — =2,
od— phP Inl — PN) Z,

whence
d
p(l— p)d—pup(m = up([Inl = PN]IX) — pp(Inl — PN)p(X)

= pup(InIX) — wp(nDup(X)
= covp(Inl, X). O

Let IT be the group of permutationsof E. Any = € IT acts’ on Q by 7w =
(w(me) : € € E). We say that asubgroup - of IT acts transitively on E if, for all
pairs j, k € E, thereexistsa € 4 withaj = k.

Let A be a subgroup of T1. A probability measure ¢ on (2, ) is called A-
invariantif ¢ (w) = ¢ (aw) fordla € A. Anevent A € F iscalled A-invariantif
A =aAfordl o € 4. Itiseasly seenthat, for any subgroup 4, u is A-invariant
if and only if (each) up is A-invariant.

(2.51) Theorem (Sharp threshold) [141]. There exists a constant ¢ satisfying
¢ € (0, c0) such that thefollowing holds. Let N = |E| > 1 andlet A € £ bean
increasing event. Let u be a strictly positive probability measure on (2, ) that
is monotonic. Suppose there exists a subgroup 4 of IT acting transitively on E
such that « and A are A-invariant. Then

252 Liom = —_ min{up(A). 1-pp(A)logN,  pe(©.1)
ST dp T T p-p) PR ’ T
where mp = wp(Je) (1 — 1p(Je)).

Lete € (O, %) and let A be non-empty and increasing. Under the conditions
of the theorem, 1.p(A) increases from € to 1 — € over an interval of values of p
having length of order 1/ log N. Thisamountsto a quantification of the so-called
S-shape results described and cited in [154, Section 2.5]. Note that m, does not
depend on the choice of edgee.

The proof is preceded by an easy lemma. Let
Ip.A(€) = up(A| Je=1) — up(A| Je=0), ecE.

9This differs slightly from the definition of Section 4.3, for reasons of local convenience.
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(253) Lemma. Let A € F. Suppose there exists a subgroup 4 of IT acting
transitively on E such that i« and A are A-invariant. Then Ip a(€) = I a(f) for
ale f e Eandall pe (0,1).

Proof. Sincepu isA-invariant, soisup forevery p. Lete, f € E,andfinda € A
such that ae = . Under the given conditions,

pp(A, =1 = pup@) (@) =Y pplaw)de(aw)

weA weA
= > up(@)de(@) = pp(A, Je=1).
o' €A
We deduce with A = Q that up(Jf = 1) = up(Je = 1). Ondividing, we obtain
that p(A | Jf = 1) = up(A| Je = 1). A similar equality holdswith 1 replaced
by 0, and the claim of the lemmafollows. O

Proof of Theorem 2.51. By Lemma 2.53, Ip a(e) = Ip a(f) fordl e f € E.
Since A is increasing and wp is monotonic, each Ip a(€) is non-negative, and
therefore

CoVp(Je, 1n) = up(Jeln) — up(Je)p(A)
= up(Je) (L — up(Je)) Ip,a(E)
> Mplp,a(e), ecE.

Summing over theindex set E asin (2.47)—(2.48), we deduce (2.52) by Theorem
2.31 applied to the monotonic measure p. O

2.5 Exponential steepness

This chapter closes with a further differential inequality for the probability of a
monotonic event. Let A € ¥ and w € 2. We define Ha(w) to be the Hamming
distance from w to A, that is,

(2.54) Ha(w) = inf{H (0, 0) 0 € A},
where H (o, w) isgivenin (1.26). Note that
(2.55)
inf{Z[a/(e) —w®]:0 >0, o€ A} if Aisincreasing,
Ha(w) = ©

inf{Z[a)(e) - @] <0, o€ A} if Aisdecreasing.
e

Suppose now that A isincreasing (respectively, decreasing). Here are three useful
facts concerning Ha.
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(i) Ha isadecreasing (respectively, increasing) random variable.
(ii) The function || + Ha (respectively, |n| — Ha) is increasing, since the
addition of asingle open edgeto aconfiguration w causes |n(w)| to increase
by 1, and Ha(w) to decrease (respectively, increase) by at most 1.
(iii) We havethat Ha(w)1a(w) = 0forw € Q.
Given a probability measure n on (2, ), the associated measures fip,
p € (O, 1), are given by (2.45).

(2.56) Theorem [153, 163]. Let u be a strictly positive probability measure on
(2, ) that ismonotonic. For a non-empty event A € #,and p € (0, 1),

2.57 —lo A > — """ if Aisincreasing,
(2.57) dp gup(A) = 01— p) g
d ,pr(HA) . . .
2.58 — lo A <————", if Alisdecreasing.
(2.58) dp gup(A) = p(1—p) g

Inequality (2.57) bears a resemblance to a formula valid for percolation that
may be written as
d 1
—loggp(A) = —¢p(Na | A),
dp d¢p p®?
where N isthenumber of pivotal edgesfor theincreasing event A, and ¢p denotes
product measure with density p on (2, ). See[154, p. 44] for further details.

Proof. Since u is assumed strictly positive and monotonic, it satisfies the FKG
lattice property. Therefore, every up setisfiesthe FK G lattice property, and hence
is positively associated. Let A € F be non-empty and increasing. By (2.47),
(in—(iii) above, and positive association,

d 1
—up(A) = ————cov 1
apP A = g Vel 1a)
1
1
> ————covp(Ha, 1
=" pdl-p p( A 1A)
_ kp(HA)1p(A)
pl—-p
and (2.57) follows. The argument is easily adapted for decreasing A. O

Let A € F be non-empty and increasing. |nequality (2.57) is usually used
in integrated form. Integrating over the interval [r, s], and using the facts that
p(l—p) < ;11 and that H p is decreasing, we obtain that

S
(2.59) Hr(A)SHs(A)eXp{—Af/ Hp(HA)dp}
r

< us(Aexp{—4(s—nus(Hp)}, O<r<s<1

This may sometimes be combined with a complementary inequality derived by a
consideration of ‘finite energy’, see Theorem 3.45.
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Chapter 3

Fundamental Properties

Summary. The basic properties of random-cluster measures are presented in
amanner suitable for future applications. Accounts of conditional random-
cluster measures and positive association are followed by differential formu-
lae, asharp-threshold theorem, and exponential steepness. There are several
useful inequalitiesinvolving partition functions. Theseries/paralel lawsare
formulated, and the chapter ends with a discussion of negative correlation.

3.1 Conditional probabilities

Throughout this chapter, G = (V, E) will be assumed to be afinite graph. Let
¢G,p,q be the random-cluster measure on G. Whether or not a given edge e is
open depends on the configuration on the remainder of the graph. The relevant
conditional probabilities may be described in the following useful manner.

Fore = (x,y) € E, theexpression G\ e (respectively, G.e) denotesthe graph
obtained from G by deleting (respectively, contracting) the edge e. We write
Qe = {0, 1}E\® and, for w € Q, we define w(e) € Qe by

a)<e)(f)=a)(f), f e E, f;ée.
Let Ke denote the event that x and y are joined by an open path not using e.

(3.1) Theorem (Conditional probabilities) [122]. Let p € (0, 1), g € (0, c0).
(8 Wehavefor e € E that

dG\ep,glwe) ifj=0,

e)=j)= 3.2
G, pql@ | w(©) =|) { boepa(@e) =1L (3.2)
and
p if we € Ke,
96, pq@(© =1|wg) = l p . (3.3)
— if Ke.
prqd_p v FRe

(©Springer-Verlag 2006



38 Fundamental Properties [3.1]

(b) Conversely, if ¢ isa probability measure on (2, ) satisfying (3.3) for all
weQandeec E, theng = ¢ pq-

The effect of conditioning on the absence or presence of an edge eisto replace
themeasure ¢, p,q by therandom-cluster measure on the respectivegraph G\ eor
G.e. Inaddition, the conditional probability that e isopen, given the configuration
elsawhere, depends only on whether or not K occurs, and is then given by the
stated formula. By (3.3),

(34) 0<d¢g,pg® =1]|we) <1, eeE, pe(0,1), q € (0,00).

Thus, given w(e), €ach of the two possible states of e occurswith astrictly positive
probability. Thisuseful fact isknown asthe' finite-energy property’, andisrelated
to the property of so-called ‘insertion tolerance’ (see Section 10.12).

We shall sometimes need to condition on the states of more than one edge.
Towardsthisend, we state next amore general property than (3.2), beginning with
a brief discussion of boundary conditions; more on the latter topic may be found
inSection4.2. Leté € Q, F C E, and et Qf: be the subset of 2 containing all
configurations ¥ satisfying v (e) = &(e) for all e ¢ F. We define the random-
cluster measure ¢,"’Z’p’q on (2, F) by

(3.5 1
Pepq@ =1 Zr(P Q) Lok
0 otherwise,

where k(w, F) isthe number of components of the graph (G, n(w)) that intersect
the set of endverticesof F, and

(3.6) Zpa=Y {[]rea- p)l—w(e)}qk(w,F).
COEQ?: ecF

Note that ¢i’p’q(9i) =1

(3.7) Theorem. Let p € [0,1],q € (0,00), and F € E. Let X be a random
variablethat is £r-measurable. Then

$6pa(X | TE)E) =g ,q(X),  Ee.

In other words, given the states of edges not belonging to F, the conditional
measure on F is a random-cluster measure subject to the retention of open con-
nections of & using edges not belonging to F.

Hereisafina note. Let p € (0,1) and g # 1. Itis easily seen that the states
of two digtinct edges e, f are independent if and only if the pair e, f liesin no
circuit of G. Thismay be proved either directly or via the simulation methods of
Sections 3.4 and 8.2.
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Proof of Theorem 3.1. (&) Thisis easily seen by an expansion of the conditional
probability,

$G.p.q(@e)/$G.p.q(Je) if j =0,
$G.p.q(@°) /G, p.q(Je) if j =1,

where Je = {w € Q : w(e) = 1}, and we, w® are given by (1.25).
Similarly,

w € 2,

G, pql@|wE©) =]j) = {

$G.p.q(®°)
= 1 =
be.pa@® =1lw@) =2~ p.q(®®) + ¢G.p.q(we)

= [p/(1— p)]\n(we)\qk(we)
= [p/(l — p)]|'}(we)|qk(we) + [p/(l _ p)]\n(a)e)\qk(we)

o/i-p
/A—piri T@ecKe
PIA-D

[p/1-pP]+q

where n(w) is, as usual, the set of open edgesin Q.

(b) Theclaimisimmediate by thefact, easily proved, that astrictly positive proba
bility measure ¢ is specified uniquely by the conditional probabilities
PpwEe) =1|wg) we eckE. O]

Proof of Theorem 3.7. This holds by repeated application of (3.2), with one
application for each edge not belongingin F. O

3.2 Positive association

Let ¢p,q denote the random-cluster measure on G with parameters p and q. We
shall see that ¢p  satisfies the FK G lattice condition (2.18) whenever q > 1, and
we arrive thus at the following conclusion.

(3.8) Theorem (Positive association) [122]. Let p € (0,1) and g € [1, 00).

() Therandom-cluster measure ¢p q is strictly positive and satisfies the FKG
lattice condition.

(b) The random-cluster measure ¢p q is strongly positively-associated, and in
particular

6p,q(XY) = ¢p q(X)Pp,q(Y) for increasing X, Y : Q — R,
¢p,q(AN B) = ¢p,q(A)gp,q(B) for increasing A, B € F.

Itisnot difficult to see that ¢ o is not (in general) positively associated when
g € (0, 1), asillustrated in the examplefollowing. Let G be the graph containing
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just two vertices and having exactly two paralel edges e and f joining these
vertices. It isan easy computation that

p2g2(q — (1 — p)?
Z(p, q)? ’

(3.9 Op.q(Je N Jt) — ¢p,q(J)dp,q(Jf) =

where Jq isthe event that g is open. Thisis strictly negativeif 0 < p,q < 1.

Proof of Theorem3.8. Let p € (0,1) andq € [1, o0). Part (b) follows from (@)
and Theorem 2.27. It is elementary that ¢p q is strictly positive. We now check
asrequiredthat ¢p ¢ satisfies the FKG lattice condition (2.18). Sincethe set n(w)
of open edgesin a configuration w satisfies

(310) [n(w1V w2l + In(w1 A w2)| = [n(w)| + IN(w2)l,  w1,02 € Q,
it suffices, on taking logarithms, to prove that
(3.11) K(w1 V w2) + k(w1 A @2) = K(w1) + k(w2), w1, w2 € Q.

By Theorem 2.22, we may restrict our attention to incomparable pairs w1, w2
that differ on exactly two edges. There must then exist distinct edgese, f € E
and a configuration w € Q such that w1 = wf, w2 = a)ef As in the proof of
Theorem 2.27, we omit reference to the states of edges other than e and f, and
we write w; = 10 and wy = 01. Let D+ be the indicator function of the event
that the endvertices of f are connected by no open path of E \ {f}. Since Ds is
a decreasing random variable, we havethat D (10) < Ds (00). Therefore,

k(10) — k(11) = D¢ (10) < D;(00) = k(00) — k(01),

which implies (3.11). O

Theorem 3.8 applies only to finite graphs G, whereas many potential applica-
tions concern infinite graphs. We shall see in Sections 4.3 and 4.4 how to derive
the required extension.

3.3 Differentia formulae and sharp thresholds

One way of estimating the probability of an event A is via an estimate of its
derivativedep q(A)/dp. Whenq = 1, thereisaformulafor thisderivativewhich
has proved very useful in reliability theory, percolation, and elsewhere, see [22,
126, 154, 287]. Thisformulahas been extended to random-cluster measures. For
w e Q,let|n| = [n(w)| =Y g w(e) bethenumber of open edges of w asusual,
and k = k(w) the number of open clusters.
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(3.12) Theorem [39]. Let p € (0, 1), q € (0, 00), andlet ¢p q bethe correspond-
ing random-cluster measure on a finite graph G = (V, E). We have that

d 1
3.13 (X)) = ———
549 ap?P9) = A=)

d 1
(314) EQ&p’q(x) - aCOVp’q(k, X),

covp,q(Inl, X),

for any random variable X : Q@ — R, where covp q denotes covariance with
respect to ¢p q.

In most applications, we set X = 1,, the indicator function of some given
event A, and we obtain that

Bp.q(Laln]) — ¢p.q(Adp.q(Inl)
p(l— p) ’

d
(3.15) d_pd)p’q (A) =

with asimilar formulafor the derivative with respect to g.

Here are two simple examples of Theorem 3.12 which result in monotonicities
vaidforal g € (0,00). Leth : R — R be non-decreasing. On setting X =
h(|n]), we have from (3.13) that

d
— X) = ,h > 0.
dp¢>p,q( ) 0 covp,q(Inl, h(|nl))

1
1-p
In the special case h(x) = x, we deduce that the mean number of open edges

is a non-decreasing function of p, for al q € (0, co). Similarly, by (3.14), for
non-decreasing h,

d 1
— h(k)) = —covp q(k, h(k)) > 0.
dq¢p,q( (k) q p.q(K, h(k))

This time we take h = —1(_. 15, S0 that —h is the indicator function of the
event that the open graph (V, n(w)) is connected. We deduce that the probability
of connectedness is a decreasing function of q on the interval (0, co). These
examplesare curiosities, given the failure of stochastic monotonicity whenqg < 1.

Let g € [1,00). Since ¢p g satisfies the FKG lattice condition (2.18), it is
monotonic. Let 4 be a subgroup of the automorphism group! Aut(G) of the
graph G = (V, E). Wecdl E A-transitiveif A actstransitively on E.

1The automorphism group Aut(G) is discussed further in Sections 4.3 and 10.12.
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(3.16) Theorem (Sharp threshold) [141]. There exists an absolute constant
¢ € (0, 00) such that the following holds. Let A € F be an increasing event,
and supposethere exists a subgroup 4 of Aut(G) suchthat E is A-transitive and
Ais A-invariant. Then, for p € (0,1) andq € [1, c0),

d .
(3.17) d—p¢p,q(A) > Cmin{¢pq(A), 1—¢pq(A)}log|El,
where
o q
= emin|1 o)

Sinceq > 1, (3.17) implies that
d c .
(3.18) d—p¢p,q(A) > a m|n{¢p,q(A)7 1- ¢p,q(A)} log|E|,

an inequality that may be integrated directly. Let p1 = p1(A,q) € (0,1) be
chosen such that ¢p, q(A) > 3. Then

d c
T log[1 — ¢p,q(A)] > q log |E], pe(p.l),

and hence, by integration,
(319)  ¢pq(A) = 1—3[E|"P7PY/A pe(p 1), qe[l 00)

whenever the conditions of Theorem 3.16 are satisfied. If in addition p; >
VA/(1+ /a), then C = ¢, and hence

(3.20) Pp.q(A) =1 F|E|~CP—PY, pe(pyd).

An application to box crossingsin two dimensions may be found in [141].

Proof of Theorem 3.12. The first formulawas proved for Theorem 2.46, and the
second is obtained in a similar fashion. O

Proof of Theorem 3.16. With A as in the theorem, ¢p q is A-invariant since
A C Aut(G). The claimis a consequence of Theorem 2.51 on noting from (3.3)
that

0p.q(Je)Pp,q(Je) - min {1 q

! E. O
pl—p [p+q(1—p>]2} ee
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3.4 Comparison inequalities

The comparison inequalities of this section are an important tool in the study of
random-cluster measures. Asusual, wewrite ¢p q for the random-cluster measure
on thefinite graph G = (V, E).

(3.21) Theorem (Comparison inequalities) [122]. It isthe casethat:
(322) ¢pras <stbppqe 1fOL =0, 1 =1 and p1 < py,

p1 - p2
Q(l—p1) — g(l—p2)

(323) ¢p1,q1 >t ¢p2,(12 if gL =02, 01 = 1a and

Thefirst of these inequalities may be strengthened as in the next theorem. A
subset W of the vertex set V is called spanning if every edge of E isincident to
at least one vertex of W. The degree deg(W) of aspanning set W is defined to be
the maximum degree of its members, that is, the maximum number of edges of G
incident to any one vertex in W.

(3.24) Theorem [151]. For A € {1, 2,...}, there exists a continuous function
y(p,q) = ya(p, q), whichis drictly increasing in p on (0, 1), and strictly de-
creasing in g on [1, co), such that the following holds. Let G be a finite graph,
and suppose there exists a spanning set W such that deg(W) < A. Then

(3.25) dprai <st Pppqp If 1< <cqrandy(p1, 1) < y(pz2. G2).

An applicationisto befoundin Section 5.1, whereit is proved that the critical
point pc(gq) of an infinite-volume random-cluster model on a lattice is strictly
increasingin g.

Proof of Theorem3.21. We may assumethat p1, p2 € (0, 1), sincetheother cases
are straightforward. We may either apply the Holley inequality (Theorem 2.1) or
use the positive association of random-cluster measures (Theorem 3.8) asfollows.
Let X : @ — R beincreasing. Then

¢DZ,Q2(X)

1
= 2 :x @) _ ) E\1(@)] gk
Z(pp o) 2= WP LT PTG

we

1- D2>'E' 1 ()| E k(w)
= X(@)Y(@)p" " (1 — pp/=V
(1 - p1 Z(p2, 92) a; P1 b1 %

_ (1— Dz)'El Z(p1. 9
1-p1)  Z(p2, %)

Ppr.au(XY)

where

K(w) _ n(w)]
Y(0) = (%) <I02/(1 pz))" .
a1 p1/(1— p1)
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Setting X = 1, we obtain

1-p\'® z(p1,
pz) (P1, q1) bonas(Y),

H=1=

whence, on dividing,

Pp1.au(XY)

3.26 X) = .
(3.26) PoraX) = S

Assume now that the conditions of (3.22) hold. Since k(w) is a decreasing
function and |n(w)| is increasing, we have that Y isincreasing. Since g1 > 1,
¢py1,q 1S positively associated, whence

(3.27) Bpr.a (XY) > by a0 (X)py, 0 (Y),

and (3.26) yields ¢, q, (X) > ¢p,,q,(X). Claim (3.22) follows.
Assume now that the conditions of (3.23) hold. We write Y () in the form

Yiw) — <Q2)k(w)+"(w)| <p2/[QZ(1— p2)]>|"(w)
() = (2 P2/1HA -~ P2l .
(o} p1/[a1(1 — p1)]

Note that k(w) + |n(w)| is an increasing function of w, since the addition of an
extra open edge to w causes |n(w)| to increase by 1 and k(w) to decrease by at
most 1. In addition, |n(w)| isincreasing. Since gz < g1 and p2/[g2(1 — p2)] <
p1/[01(1 — p1)] by assumption, we have that Y is decreasing. By the positive
association of ¢p, g, asabove,

¢DLQ1(XY) = ¢pl,Q1(x)¢p1,Q1(Y)v
and (3.26) now implies ¢p,,q, (X) < ¢p;,q,(X). Claim (3.23) follows. O

The proof of Theorem 3.24 begins with a subsidiary result. This containstwo
inequalities, only the first of which will be used in that which follows.

(3.28) Proposition [151]. Let p€ (0,1),g € [1,00) and A € {1, 2, ...}. There
exists a strictly positive and continuous function «(p, q) = aa(p, q) such that
the following holds. Let G be a finite graph, and suppose there exists a spanning
set W such that deg(W) < A. Then

9 9 9
(3.29) a(p, Q)a—p¢p,Q(A) < —q%%,q(A) <pl- p)a_p¢p,q(A)

for all increasing events A.

Proof. Let A be an increasing event, and write 6(p, q) = ¢p,q(A). Asinthe
proof of Theorem 2.1 we shall construct a Markov chain Z; = (X, Y;) taking
values in the product space 2.
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Letw € Qande € E, and let we, »® be the configurations given at (1.25). Let

De(w) betheindicator function of the event that the endvertices of e are connected

by no open path of E \ {e}. WedefinethefunctionsH, H” : ©2 — R asfollows.

Firgt,

(3.30) H (we, ®°) = 1,

(3.31) H(, w) = 2P ; P gD,

forw € Qande € E. Secondly, H (w, ') = Ofor other pairsw, o’ withw # o'
Next, we define H A by

(3.32 HAw, ®) = H(w, ®)1a(@ A o) ifw# o'
The diagonal terms H (w, ) and HA(w, w) are chosen in such away that

ZH(w,w’):ZHA(w,a)’)zO, w € Q.

' €Q ' €Q

Let S= {(7,w) € Q2 : 7 < w}, the set of al ordered pairs of configurations,
andlet J: Sx S— R begiven by

(3.33) J(me, w; w8, %) = 1,
(3.34) I(, 0% e, we) = HA(w®, we),
(3'35) ‘](T[eﬂ a)e; 7Te, a)e) = H (T[ea T[e) - H A(wea we)a

fore € E. All other off-diagonal valuesof J areset to 0, and the diagonal elements
are chosen such that

Z Jr,w; ', ') =0, (m,w) € S.

(/,0')eS

The function J will be used as the generator of aMarkov chain Z = (Z; : t > 0)
on the state space S € 2. With J viewed in this way, equation (3.33) specifies
that, for = € Q and e € E, the edge e is acquired by = (if it does not already
containit) at rate 1; any edgethusacquired isadded also to w if it doesnot already
contain it. Equation (3.34) specifiesthat, for v € Q and e € n(w), theedgeeis
removed from o (and also from 7 if e € 5(r)) at rate H A(w®, we). For e € n()
(S n(w)), thereis an additional rate at which e is removed from 7 but not from
. Thisadditional rate isindeed non-negative, since

"l

1 _
H (8 me) — HA0®, we) = ——[qPe™ — qP<“ 1p(we)] = O,
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by (3.31) and (3.32). We have used the factsthat q > 1, and De(w) < De(rr) for
7 < w. Theensuing Markov chain has no possible transition that can exit the set
S. Thatis, if thechain startsin S, then we may assumeit remainsin Sfor all time.

It is easily seen as in Section 2.1 and [39] that there exists a Markov chain
Zi = (Xt, Yt) onthe state space S such that:

(i) Z; hasgenerator J, that is, for (7, w) # (7/, @),
P(Ziyh = (n',0') | Zt = (7, 0)) = I(r, 0; 7', @)D + 0(h),

(i) Xy = ¢p,q(-) ast — oo,

(iii) Yt = ¢pq(- | A) ast — oo,

(iv) X; < Y;foralt.
See [164, Chapter 6] for an account of the theory of Markov chains.

Differentiating & = 6(p, @) = ¢p,q(A) with respect to p, one obtains as in
Theorem 3.12 that

030 5= el
= ﬁ{%,qﬂ'ﬂh) — ¢p.q(InDp.q(A)}
N % [ fim P(In(vo1 = mxol)
- % Zti'”go]P’(Xt(e) =0, Yi(e) = 1),

ecE

where || = |n(w)| is the number of open edges, and P is the appropriate proba-
bility measure for the chain Z. A similar calculation using (3.14) yields that

99 1 1 .
@37) 5= oVpak 1A =~ O(P.a) [ fim P(kOx0 = koY) |

where k = k(w) isthe number of open components.
By an elementary graph-theoretic argument,

k(Xt) = k(Yo < In(YOl — [n(Xo)l,
whence, by (3.36)—(3.37),
a0 a0
—q£ =pl- p)a—p,
which isthe right-hand inequality of (3.29).
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Let A be apositive integer, and let W be a spanning set of vertices satisfying
deg(W) < A. For x € V, let I betheindicator function of the event that x isan
isolated vertex. Clearly,

(338)  P(k(X) —k(Y)) = D P(Ix(X0) =1, Ix(Yp) =0),
xeW

since the right-hand side counts the number of vertices of W that are isolated in
Xt butnotinY;. Let x € W, and let ex be any edge of E that isincident to x. We
claim that

(339  vP(Xi(ex) =0, Yi(e) = 1) < P(Ix(Xe41) = 1. Ix(Yi31) =0)

for some v = va (P, g) which is continuous, and is strictly positive on (0, 1) x
[1, 00). Here, v isallowed to depend on the value of A but not further upon x, e,
W, G, or the choice of event A. Once (3.39) is proved, the left-hand inequality
of (3.29) follows with @« = vp(1 — p)/A by summing (3.39) over x and using
(3.36)—(3.38) asfollows:

a0 .
A5y = e{tgngoxgvp(lx(xtﬂ) =1 Ix(Vi41) = 0)}

. 1
zev{tlngoz < 2 P(u@=0 Yt(e)=1)}

xeW — ee~vx

v

ov [ .

Kv{t'LToZéP(Xt(e) =0, Yi(e) = 1)}
ec

_ vp(L—p) a6

=R

where ). ., denotes summation over all edges e incident to the vertex x.
Finally we prove (3.39). Let Ex bethe set of edges of E that areincident to x.
Suppose that theevent F; = {X;(ex) = 0, Yi(ex) = 1} occurs. Let:
(8 T be the event that, during the time-interval (t,t + 1), every edge e of
Ex \ {&} with X{(e) = 1 changesits X-state from 1 to 0; the removal of
such edgesfrom X may or may not entail their removal from Y,
(b) U bethe event that no edge e of Ey \ {ex} with X;(e) = 0 changesits state
(Xu(®), Yu(e)) inthetime-interval (t,t + 1),
(c) V be the event that the state (Xy(ex), Yu(ex)) of the edge ex remains un-
changed during the time-interval (t,t + 1).
By elementary computations using the generator of the chain Z; = (X, Y1),
there existsadtrictly positive and continuousfunction vy, = vw(p, q) on (0, 1) x
[1, 00), whichisallowed to depend on G and W only throughthe quantity deg(W),
such that
P(TNUNV | F) > v, t>0,

(©Springer-Verlag 2006



48 Fundamental Properties [3.4]

uniformly in X, ex, and G. Thisinequality remains true if we replace vy by the
strictly positive and continuousfunction v = va (p, q) defined by

va(p, q) = minfvw(p, ) : W aspanning set such that 0 < deg(W) < A}

If kN T NUNYV occurs, then x is isolated in Xi+1 but not in Yi11 (since
Yi+1(ex) = 1). Therefore, (3.39) is valid, and the proof of the proposition is
complete. A function v of the required form may be written down explicitly. O

Proof of Theorem 3.24. Let o beasin Proposition 3.28, and let Abeanincreasing
event. Inequality (3.29) may be stated in the form

(3.40) (o, @).Vp,q(A) =0 = (p(1— p), q).Vpp,q(A),

where

of of
f=<a_p,%), f:(0,1) x[1 00) > R.

In addition, by Theorem 3.21,

d d
%¢p,q(A) <0< a—p¢p,q(A)-

The right-hand inequality of (3.40) may be used to obtain (3.23), but our current
interest lies with the left-hand inequality. Let y : (0, 1) x [1, co) be asolution of
the differential equation («, q).Vy = 0 subject to

ay

(3.41) 5 <

0< ?9_)[1/)’ pe (0,1), g€ (1, 00).

See Figure 3.1 for a sketch of the contours of y, that is, the curveson which y is
constant. The contour of y passing through the point (p, q) has tangent («, q).
The directional derivative of ¢p q(A) inthis direction satisfies, by (3.40),

0 d
(@, q).Vopq(A) = Ola—p¢p,q(A) + Q£¢p,q(A) <0,

whence ¢p, q(A) is decreasing as (p, q) moves along the contour of y in the
direction of increasing g. Therefore,

Dp1,q (A) < Ppy, (A if y(p1, 1) =y(p2, 2) and 1 < gz <,

and (3.25) follows. O
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direction of
decreasing y
—_—

Figure 3.1. A sketch of the contours of the function y = y(p, Q).

P

-
'y

3.5 Exponential steepness

Let ¢p,q bethe random-cluster measure on the graph G, with g assumed to satisfy
g>1 Let Ae F andlet Ha(w) denotethe Hamming distancefromw to A. We
may apply Theorem 2.56 to obtain the following. A similar inequality holds for
decreasing A.

(3.42) Theorem [153, 163]. Let p € (0,1) and g € [1, co). For any non-empty,
increasing event A € ¥,

¢p.a(Hp)

d
(3.43) d_p log ¢p,q(A) > 51—

Asin (2.59), for increasing A,

(344)  ¢rq(A) < ¢sq(A) exp{—4(s—T)psq(Ha)}, O<r<s<L1

Applications of thisinequality are aided by afurther relation between ¢ q(A) and
¢p,q(Ha).

(3.45) Theorem [153, 163]. Let q € [1,o0) and 0 < r < s < 1. For any
non-empty, increasing event A € F,

(3.46) drq(Ha <k) < CKpsq(A),  k=0,1,2,...,

where
_ . e’a-n)
(s—=Dlr +a@d-n]
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This may be used in the following way. By (3.46)
oo K
rq(Ha) = Z¢r,q(HA > k) > Z[l - Ck¢s,q(A)],
k=0 k=0
where K = max{k : CX¢s q(A) < 1}. SinceC > 1,

—10g¢sq(A)  C—dsq(A)
logC c-1

(3.47) ¢rq(Hpa) > , O<r <s<l1.
Inequalities (3.43) and (3.47) provide a mechanism for bounding below the
gradient of log ¢p q(A).

One area of potentia application is the study of connection probabilities. Let
Sand T bedigoint sets of verticesof G, and let A = {S <> T} bethe event that
there exists an open path joining some s € Stosomet € T. Then Hp isthe
minimum number of closed edges amongst the family IT of al pathsfrom Sto T,
which isto say that

Ha(w) = min{Z[l—w(e)] ‘T E 1‘[}.

eenr

Before proceeding to the proofs, we note that Theorem 3.45 is closely related
to the ‘sprinkling lemma’ of [6], a version of which is valid for random-cluster
models; see also [154]. The argument used to prove Theorem 3.45 may be used
also to prove the following, the proof of which is omitted.

(3.48) Theorem. Let q € [1,00) and 0 < r < s < 1. For any non-empty,
decreasing event A € ¥,

k
(3.49) Hr.q(A) > (?) #s,q(Ha < k), k=0,1,2,....

Proof of Theorem3.45. Letq € [1,00) and0 < r < s < 1. We shall employ a
suitable coupling of the measures ¢r,q and ¢s q. Let E = {e1, &, ..., em} bethe
edges of the graph G, and let U1, Uy, .. ., Uy, be independent random variables
having the uniform distribution on [0, 1]. We write P for the probability measure
associated with the Uj. We shall examinethe edgesin turn, to determine whether
they are open or closed for the respective parameters r and s. The outcome will
beapair (7, w) of configurationseach lyingin Q = {0, 1} and suchthat = < w.
The configurations, w are random in the sense that they are functions of the U;.
A similar coupling was used in the proof of Theorem 2.31.

First, we declare

n(ey) =1 ifandonlyif Ui < ¢rq(dn),
w(e) =1 ifandonlyif Ui < ¢sq(dn),
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where J; is the event that g is open. By the comparison inequality (3.22),
¢r.q(J1) =< ¢s,q(J1), and therefore (1) < w(ey).

Let M be an integer satisfying1 < M < m. Having defined (&), w(&) for
1<i < Msuchthatz(g) < w(g), wedefiner (em+1) and w(em1) asfollows.
We declare

wemy1) =1 ifandonlyif Umir < érq(Imst | Qmn),
wemy) =1 ifandonlyif Umyr < ¢dsq(IM+1 | @M,0),

where Qv ,, is the set of configurations v e Q satisfying v(g) = y(g) for
1 <i < M. By the comparison inequalities (Theorem 3.21) and strong positive
association (Theorem 3.8),

Org(IM+1 | @Mm,7) < dsq(IM+1 | @M, 0)

sincer <sandrx(g) < w(g)forl <i < M. Therefore, m(em+1) < w(€m+1)-
Continuing likewise, we obtain a pair (i, ) of configurations satisfying = < w,
and such that = has law ¢ q, and w haslaw ¢s q.

By Theorem 3.1,

p

WKy=—P
Ppa(d 1K) =

¢p,q(Ji | Ki) =p,

where Kj istheevent that there existsan open path of E\{g} joiningtheendvertices
of g. Using conditional expectationsand the assumptionq > 1,

(3.50) P ) <¢pqJiID)=<p

p+ql-

for any event D defined in terms of the states of edgesin E \ {g}. Therefore?, by
the definition of the 7 (g) and w(g),

P(m(em+1) =0|U1, Uz, ..., Un) =1 —¢rq(Im+1 | @m.x)
qL—r)
Tr4qa-r)’

We claim that

(351) P(w(em+1) =1, w(em+1) =0|U1, Uz, ..., Unm)
= ¢sq(IM+1 | 2M,0) — &r.q(IM+1 | 2M,7)
s—r
q

=

s

2gubject to the correct interpretation of the conditional measure in question.
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andtheproof of thisfollows. By Theorem3.42with A= J; (sothat Hy = 1—-13)

together with (3.50),

$pa(B)L—dpa(d) _ 1
p(l—p) T pt+ad-p ~

We integrate over the interval [r, s] to obtain that

145 (J) > 1
dp P = q

(3.52) bo.q(3) — br.q(3) = %

Finally,

¢s.q(IM+1 | ©M.w) — drq(Im+1 | @m.7)
> ¢s,q(IM+1 | @M,0) — Prg(IM+1 | 2M,0),
and (3.51) follows by applying (3.52) withi = M + 1 to the graph obtained
from G by contracting (respectively, deleting) any edge g (for 1 <i < M) with
w(g) = 1 (respectively, w(g) = 0). See[152, Theorem 2.3].
By the above,
(3.53)

s—r r+q@l-r
B(w(ems1) = 1| x(emsn) =0, Up, Up. ... Uy) = =L 902D

q qd—r)
Let& € ,andlet B beaset of edgessatisfying&(e) = Ofore € B. Weclaim

that
(3.54)
s—r rJrq(l—r))B
P(r =&, w(e) =1foree B) > . P(r = §&).
( &, w(e) ) ( q ad-n §)
This follows by the recursive construction of = and w in terms of the family
U1, Uz, ..., Upy, inthelight of the bound (3.53).

Inequality (3.54) implies the claim of the theorem, as follows. Let A be an
increasing event and let & be a configuration satisfying Ha(¢) < k. There exists
aset B = B¢ of edges such that:

@ IBl =k,

(b) £(e) =0foree B,

(c) €B e A, where&B isobtained from & by allocating state 1 to all edgesin B.
If more than one such set B exists, we pick the earliest in some deterministic
ordering of all subsets of E. By (3.54),

$s.q(A) = P(Ha(r) <k, w(e) = 1fore e By)

= Z P(r =&, w(e) = 1fore e By)
& Ha(6)<k
> (s—r _ r+q@-r)
q ql—r)

k
) ¢rq(Ha < K). O
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3.6 Partition functions

The partition function associated with the finite graph G = (V, E) isgiven by

(3.55) Zc(p, Q) = Z pl1@l(1 — pylEVn@)gk@),

weR

In the usual approach of classical statistical mechanics, one studies phase trans-
itionsviathepartition functionand itsderivatives. We preferinthiswork tofollow
amore probabilistic approach, but shall neverthel esshave recourseto variousarg-
uments based on the behaviour of the partition function, of which we note some
basic properties.

The (Whitney) rank-generating function of G = (V, E) isthefunction

(3.56) Wo (U, v) = u@n® — yyeR,
E'CE

where r (G') = |V| — k(G’) is the rank of the subgraph G’ = (V, E’), and
c(G") = |E'| — |V| + k(@) isits co-rank. Here, k(G") denotes the number of
components of the graph G’. The rank-generating function has various useful
properties, and it crops up in several contexts in graph theory, see [40, 313]. It
occursin other forms also. For example, the function

(3.57) Te(u,v) = (u - HVIKOwWg (u- 171 v - 1)

is known as the dichromatic (or Tutte) polynomial, [313]. The partition function
Zg of thegraph G is easily seen to satisfy

3.58 Za(p.q) = gVl — 'Elw( P p)’
(3.58) c(P.)=q"'1-p~'We ad—p 1= p

arelationship which providesalink with other classical quantitiesassociated with
agraph. See[40, 41, 121, 157, 308, 315] and Chapter 9.

Another way of viewing Zg isasthemoment generating function of the number
of clustersin arandom graph, that is,

(3.59) Za(p, Q) = ¢p(@<®),

where ¢, denotes product measure. Thisindicatesalink to percolationon G, and
to the large-deviation theory of the number of clusters in the percolation model.
See [62, 298] and Section 10.8.

The partition function Zg does not change a great dedl if an edge is removed
fromG. Let F C E, andwrite G\ F forthegraph G withtheedgesin F removed.
If F isthesingleton {e}, wewrite G \ efor G \ {€}.
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(3.60) Theorem. Let p € [0,1] andq € (0, c0). Then

ZG\F(p, q)

<@avaqolFl FCE.
Zop.g VD =

(3.61) arqglfl <

We give next an application of these inequalities to be used later. Let G; =
(Vi, Ej),i = 1, 2, befinitegraphson digoint vertex sets V1, Vo, andwrite G1UG»
for the graph (V1 U Vo, E1 U Ep). Itisimmediate from (3.55) that

(3.62) 2G1UG, = 26, Z6G;;

wherefor clarity we have removed explicit mention of p, g. Taken in conjunction
with (3.61), thisleads easily to a pair of inequalities which we state as a theorem.

(3.63) Theorem. Let G = (V, E) be afinite graph, and let F be a set of edges
whoseremoval breaks G into two digoint graphsG1 = (V1, E1), G2 = (V2, E2).
Thus,V =ViUVoandE=E;UE;UF. For pe[0,1] andq € (0, c0),

Z6,Z6,(1v ) IFl < 26 < 26,26, A @) IF.

Proof of Theorem 3.60. It sufficesto prove (3.61) with F a singleton set, that is,

F = {e}. Theclaim for general F will follow by iteration. For w € Q, we write

w(e for the configurationin Qg = {0, 1}E\® that agreeswith w off e. Clearly,
kK(w) < k(o) < k(o) + 1,

whence

(3.64) (LA q)g@ < gkee) < (1v q)gk@.

Now, sincep+ (1— p) =1,

(3.65) Zc\e(p, Q) = Z pln(w<e>)|(1_ p)IE\ﬂ(w<e>)\—1qk(w<e>)

w(e) €L2(e)
= ph@l(1 - p)Evi@igkee),
weR
Equations (3.64) and (3.65) imply (3.61) with F = {€}. O

We develop next an inequality related to (3.61) concerning the addition of a
vertex, and which will be useful later. Let G = (V, E) beafinite graph as usual,
andletv ¢ V and W C V. We augment G by adding the vertex v together with
edges (v, w) for w € W. Let uswrite G + v for the resulting graph.
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(3.66) Theorem. Let p € [0, 1] andq € [1, 0co). In the above notation,

ZG (P, Q) N
————>qd-p+ .
Zo(p, ) a( P+ pg )

Proof. Let Qg = {0, 1}F and , = {0, 1}W. We identify v € €, with the
edge-configuration on the edge-neighbourhood {(v, w) : w € W} of v given by
v({v, w)) = v(w). Now,

(3.67) Zgiv(p, Q) = Z pln@l (1 — pylE\n@)gk)

weRE, VEQR,

x |:{ l_[ pv(w)(l_ p)l—v(w)}ql—k(w,v):|

weW
= Za(p, ¢G,p.q[dPp@ )],

where ¢p, is product measure on €2, with density p, and k(w, v) is the number of
open clusters of w containingsomew € W withv(w) = 1. Letng, na, ..., n be
the sizes of the equivalence classes of W under the equivalencerelation w1 ~ w2
if wg < w2inw. Forw € QE,
"
Ko 1 4
(3.68) ¢p(@ @) =T] [(1— P + glt— - p)“']]

i=1

S RCHE

1 1 W
Gr(-g)a-r
where we have used the elementary (convexity) inequality
a4+ 1L—-—a)y">[a+ 1L-a)y]", a,ye[0,1], ne{l,2,...}.
We substitute (3.68) into (3.67) to obtain the claim. O

So far in this section we have considered the effect on the partition function
of removing edges or adding vertices. Thereis arelated result in which, instead,
we identify certain vertices. Let G = (V, E) be afinite graph, and let C be
a subset of V separating the vertex-sets A; and Ay. That is, V is partitioned
asV = AU AUC and, for all a3 € A1, ap € Ay, every path from a; to
ay passes through at least one vertex in C. We write ¢ for a composite vertex
formed by identifying all verticesin C, and G1 = (A1 U {c}, E1) (respectively,
G2 = (A2 U {c}, Ep)) for the graph on the vertex set A; U {c} (respectively,
Az U {c}) and with the edges derived from G. For example, if X,y € A1, then
(X, y)isanedgeof Gy if and only if itisan edge of G; for a € Az, the number of
edges of G, between a and c is exactly the number of edgesin G between a and
members of C.
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(3.69) Lemma. For p € [0,1] andq € [1, 00), Zg > 9~ 1Zg, Zs,.

Since Zg > qforal Gwhenq > 1,
(3.70) g > Zg;.

Proof. Let w € {0, 1}, and let w; and wo be the induced configurations in
Q1 = {0, 1}F1 and 5 = {0, 1}F2, respectively. It is easily seen that

k(w) > k(w1) + k(w2) — 1,

and the claim follows from the definition (3.55) O

The partition function has a property of convexity which will be useful when
studying random-cluster measures on infinite graphs. Rather than working with
Zg, wework for convenience with the function Yg : R2 — R given by

(3.71) Yo (. k) = Y exp{r[n(@)| + xk(@)}.

weR

afunction which isrelated to Zg as follows. We set 7 = 7 (p) and « = «(q)
where

(3.72) (p) = log(fpp) «(@ = loga,

and then
Za(p.a) = L - P'FYa(x(p), c(@).
We write VX for the gradient vector of afunction X : RZ — R.
(3.73) Theorem. Let the vectors (rr, k) and (p, g) berelated by (3.72).
() The gradient vector of the function log Y (7, «) is given by

V{log Yo (7, €)} = (¢p,q(InD), ¢p,q(K). (3.74)

(b) Leti = (i1,i2) beaunit vector in R2. We have that

2

d—{logYG (Gr, k) + ai)}

do? = varpq(i1ln] +1i2k) (3.75)

a=0

where varp ¢ denotes variance with respect to ¢p . In particular, log Yg is
a convex function on R?.

By (3.71), |
Ye ((71, K) + oei) = Yo (rm, K)¢p,q(e°"'(')),
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where L(i) = i1|n| +i2k. Therefore, the jth derivativeasin (3.75) equalsthe jth
cumulant (or semi-invariant3) of L (i).

Proof. (a) It is elementary that

0 1
- 10gYe(r, 1) = v ngj} In(w)| exp{m n(@)| + ck(w)}
=¢p,q(|'7|),

with asimilar relation for the other derivative.
(b) We have that

Yo ((m. k) +ai) = Y expfe(izln(@)| + izk()) } exp{r [n(@)| + rk(w)}.

weR

and (3.75) follows asin part (a). The convexity is a consequence of the fact that
variances are non-negative. O

3.7 Domination by the Ising model

Stochastic domination is an invaluable tool in the study of random-cluster mea-
sures.  Since the random-cluster model is an ‘edge-model’, it is usua to make
comparisons with other edge-models. The relationshipwhen g € {2,3,...} to
Potts models suggest the possibility of comparison with a ‘vertex-model’, and a
hint of how to achievethisis provided by the case of integral q.

Consider the random-cluster model with parameters p and q on thefinite graph
G = (V,E). Ifq € {2,3,...}, we may generate a Potts model by assigning a
uniformly chosen spin-value to each open cluster. The spin configuration thus
obtained is governed by the Potts measure with inverse-temperature g satisfying
p = 1—e#. Evidently, thiscanwork only if q isaninteger. A weaker conclusion
may be obtained if g is not an integer, namely the following. Suppose p € [0, 1]
and g € [1, co). We examine each open cluster of the random-cluster model in
turn, and we declareit to bered with probability 1/q and white otherwise, different
clusters receiving independent colours®. Let R be the set of vertices lying in red
clusters. If g € {2, 3, ...}, then R hasthe same distribution as the set of vertices
of the corresponding Potts model that have a pre-determined spin-value. Write
IPp,q for an appropriate probability measure. One hasfor general q € (1, oo) that,

3See [164, p. 185] and [255, p. 266.
4This construction is related to the so-called fuzzy Potts model, see [35, 170, 172, 245, 328].
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forACV,
(3.76)
Ppg(R=A) = ——————(1— p)leA
paR=A =7 gt P
£ ‘ 1 k(w)
N { T pl@l (1 — pylER@Igke) (_) }
wep q
{ 3 phe |Ex\n(0)] k(@) 1)<
x p“’(l—p)ﬁ“’q“’<1——> }
w’eQ; q
= (1 p*NZz(p.q - 1
Za(p. O p) A(p.g—1

where A =V \ A Qa = {0, 1}FA with E the subset of E containing all edges
with both endverticesin A, the Zg, Z5 are the appropriate partition functions,
and AcA isthe set of edges of G with exactly one endvertex in A. When g isan
integer, (3.76) reduces to the usual Potts law for the set of vertices with a given
spin-value.

Therandom set R, with law givenin (3.76), isthefirst element in the proposed
stochastic comparison. The second element isthe set of + spins of an Ising model
with external field, and we recall next from Section 1.3 the definition of an Ising
model onthegraph G. Let © = {—1, +1}V, and let 8 € (0, o0) and h € R. The
Hamiltonianisthe function H : ¥ — R given by

(3.77) H(o)=- Z ouav—hZov, oc=(oy:ueV)ex,

e=(u,v)eE veV

and the (Ising) probability measureis given by
1 ~1pH@O

(3.78) mgh(o) = Ze 2 , ogex,
[

where Z, = Z,(B, h) istherequired normalizing constant®. Weshall be concerned
here with therandomset S= S(o) = {u € V : oy = 1}, containing al vertices
with spin +1.

Let deg(u) denote the degree of the vertex u in the graph G, and let

A = max{deg(u) : u e V}.

5The fraction % in the exponent is that appearing in (1.7).
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(3.79) Theorem [15]. Let B € (0,00), p=1—e#,q € [2, 00), and let R be
the random ‘red’ set of the random-cluster model, governed by the law given in
(3.76). Let B’ € (0, 00) and h" € (—o0, 00) be given by

(3.80) e”/=eﬂ<g%é;;£>’ eﬁm+m:=5i_ém’

and let S bethe set of vertices with spin +1 under the Ising measure g 1. Then
(3.81) R<«S
Inequality (3.81) isto beinterpreted as
Pp.q(f(R) < 7w (F(9)

for al increasing functions f : {0, 1}V — R. Itsimportanceliesin the deduction
that R is small whenever Sis small. The Ising model allows a deeper analysis
than do general Potts and random-cluster models (see, for example, the results
of Chapter 9). Particularly relevant facts are known for the set of + spinsin the
Ising model when the external field h’ is negative, and thus it becomes important
to obtain conditions under which h’ < 0.

Letq > 2andassumethat G issuchthat A > 3. Settingh’ = Oand eliminating
B’ in (3.80), wefind that 8 = B where

q-2
(q- D@8 -1

(3.82) efs =

By (3.80) and an elementary argument using monotonicity,
(3.83) h" <0 ifandonlyif B < Ba.

We make one further note in advance of proving the theorem. By (3.82),
Ba — 0asA — oo; if themaximum vertex degreeislarge, thefield of application
of the theorem is small. In an important application of the theorem, we shall take
G to beabox A of thelattice L9 with so-called ‘wired boundary conditions’ (see
Section 4.2). This amounts to identifying all vertices in the boundary 9 A, and
thusto theintroduction of asingle vertex, w say, having large degree. The method
of proof of Theorem 3.79isvalid in this dightly more general setting with

A = max{deg(u) :u e V \ {w}},
under the assumption that the open cluster containing w is automatically desig-
nated red. That is, welet R be the union of the cluster at w together with all other
clusters declared red under the above randomization, and we let S be the set of +

spinsinthelsing model with parameters 8/, h’ and with o, = +1. Theconclusion
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(3.81) isthen valid in this setting, with A given as above. An application to the
exponential decay of connectivity in two dimensionswill be found in Section 6.3.

Further work on stochastic domination inequalities for the set S of + spins of
the Ising model may be found in [236].

Proof. We present a direct proof based on the Holley inequality, Theorem 2.1.
For AC V andu, v € V withu # v, wewrite

AY=AU{u}, A, =A\{v), A'=(AY),, andsoon
Let g (respectively, uo) denote the law of R (respectively, S), so that
pi(A) =Ppg(R=A), (A =mpn(S=A), AcCV.

We shall apply Theorem 2.6, noting first that the i arestrictly positive. It suffices
to check (2.7), and that one of w1, uo satisfies (2.8).

First, wecheck (2.7). Let C € V andu € V \ C. We claim that
(3.84) n2(CHu1(C) > u1(CHu2(C).
Letr = |{c € C : ¢ ~ u}|, the number of neighboursof uin C. By (3.77)—(3.78),

p2(CY)
u2(C)

where § = deg(u). Also, by (3.76) and Theorem 3.66,

(3.85) =exp(B/(2r —5) + ')

11(C) s Zo(pd— 1)
—(1— A s B
D R Y Y

>1-p??@-D[1-p+pa-n",

(3.86)

Substituting p = 1 — e~# and setting x = e, we obtain by multiplying (3.85)
and (3.86) that

12(CHp1(C) / W
—_— r —3§ h"—pg@r -3
k1Caz(©) = BV @ = D) = prar =)

x(@-Def+a-efg-n "
82 (q - 2+X>r_6/2 (q - 2—|—X>_A/2 xA/2

qg-1 q-1 q-1
—24x7]"
x X3 _1[7(1 i|
-1 x@—1)

x@—1 472
B (q—2+><> ’
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e
u v w
o ° ®
> A
f

Figure 3.2. Two edgese and f in parallel and in series.

by (3.80). Now § < A, and x(q — 1)/(g — 2+ x) > 1for x > 1, and (3.84)
follows.

The measure 1 satisfies (2.8), see [328] and the references therein. It is
however easier to show that uo satisfies (2.8). LetC € V andu,v € V \ C,
u # v. By (3.85) with C replaced by C?,

p2(CH)
u2(C?)

=exp (B2’ 8+ p'n)

wherer’ = |{c € C¥ : c ~ u}|. Sincer’ > |{c € C : ¢ ~ u}|, theclaim holds. [

3.8 Seriesand parallel laws

K asteleyn observed® in the 1960s that electrical networks, percolation, and the
Ising and Potts models satisfy the series/parallel laws, and this gave inspiration
for the random-cluster model. The series/parallel lawswill be used later, and they
are described briefly herein the context of the random-cluster model.

Let G = (V, E) beafinite graph (possibly with parallel edges). Two distinct
edgese, f € E aresaidto bein paralld if they have the same endvertices. They
are said to bein seriesif they share exactly one endvertex, v say, and in addition
v isincident to no further edge of E. See Figure 3.2.

Let e, f bein ether paralel or series. In either case, we may define another
graph G’ asfollows. If e, f areinpardld, let G’ = (V’, E’) be obtained from G
by replacing e and f by asingle edge g with the same endvertices. If eand f are
inseries, say e = (u, v), f = (v, w), weobtain G’ = (V’, E’) by deleting both e
and f (together with the vertex v) and inserting anew edge g = (u, w). We have
in either casethat E' = (E \ {e, f}) U {g}.

Let :[0,1]2 — [0, 1] and o : [0, 1]2 x (0, c0) — [0, 1] be given by

T Y) =1 (101~ y),
(3.87) . Xy
7o = g pa-oa-y

Letp = (ph: h e E) € [0,1]F and q € (0, 00). We write ¢p q for the
random-cluster measure on © = {0, 1} in which each edge h has an associated

6See the Appendix.
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parameter-value pp, see (1.20). We shall see that ¢y q is invariant (in a manner
to made specific soon) when two edges e, f in parallel (respectively, series) are
replaced as above by a single edge g having the ‘correct’ associated parameter-
value pg given by

; if e, f arein parallel,
(3.88) pg:{”(pe pr)  ife f areinpar

o(pe, Pi,q) Iife f areinseries.

Let Q' = {0, 1}F bethe configuration space associated with the graph G’ given
above. We defineamapping z : @ — Q' by 7,(h) = w(h) for h # g, and

1-1-wE)1—w(f)) ife faeinparald,
w@®w(f) if e f arein series.

Whene, f arein parallel (respectively, series), gisopeninz,, if and only if either
eor f isopen (respectively, both e and f are open) in w. The mapping © Mmaps
open connections to open connections; in particular, for X,y € V/, x < yint,
if and only if X <> yinw.

The measure ¢p q on €2 induces ameasure ¢, ; on ' defined by

bpq@) =dpat ), o €@,

and it turns out that this new measure is simply arandom-cluster measure with an
adapted parameter-value for the new edge g, asin (3.88).

(3.89) Theorem. Let e, f bedistinct edges of the finite graph G.
(@) Parallel law. Lete, f beinparallel. Themeasureq&{m istherandom-cluster
measure on G’ with parameters py, for h # g, pg = 7 (pe, pr).
(b) Serieslaw. Let e, f bein series. The measure ‘%q is the random-cluster
measure on G’ with parameters pp for h # g, pg = o (pe, ps, Q).

Thereis athird transformation of value when calculating effective resistances
of electrical networks, namely the ‘ star—triangle’ (or ‘ star—delta’) transformation.
Thisplaysapart for random-cluster model sal so, see Section 6.6 and thediscussion
leading to Lemma 6.64.

Proof. (a) Theedgegisopeninz, if and only if either or both of e, f isopenin
w. Therefore, the numbers of open clustersin o and 7, satisfy k(w) = k(z,). It
is astraightforward calculation to check that, for o’ € €/,

Ppg@) o Y {]_[ pr ™M@ - ph)l—w’(m}[nw%g)(l_ﬂ)l—w«m]qk(w»,
w: Tp=0' “h:hsg

wherer = peps + Pe(1— pr) + Pr (1 — Pe) = 7 (Pe, Pt)-
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(b) Writee = (u, v), f = (v, w), sothat g = (u, w). Recall that w and 7, agree
off the edgese, f, g, and hence the partial configurations (w(h) : h # e, f) and
(tw(h) : h #£ g) havethe same law. Let K bethe set of all w € © such that there
exists an open path from u to w not using e, f; let K’ be the corresponding event
in Q’ with e, f replaced by g. Notethat K’ = K.

By the remarks above and Theorem 3.1(b), it sufficesto show that
(3.90) $pq@ (@ =1K) =0,

(3.91) @ (@ =1 K)= —

oc+q(l—-o0)’

whereo = o (pe, Pt, ). Theedgegisopenin z,, if and only if botheand f are
openin w. Therefore,

$p.q(@ (@ =11 K') = ¢pg(w(©@ = o(f) =1|K),
which is easily seen to equal

Pe Pf
PePr + Pe(1— pe) + Pr (1 — pr) +q(Ll— pe)(1— pr)’

in agreement with (3.90). Similarly,
$p.q(@' (@ =1 K)) = dpq(w(®) = o(f) = 1]K),
which in turn equals

Pe Pt
PePr + qpe(l — ps) +qps (1 — pe) + 9%(1 — pe) (L — pr)’

in agreement with (3.91). O

3.9 Negative association

This chapter closes with a short discussion of negative association when g < 1.
Let E be afinite set, and let « be a probability measure on the sample space
Q = {0, 1}E. There are four relevant concepts of negative association, of which
we start at the ‘lowest’. The measure . is said to be edge-negatively-associated if

(3.92) n(Je N Jt) < u(J)u(Jr), efekE e#f

Recall that Je = {w € Q : w(e) = 1}.
There isamore general notion of negative association, asfollows. For w € Q
and F C E wedefinethe cylinder event Q¢ ,, generated by w on F by

QFo={0 €Q:0'(e) =w(e) foree F}.
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For E' € Eandanevent A C Q, wesay that Aisdefinedon E' if, foral w € Q,
we havethat w € Aif and only if Qg ,, € A. Wecall u negatively associated if

n(ANB) < u(A)u(B)

forall pairs (A, B) of increasing eventswith the property that thereexistsE’ € E
such that A is defined on E’ and B is defined on its complement E \ E’. An
account of negative association and itsinherent problems may be found in [268].

Our third and fourth concepts of negativeassociationinvolveso-caled ‘ digoint
occurrence’ (see[37, 154]). Let A and B be eventsin ©2. We define A1 B to be
theset of all vectorsw € Q forwhichthereexistsaset F € E suchthat Qg ,, € A
and Q¢ , € B,whereF = E\ F. Notethat the choiceof F isallowed to depend
on the vector w. We say that 1 has the digjoint-occurrence property if

(3.93) pn(ADB) = u(A)u(B), A, BcQ,

and hasthe dig oint-occurrenceproperty onincreasing eventsif (3.93) holdsunder
the additional assumption that A and B are increasing events.

It is evident that:

w has the disjoint-occurrence property
= u hasthe digjoint-occurrence property on increasing events
= u isnegatively associated
= u isedge-negatively-associated.

It was proved by van den Berg and Kesten [37] that the product measures ¢p
on Q have the digoint-occurrence property on increasing events, and further by
Reimer [283] that ¢, hasthe more general disjoint-occurrence property. Itiseasily
seen’ that the random-cluster measure ¢p,q cannot in general be edge-negatively-
associated when g > 1. It may however be conjectured that ¢p ¢ Satisfies some
form of negative association when q < 1. Such a property would be useful in
studying random-cluster measures, particularly in the thermodynamic limit (see
Chapter 4), but no such property has yet been proved.

In the absence of a satisfactory approach to the general case of random-cluster
measures with q < 1, we turn next to the issue of negative association of weak
limits of ¢p.q asq | 0; see Section 1.5 and especially Theorem 1.23. Hereisa
mild conjecture, as yet unproven.

(3.94) Conjecture [156, 165, 199, 268]. For any finite graph G = (V, E),
the uniform-spanning-forest measure USF and the uniform-connected-subgraph
measure UCS are edge-negatively-associated.

A stronger version of this conjectureisthat USF and UCS are negatively asso-
ciated in one or more of the senses described above.

7Consider thetwo events Je, Js inthe graph G comprising exactly two edgese, f in paralél.
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Since USF and UCS are uniform measures, Conjecture 3.94 may be rewritten
in the form of two questions concerning subgraph counts. For simplicity we shall
consider only graphswith neither loopsnor multipleedges. LetV = {1, 2,...,n},
and let K betheset of N = (g) edges of the complete graph on the vertex set
V. We think of subsets of K asbeing graphson V. Let E C K. For X C E,
let MX = MX(E) be the number of subsets E’ of E with E/ © X such that the
graph (V, E’) is connected. Edge-negative-association for connected subgraphs
amountsto the inequality

(3.95) MEefiM2 < MeMT, e feE, e f.

Here and later in this context, singleton sets are denoted without their braces, and
any empty set is suppressed.

In the second such question, we ask if the same inequality is valid with MX
re-defined as the number of subsets E’ € E containing X such that (V, E') isa
forest. See[199, 268].

With E fixed as above, and with X, Y C E, let My = MX(E) denote the
number of subsets E’ C E of therequiredtypesuchthat E' © X andE'NY = @.
Inequality (3.95) is easily seen to be equivalent to the inequality

(3.96) MEDIM, ( <M§Md, e feE, e#f.

The corresponding statement for the uniform spanning treeis known.

(3.97) Theorem. The uniform-spanning-tree measure UST is edge-negatively-
associated.

The stronger property of negative association has been proved for UST, see
[116], but we do not discuss this here. See also the discussionsin [31, 241]. The
strongest such conclusion known currently for USF appears to be the following,
the proof is computer-aided and is omitted.

(3.98) Theorem [165]. If G = (V, E) has eight or fewer vertices, or has nine
vertices and eighteen or fewer edges, then the associated uniform-spanning-forest
measure USF has the edge-negative-association property.

Since forests are dual to connected subgraphs for planar graphs, this implies
a property of edge-negative-association for the UCS measure on certain planar
graphs having fewer than ten faces.

The conjectures of this section have been expressed in terms of inequalities
involving counts of connected subgraphs and forests, see the discussion around
(3.95). Such inequalities may be formulated in the following more general way.
Let p = (pe: € € E) beacollection of non-negative numbersindexed by E. For

E'CE, let

eckE’
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We now ask whether (3.95) holds with M* = MX(p) defined by

(3.99) M (p) = > fo(E"),
E': XCE'CE
(V,E’) has property I1

where IT is either the property of being connected or the property of containing no
circuits. Note that (3.95) becomes a polynomial inequality in |E| real variables.
Such aformulation is natural when the problem is cast in the context of the Tutte
polynomial, see Section 3.6 and [308].

Proof 8 of Theorem 3.97. Consider an electrical network on the connected graph
G in which each edge corresponds to a unit resistor. The relevant fact from the
theory of electrical networksisthat, if aunit current flows from a source vertex s
to asink vertex t (# s), then the current flowing along the edge e = (X, y) inthe
direction xy equals N(s, x, y, t)/N, where N is the number of spanning trees of
G and N(s, X, vy, t) isthe number of spanning trees whose unique path from s to
t passes along the edge (x, y) in the direction xy.

Lete = (x, y),andlet 1 bethe UST measureon G. By theabove, 1 (Je) equals
the current flowing along e when a unit current flows through G from source x
to sink y. By Ohm’s Law, this equals the potential difference between x and v,
which in turn equal s the effective resistance Rg (X, y) of the network between x
andy.

Let f € E, f # e, anddenoteby G. f thegraph obtained from G by contracting
the edge f. There is a one-one correspondence between spanning trees of G. f
and spanning trees of G containing f. Therefore, u(Je | Ji) equalsthe effective
resistance Rg. 1 (X, y) of the network G. f between x and y.

Theso-called Rayleigh principlestatesthat the effectiveresi stance of anetwork
is a non-decreasing function of the individual edge-resistances. It follows that

Rc.t (X, ¥) < Ra(X,y), and hence 1 (Je | Jf) < 1 (Je). O

The usual proof of the Rayleigh principle makes use of the Thomson/Dirichlet
variational principle, whichin turn assertsthat, amongst al unit flowsfrom source
to sink, the true flow of unit size isthat which minimizesthe dissipated energy. A
good account of the Kirchhoff theorem on electrical networks and spanning trees
may befoundin [59]. Further accounts of the mathematics of electrical networks
include [106] and [241, 329], the latter containing also much material about the
uniform spanning tree.

8When re-stated in terms of counts of spanning trees with certain properties, this is a con-
sequence of the 1847 work of Kirchhoff [215] on electrical networks, as elaborated by Brooks,
Smith, Stone, and Tutte in their famous paper [71] on the dissection of rectangles. Indeed, the
difference u(Je N J5) — n(Je)e(Js) may be expressed in terms of a certain ‘transfer current
matrix’. See[74] for an extension to more than two edges, and [31, 241] for related discussion.
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Chapter 4

| nfinite-Volume M easures

Summary.  Random-cluster measures on infinite graphs may be defined
either by passing to infinite-volume limits or by using the approach of
Dobrushin, Lanford, and Ruelle. The problem of the uniqueness of infinite-
volume measures is answered in part by way of an argument using the
convexity of ‘pressure’. The random-cluster and Potts measures in infinite
volume may be coupled, thereby permitting a study of the Potts model on
the lattice LY.

4.1 Infinite graphs

Although there is interesting theory associated with random-cluster measures on
finite graphs, the real action, seen from the point of view of statistical mechanics,
takes place in the context of infinite graphs. On afinite graph, all probabilitiesare
polynomialsin p and g, and are therefore smooth functions, whereas singul arities
and ' phasetransitions’ occur whenthegraphisinfinite. Thesesingularitiesprovide
most of the mathematical and physical motivation for the study of the random-
cluster model.

While one may define random-cluster measures on a broad class of infinite
graphs using the methods of this chapter, we shall concentrate here on finite-
dimensional lattice-graphs. We shall, almost without exception, consider the
(hyper)cubic lattice L9 = (z9, EY) in some number d of dimensions satisfying
d > 2. Thisrestriction enablesaclear exposition of the theory and open problems
without suffering the complicationsthat arise through allowing greater generality.
We note however that many of the basic properties of random-cluster measureson
lattices are valid on a much larger class of graphs. Interesting further questions
arise in the non-finite-dimensional setting of non-amenable graphs, to which we
returnin Section 10.12.

There are two ways of defining random-cluster measures on an infinite graph
G = (V, E). Thefirst isto consider weak limits of measures on finite subgraphs
A, inthelimitas A 1 V. Thiswill be discussed in Section 4.3, following the
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68 Infinite-Volume Measures [4.1]

introduction in Section 4.2 of the notion of boundary conditions. The second way
is to restrict onesalf to infinite-volume measures whose conditional marginal on
any given finite sub-domain A is the finite-volume random-cluster measure on
A with the correct boundary condition. This latter route is inspired by work of
Dobrushin[102] and Lanford—Ruelle[226] for Gibbs states, and will be discussed
in Section 4.4. In preparation for the required arguments, we summearize next the
stochastic ordering and positive association of probability measureson L9,

Let @ = {0, 1}]Ed, and let ¥ be the o-field generated by the cylinder subsets
of Q. Since Q isapartialy ordered set, we may speak of ‘increasing’ events and
random variables. Given two probability measures w1, u2 on (2, ), we write

p1 <s p2 if
4.0 w1(X) < u2(X) foralincreasing continuous X : Q — R.

See Section 2.1. Notethat any increasing random variable X with rangeR satisfies
X(0) < X(w) < X (1) fordl w € 2, and is therefore bounded.

One sometimes wishes to apply (4.1) to increasing random variables X that
are semicontinuous rather than continuous®. This may be done as follows. For
w, & € Qandabox A, wewrite a)i for the configuration given by

w(e) ifeeEy,

& _
(42) op(®) = { £(e) otherwise,

) ; 0

For X : @ — R, wedefine X§ and X} by

(4.3) XP(w) =X (@), weQ, b=01
Assumethat X isincreasing. It is easily checked that, as A 1 Z9,

(4.4) X?\ 4+ X ifand only if X islower-semicontinuous,
' X}\ 4 X ifandonly if X is upper-semicontinuous,

where the convergenceis pointwise on Q. Thefunctions X¢, X}\ are continuous.
Therefore, by the monotone convergencetheorem, i <g w2 if and only if

(4.5) u1(X) < u2(X) for al increasing semicontinuous X.

Itisauseful fact that, when i <g w2, then u1 = o whenever their marginals
are equal. We state this as a theorem for future use, see also [235, Section 11.2].
Recall that Je isthe event that e is open.

1Animportant example of an upper-semicontinuousfunctionistheindicator function X = 1
of anincreasing closed event A.
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[4.1] Infinite graphs 69

(4.6) Proposition. Let E be a countable set, let @ = {0, 1}F, and let # be the
o -field generated by the cylinder subsetsof 2. Let 1, w2 beprobability measures
on (2, F) suchthat 1 <g p2. Then g = w2 if and only if

4.7) n1(Je) = u2(Je) forall e e E.

We say that a probability measure i on (22, F) is positively associated if
(4.8 w(XY) > u(X)u(Y) foral increasing continuous X, Y.
Note from the arguments above that . is positively associated if and only if
(4.9 w(XY) > u(X)u(Y) foral increasing semicontinuous X, Y.

Stochastic inequalities and positive association are conserved by weak conver-
gence, in the following sense.

(4.10) Proposition. Let E be a countable set, let @ = {0, 1}F, and let ¥ bethe
o -field generated by the cylinder subsets of .

(@ Let (uni :n=1212,...),i = 1,2, betwo sequences of probability mea-
sures on (2, F) satisfying: puni = pi asn — oo, fori = 1,2, and
tn,1 <st pn,2 for all n. Then uy <g wo.

(b) Let (un:n=12,...) bea sequence of probability measures on (2, )
satisfying un = w asn — oo. If each up, is positively associated, then so
isu.

Proof of Proposition 4.6. If u1 = w2 then (4.7) holds. Suppose conversely that
(4.7) holds. By [235, Thm 2.4] or [237, Thm I1.2.4], there exists a ‘ coupled’
measure i on (2, F) x (2, F) with marginals 1 and w2, and such that

p({(r, ) e @ im <)) =1
For any increasing cylinder event A,
12(A) — u1(A) = p({(r, @) 1 ¢ A, w € A})
<> ur@© =0 0@ =1

ecE
=Y [n@® =1) - u(x(e) =1)]
ecE
=Y [12(3e) — n1(Je)] =0.
ecE
Since ¥ is generated by the increasing cylinders A, the claim is proved. O

Proof of Proposition 4.10. (a) Wehavethat pun 1(X) < un,2(X) forany increasing
continuousrandomvariable X, and theconclusionfollowsby lettingn — oo. Part
(b) is proved similarly. O
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4.2 Boundary conditions

An important part of statistical mechanicsis directed at understanding the way in
which assumptions on the boundary of aregion affect what happensinitsinterior.
In order to make precise such adiscussion for random-cluster models, weintroduce
next the concept of a‘boundary condition’.

Let A beafinite subset of Z9. We shall later take A to be abox, but we retain
the extragenerality at thispoint. For & € €, let Qi denotethe (finite) subset of 2
containing all configurations w satisfying w(e) = £(e) fore € B9\ E, ; these are
theconfigurationsthat‘agreewithg off A’. Foré e Qand p € [0, 1],q € (0, 00),
we shall write ¢ A0 for the random-cluster measure on the finite graph (A, E,)

‘with boundary condition &'; thisis the equivalent of a‘specification’ for Gibbs
states, see[134]. Moreprecisely, let ¢A’ 0.4 be the probability measure on the pair
(2, F) given by
(4.11)

w(e)(l )1 a)(e)} k@.8) i o c QS’
i pa@) =[ Zi(p, q)hQA P *
0 otherwise,

wherek(w, A) isthe number of componentsof the graph (29, n(w)) that intersect
A,and Zi (p, q) isthe appropriate normalizing constant,

412 Zipo=Y | ] rPa- p)l—w(e)}qk(w,z\).

weQi €€k

NotethatcﬁA pq(sz )=1.

The boundary condition & influences the measure ¢ A.0.q through the way in
which the term k(w, A) in (4.11) counts the number of w- open clusters of A
intersecting the boundary dA. Let X,y € dA, and suppose there exists a path
of &£-open edges of E9 \ E, from x to y. Then any two w-open clusters of A
containing x and y, respectively, will contribute only 1 to the count k(w, A).

Random-cluster measures have an important ‘nesting’ property which is best
expressed in terms of conditional probabilities. For any finite subset A of 79,
we write as usual £ (respectively, 7 ) for the o -field generated by the states of
edgesin E, (respectively, E9 \ E,).

(4.13) Lemma. Let p € [0,1] andq € (0, c0). If A, A arefinite sets of vertices
with A € A, thenfor every & € Q and every event A € F,

05 (Al T@) = 8% o q(A,  we 2.

Two extremal boundary conditions of special importance are the configura-
tions 0 and 1, comprising ‘all edges closed’ and ‘all edges open’ respectively.
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One speaks of configurationsin 529\ as having ‘free’ boundary conditions, and
configurationsin Q}\ as having ‘wired’ boundary conditions. The word ‘wired’
refers to the fact that, with boundary condition 1, the set of open clusters of
w € Q}\ that intersect 9 A are ‘wired together’ and contribute only 1 in al to the
count k(w, A) of clusters®. Thisterminology originated in the study of electrical
networks. ‘Free’ is understood as the converse: such clusters are counted in their
actual number when the boundary conditionis 0.

The free and wired boundary conditions provide random-cluster measures
which are extremal (for g > 1) in the sense of stochastic ordering.

(4.14) Lemma. Let p € [0,1] and q € [1, c0), and let A € Z9 be a finite set.
(8) For every & € Q, the probability measurecpiqp’q is positively associated.

(b) For ¢, & € , we have that ¢X’p’q <g« qﬁi’p’q whenever v < &. In
particular,

¢Aspvq st ¢A,p,q =st ¢A,p,qs 5 e Q.

Proof of Lemma 4.13. We apply Theorem 3.1(a) repeatedly, once for each edge
iNEx \Ex. O

Proof of Lemma 4.14. The key to the proof is positive association, whichisvalid
by Theorem3.8whenq € [1, co). Theproof isstraightforward, if slightly tedious
when written out in detail. Since p and g will be held constant, we omit them
from future subscripts. Let q € [1, o) and let A be afinite subset of Z9. For
& € Q and for any increasing continuous function X : Q@ — R, we define the

increasing random variable Xi :Q— Rby
X5 (@) = X ()

WhEI’Ewi isgivenin (4.2). Wemay view Xi asanincreasing functionon {0, 1}%4.

We augment the graph (A, E, ) by adding some extra edges as follows around
theboundary 9 A. For every distinct unorderedpair x, y € d A, weadd anew edge,
denoted [X, y], between x and y. If theedge (X, y) existsalready in A, wesimply
add another in parallel. We write IF for the set of new edges, Q2 = {0, 1}EAYF for
the augmented configuration space, and let ¢ , be the random-cluster measure on
theaugmentedgraph (A, Ex UF). Thekey pointisthat ¢ , satisfiesthe statements
in Theorem 2.27.

For& € Q, let L be the equivalence relation on d A given by: X L y if and
only if there exists a £-open path of E9 \ E, joining x to y. Let F be the set of

all edges|[x, y] € F suchthat x < y.
2Alternatively, one may omit from the cluster-count all clustersthat intersect 8 A. Thisunder-

cutsk(w, A) by 1 for the wired measure q>11\7 .’ and the difference, being constant, has no effect
on the measure. See also Section 10.9.
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72 Infinite-Volume Measures [4.3]

(a) Let X, Y beincreasing and continuouson 2. Then

B3 (XY) = ¢ (X3 Y0
= PA (X5 Y5 | FE open, F \ F¥ closed)
> A (X5 | FE open, F\ F¥ closed)g , (Y5 | F¥ open, F \ F¢ closed)
by strong positive-association
= ¢ (X304 (Y3) = 93 (X)e3 (V).

whence ¢f\ is positively associated.
(b) In broad terms, the ‘greater’ the connections off A, the larger is the induced

measure within A. Let v < &, whence F¥ C F¥¢, and let X be an increasing
random variable. Then

S (X) = o} (X)
= $A (XY | F¥ open, F\ F¥ closed)
< A (XY | FE open, F\ F¢ closed) by monotonicity
< (X5 | FE open, F\ F closed)  since X! < X5
= ¢ (X}) = $1.(X),

and the claim follows. O

4.3 Infinite-volume weak limits

We begin with a definition of a‘weak-limit’ random-cluster measureon LY. The
use of the letter A is restricted throughout this section to boxes of 9.

(4.15) Definition. Let p € [0,1] and g € (0, c0). A probability measure ¢ on
(2, F) is called alimit-random-cluster measure with parameters p and q if, for
someé € Q, ¢ isan accumulation point of the family {qﬁf\’p’q : A C 79, thatis,
thereexistsasequence A = (Ap :n=1,2,...) of boxessatisfying A, 1 Z9 as
n — oo such that

qﬁin’p’q = ¢ asn — oo.

The set of all such measures ¢ is denoted by 'Wp 4, and the closed convex hull of
Wp,q is denoted by co Wy g.

Onemight at first sight consider instead the class of all weak limits of theform

(4.16) ¢ = lim ¢

n— oo Any pvq
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for sequences A = (Ap) of boxes and (&) of configurations. This provides no
extragenerality over Definition 4.15, aswe explain next in two paragraphswhich
the reader may choose to omit, [152].

The measure ¢i’p’q is influenced by & through the connections it provides
between verticesin the boundary 9 A. By arranging for the same connections (and
no others) to be provided in a manner which is ‘ more economical in the use of
space’ onediscoversthefollowing. Let A beabox and & € Q. Thereexistsabox
A’ 2 A and aconfiguration ¢ such that: ¢f\’p’q(A) = qﬁx p’q(A) for any event
A € F and any configuration y that agreeswith ¢ onE,/ \ Ex.

Assume now that (4.16) holds for some A, £&. Let A be a cylinder event,
and assume that Az issuch that A € #,,. Define the increasing subsequence
(An:n=12,...)of A andthe configuration & asfollows. We set A1 = A1
and £(e) = &1(e) for e € Ea,. Having constructed Ay = Ap, and the partial
configuration (§(e) : e € Ex,) forr < R, we construct Ar and the additional
configuration (£(e) : e € Eag \ Eag_,) by the following rule. By the remark
above, there existsabox A’ © Ar_1 and aconfiguration ¢ such that

bnp_q

¢AR71,D,Q(A) = ¢KR71,D,Q(A)

forany  that agreeswith ¢ onEx’ \Ea,_;. Wefindm = ng suchthatm > nr_1
and Am 2 A',andweset AR = Amandé(e) = ¢(e) fore € Eag \ Eagr ;- By
(4.16), ¢i,,p,q(A) — ¢(A) asr — oo, Whence¢ihp’q = ¢.

Thefollowing claim is standard of itstype. Part (b) isrelated to the so-called
‘finite-energy property’ to be discussed in the next section.
(4.17) Theorem. Let p € [0, 1] andq € (0, 00).

(a) Existence. The set Wp q of limit-random-cluster measuresis non-empty.

(b) Finite-energy property. Let ¢ € co Wy q and e € E9. We have that

N

p+al—p
¢-almost-surely, where Je isthe event that e is open.

(c) Positive association. If g e [1, 00), any member of Wy g is positively
associated.

}s¢(ae|7e)smax{p,$},

min{p,
P+ql—p)

Proof. (a) The metric space €2 is the product of discrete spaces, and is therefore
compact. Any infinite family of probability measureson 2 isthereforetight, and
hence relatively compact (by Prohorov’s theorem, see [42]), which is to say that
any infinite subsequence containsaweakly convergent subsubseguence. We apply
this to the family {¢in’p’q tn=12,...}forany given§ € Q and any given
sequence A = (Ap:n=1,2,...)withA, 1 Z9 asn — oo.

(b) Let ¢ € Wp q, so that

T &
(4.18) ¢ = Al'Ter PA paq
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for some¢ e  and some sequenceof boxes A. For £ C Z9 ande € EY, let Fx\e
denote the o -field generated by {w(f) : f € Ex, f # €}. By the martingale
convergence theorem [164, egn (12.3.10)] and weak convergence,

¢(Je | Te) = Iim ¢(Je | Fxre) ¢-as.

I|m lim (Je | F -as.
£100 A2 ¢qu e | Fx\e) ]

The claim follows by Theorem 3.1(a). It is evident that any convex combination
of measuresin ‘Wp q satisfies the sameinequalities. A similar argument yieldsthe
claim for weak limits of such combinations.

(c) Letq € [1, 00), and let ¢ be expressed asin (4.18). By Lemma4.14(a), each
¢>i’ 0.4 is positively associated, and the claim follows by Proposition 4.10(b). O

Let A = (An:n=12,...)beanincreasing %quence of boxes such that
An t Z9an — oco. When does the limit limp_ oo ¢A p.q &ist, and is it
independent of the choice of the sequence A? Only a limited amount is known
whenq < 1, andthereader isreferred to Section 5.8 for thiscase. Whenq > 1, we
may use positiveassociation to provetheexistenceof thelimitintheextremal cases
with & = 0, 1. The next theorem comprises the basic existence result, together
with some properties of the limit measures. It is preceded by some important
definitions.

Let G = (V, E) beacountable, locally finite? graph, and write Qg = {0, 1}F,
and F¢ for the o -field generated by the cylinder subsetsof Q. Anautomorphism
of Gisahijectiont : V — V suchthat,foral u,v € V, (u, v) € Eif andonly if
(t(u), T(v)) € E. Wewrite Aut(G) for the group of all such automorphisms. The
domain of an automorphism r may be extended to the edge-set E by 7 ({u, v)) =
(t(u), t(v)). Anautomorphism t generates an operator on Q2g, denoted also by
T Qg — Q and given by rw(e) = w(rte) for e € E. A random variable
X : Qe — Riscaled t-invariant if X(w) = X(tw) foradl o € Q. A
probability measure 1 on (g, Fg) iscaled t-invariant if w(A) = u(tA) for
al Ae Fe.

Let I be a subgroup of Aut(G). A random variable X : Q — R iscaled
[-invariant if it is t-invariant for all T € ', and a similar definition holds for
a probability measure u on (g, Fe). The measure . is called automorphism-
invariant if itisAut(G)-invariant. A probability measure i on (Qg, Fg) iscalled
I'-ergodic if every I'-invariant random variable is p-amost-surely constant, see
[241, Chapter 6]. Itisclear that, if " C T, then u is I'-ergodic whenever it is
I"-ergodic. In the case when T is the group generated by a single automorphism
7, we use the term t-ergodic rather than I'-ergodic.

We turn now to the graph G = L9, and to a class of automorphisms termed
translations. Let x € Z9, and definethefunction 7y : Z9 — Z9 by 74 (y) = x+.

3A graphis called locally finite if every vertex has finite degree.
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The automorphism tx is referred to as a trandation. We denote the group of
trandations by Z9, noting that 7o istheidentity map. A randomvariable X : © —
R (respectively, aprobability measure . on (2, F)) iscalled trandation-invariant
if itis z9-invariant.

The probability measure 1 on (2, ) is said to be tail-trivial if, for any tail
event A € 7, u(A) equalseither O or 1. The property of tail-triviality isimportant
and useful for two reasons. First, tail-triviality implies mixing, see (4.22) and
Corollary 4.23. Secondly, in statistical mechanics, for a given specification, tail-
triviality is equivalent to extremality within the convex set of Gibbs states, see
[134, Thm 7.7].

(4.19) Theorem (Thermodynamic limit) [8, 63, 122, 149, 150, 152].
Let p e [0,1] andq € [1, 00).
(8) Existence. Let A = (An : n = 1,2,...) be an increasing sequence of
boxes satisfying An 1 Z% asn — oco. The weak limits
bpq = lim oR b=0,1, (4.20)

n—oo

exist and are independent of the choice of A.
(b) Automorphism-invariance. The probability measure ¢g’q isautomor phism-
invariant, for b = 0, 1.

(c) Extremality. The¢? ,, b= 0, 1, are extremal in that

b
p.q’
$oq<s¢ <sdnq &€ Wpa (4.22)

(d) Tail-triviality. The measures ¢8,q and ¢%,q aretail-trivial.
A probability measure u on (2, ) issaid to be mixing if, forall A, B € F,

(4.22) lim u(ANwB) =pun(Au(B),

|X]—00
which isto say that, for ¢ > 0, thereexists N = N(¢) such that
|[W(ANTxB) — w(Au(B)| <e if |x| = N.

(4.23) Corollary. Let p € [0,1], g € [1,00), and b € {0, 1}. The probability
measure ¢>g,q ismixing, and is t-ergodic for every translation r of L9 other than
the identity.

Proof of Theorem 4.19. (a) Suppose first that b = 0. Let A and A be boxes
satisfying A € A, andlet Abetheeventthat all edgesinEa \ Ex havestate 0. By
Theorem 3.1(a), 43, , May be viewed asthe marginal measureon E, of ¢3 |, o
conditioned ontheevent A. Since A isadecreasing event, by positive association,

(4.24) $2.pq(B) =02 pq(BIA) <42 ;4q(B)

(©Springer-Verlag 2006



76 Infinite-Volume Measures [4.3]

for any increasing B € . Therefore, theincreasing limit
0 T 0
#p.q(B) = lim 9% pq(B)

exists for all increasing cylinder events B, and the value of the limit does not
dependontheway that A 1 Z9. Thecollection of all such events B isconvergence-
determining, [42, pp. 14-19], whence the limit probability measure ¢g,q exigts.
For thecaseb = 1, welet A bethe event that all edgesin Ex \ E5 are open, and
we reverse the inequality in (4.24).

(b) The trandation-invariance of ¢g’q is obtained as follows. Let F be afinite

subset of EY, and let B € ¢ beincreasing. Let r beatransation of LY. For any
box A containing all endverticesof all edgesin F, we have by positive association
asin (4.24) that

$9.q(B) = 92 1 q(B) =92y ot 7IB) > ¢po(r7'B)  asA 4z

Applying the same argument with B and t replaced by 1B and r —1, we obtain
that ¢9 4 (B) = ¢ 4(tB). Similar arguments are valid for ¢3 .

Let C be the set of automorphismsthat fix the origin. Each automorphism of
L9 isacombination of atransiation r and an element o € C. Every element of €
preserves boxes of theform An = [—n, n]¢, and it follows by (4.20) that the 6§
are automorphism-invariant.

(c) By Lemma4.14,

0 & 1
¢A’p’q 55( ¢A,p,q 55( ¢A,p,qa S € Qa

and (4.21) follows by Proposition 4.10(a).

(d) We develop the proof of [31, 240] rather than the earlier approach of [152].
Let b = 0, an exactly analogous proof isvalid for b = 1. Let A, A be boxes
with A € A, and let A € ¥, beincreasing, and let B € Fa\4. By strong
positive-association®, Theorem 3.8(b),

P2 pg(ANB) =62 , q(AIB)BR ,q(B)
> 62 p.q(A9R pq(B).

Let A 1 Z9 to obtain that
Poq(ANB) = 43, ((Agp 4(B).

Since this holdsfor B € Fa\4, it holdsfor B € 73, and hencefor B € 7. Let
A 1 79 to deduce that

(4.25) $pq(ANB) = dpo(Agpq(B),  BeT.
4The case ¢g,pqq(B) = 0 should be handled separately.
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Applying (4.25) to the complement B, we have that

(4.26) Poq(ANB) = ¢p (A 4(B).  BeT.

Since the sum of (4.25) and (4.26) holds with equality,

(4.27) $p.q(ANB) = 3 1(A)gp 4(B), Be7.

Sincethisholdsfor all increasing A € #4, it holds (asin the proof of part (a)) for
al A e F. Setting A = B yieldsthat ¢g’q(B) equals 0 or 1, which isto say that

T istrivia. The same proof with several inequalitiesreversedisvalidforgb%’q. O

Proof of Corollary 4.23. It isageneral fact that tail-triviality implies mixing, see
[134, Prop. 7.9] and the related discussion at [134, Remark 7.13, Prop. 14.9]. The
r-ergodicity of theqﬁg’q isastandard application of mixing, asfollows. Lety # 0
and t = 7y. Let B be a r-invariant event, and apply (4.22) with x = ny and
A = B to obtain, on letting n — oo, that ¢§ ,(B) = ¢p 4(B)?. Alternatively,
notethat the o -field of t-invariant eventsis contained in the completion of thetail
o-field 7, see the proof for d = 1in[222, Prop. 4.5]. O

We close this section with the infinite-volume comparison inequalities and
certain semicontinuity properties of the mean ¢g’q(X) of arandom variable X.

(4.28) Proposition. Let p € [0,1] andq € [1, 00).
(8) Comparisoninequalities. For b = 0, 1, the measures ¢g,q satisfy the com-
parison inequalities:

Pprqr st Pppqp iT G2 > 02> 1, and p1 < pa.
p1 - p2
(1 —p) ~ @-p2)’

¢I21,ql Zst ¢Bz,q2 if g1 > g2 > 1, and

(b) Upper-semicontinuity. Let X be an increasing upper-semicontinuous ran-
dom variable. Then q%’q(X) is an upper-semicontinuous function of the
vector (p, q), and is therefore a right-continuous function of p and a left-
continuous function of q.

(c) Lower-semicontinuity. Let X be an increasing lower-semicontinuous ran-
dom variable. Then ¢g’q(X) is a lower-semicontinuous function of the
vector (p, q), and is therefore a left-continuous function of p and a right-
continuous function of q.

Conditions for the semicontinuity of an increasing random varable are given
at (4.4). Animportant class of increasing upper-semicontinuousfunctionsis pro-
vided by theindicator functions X = 14 of increasing closed events A. Itiseasily
seen by (4.4) that such anindicator function isindeed upper-semicontinuous, and it
followsby part (b) abovethat ¢%,q (A) isright-continuousin p and | eft-continuous
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in g. Asan important example of such an event A, consider the event {0 <> oo},
that there exists an infinite open path in L¢ with endvertex 0.

Similarly, theindicator function of any increasing open event Aisanincreasing
lower-semicontinuousrandom variable, and thus part (¢) may be applied. We note
that (b) and (c) apply to all increasing continuous random variables, and therefore
to the indicator function X = 1 of any increasing cylinder B.

Proof of Proposition 4.28. (&) Thisisaconseguenceof Theorems3.21 and 4.10(a).
(b) Let Ap = [—n, n]9. Suppose X satisfies the given condition, and define X2
by XR(w) = X(aR ) for b = 0, 1, where f isgivenin (4.2). Using stochastic
orderings of measures and (4.5), we have for m < n that

B5.q(X) < Bx, pg(X) < Bh, pg(Xm)  since X < X,
— ¢é’q(X%1) asn — oo

= ¢pq(X) asm — oo,

where we have used (4.4) and the monotone convergence theorem. Also,

1 1 1 1 :
¢An,p,q(xn) > ¢An+1, p,q(xn) snce An C An+1

1 1 - 1 1
Z PrnerpqgXnpe)  SNCe Xy = Xpy.

By the two inequalities above, the sequence ¢, 4(Xp), n = 1,2, ..., isnon-
increasing with limit ¢35 ,(X). Each ¢} p’q(X%) is a continuous function of p
and g, whence q%’q(X) IS upper-semicontinuous.

(c) The argument of part (b) is valid with X} replaced by Xﬂ, the boundary con-
dition 1 replaced by 0, and with the inequalities reversed. O

4.4 |nfinite-volume random-cluster measures

There is a second way to construct infinite-volume measures, this avoids weak
limits and works directly on the infinite lattice. The following definition is based
upon the well known Dobrushin—Lanford—-Ruelle (DLR) definition of a Gibbs
state, [102, 134, 226]. It was introduced in [111, 149, 150, 272] and discussed
further in [63, 152].

(4.29) Definition. Let p € [0,1] and g € (0, c0). A probability measure ¢ on
(2, F) iscaled aDLR-random-cluster measure with parameters p and q if:
(4.30)

foral Ae F andboxesA, ¢(A| Ta)E) = ¢i’p’q(A) for p-ae. £.

The set of such measuresis denoted by Ry g.
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Thecondition of thisdefinition amountsto thefollowing. Supposewearegiven
that the configuration off the finitebox A isthat of &€ € Q. Then, for amost every
&, the (conditional) measure on A is the finite-volume random-cluster measure
¢f\’ g It isnot difficult to see, by a calculation of conditional probabilities, that
no further generality may be gained by replacing the finite box A by a general
finite subset of Z9. Indeed, we shall see in Proposition 4.37(b) that it suffices to
have (4.30) for al pairs A = {X, y} withx ~ y.

The structure of Rp q relative to the set 'Wp q remains somewhat obscure. It
is not known, for example, whether or not Wp q S Rp q, and indeed one needs
some work even to demonstrate that RRp ¢ iS non-empty. The best result in this
direction to date is restricted to probability measures having a certain additional
property. For w € €2, let | (w) be the number of infinite open clusters of w. We
say that a probability measure ¢ on (2, ) hasthe 0/1-infinite-cluster property®
if p(1 €{0,1}) = 1.

(4.31) Theorem [152, 153, 156, 272]. Let p € [0, 1] and g € (0,00). If ¢ €
€O Wp,q and ¢ hasthe 0/1-infinite-cluster property, then ¢ € Rp q.

A sufficient condition for the 0/1-infinite-cluster property is provided by the
uniqueness theorem of Burton—K eane, [72], namely translation-invariance® and
so-called ‘finite energy’. A probability measure ¢ on (2, ) issaid to have the
finite-energy property if

(4.32) O<¢(Je|Te) <1 ¢-as, foraleecEY,

where, as before, Je isthe event that e is open.

(4.33) Theorem [152, 153, 156]. Let p € [0, 1] and g € (O, 00).
(a) The closed convex hull co Wy o contains some translation-invariant proba-
bility measure ¢.
(b) Let pe (0,1). Every ¢ € co Wy q hasthe finite-energy property.
(c) If ¢ € coWp q istrandation-invariant, then ¢ has the 0/1-infinite-cluster
property.

Theorems 4.31 and 4.33 imply jointly that |Rp q| # @ when p € (0,1) and
g € (0,00). [Thecases p = 0, 1 aretrivial.] We now present some of the basic
properties of the set Rp .

5The 0/ 1-infinite-cluster property is linked to the property of so-called ‘almost-sure quasilo-
cality’, see Lemma4.39 and [272].

SRather lessthan full translation-invarianceisinfact required. Theproof in[72] usesergodicity
of the probability measure, rather than simply translation-invariance. Further comments about
the extension to trandation-invariant measures may be found in [73] and [136, p. 42]. See[158]
for ageneral account of Burton—Keane uniqueness.
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(4.34) Theorem [152]. Let p € [0, 1] and q € (0, 00).
(a) Existence. Theset Rp q isnon-empty and contains at least one transl ation-

invariant member of co Wy . Furthermore, Rp q is a convex set of mea-
sures.

(b) Stochastic ordering. If g € [1, 00), then ¢ 4 € Rp.q for b =0, 1, and
$pq<st® <t Ppq ¢ € Rpa. (4.35)

(c) Extremality. The ¢>g’q, b =0, 1, are extremal elements of Rp q.

It isan important open problem to identify all pairs (p, q) under which ¢>g’q =
¢p.q- BY (4.21) and (4.35), for q € [1, 00),

(4.36) [Woql = |Rpql =1 ifandonlyif ¢, =dpq

so this amounts to asking for which pairs (p, q) there exist (smultaneoudly) a
unique DL R-random-cluster measure and aunique limit-random-cluster measure.
Various partial answers are known, see Theorems4.63 and 5.33, and a conjecture
appears at (5.34).

Let g € [1, 00). Since the extremal measures ¢>g,q are trandation-invariant,
they havethe 0/1-infinite-cluster property, see Theorems4.19(b) and 4.33(c). The
ergodicity of the ¢>g’ qWasprovedin Corollary 4.23. Wenotetwo further properties
of DLR-random-cluster measures, namely the finite-energy property, and positive
association when g € [1, 00). Let e = (X, y) be an edge, and let K¢ be the event
that x and y are joined by an open path of E9 \ {e}.

(4.37) Proposition. Let p € [0,1] andq € (0, 00).
(a) Finite-energy property. Let ¢ € Rp q. For ¢-almost-every o,

P ifwe Ke,
P (Je | Te)(w) = ! P fod Ke (4.38)
p+al—p ’

(b) Conversely, if ¢ isa probability measure on (2, ) satisfying (4.38) for all
e € EY and ¢-almost-every o, then ¢ € Rp q.

(c) Positive association. If g € [1,00) and ¢ € Rp q istail-trivial, then ¢ is
positively associated.

We shall use the following technical result in the proof of Theorem 4.31.
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(4.39) Lemma [152]. Let ¢ be a probability measure on (2, ) with the finite-
energy property (4.32) and the 0/1-infinite-cluster property. For any box A and
any cylinder event A € F,, therandomvariable g(w) = e p’q(A) is ¢-almost-
surely continuous.

Proof. Let A beafinite box and A € F4. The set Dg of discontinuities of the
random variable g(w) = ¢Xp’q(A) is a subset of the set

(4.40) Dg(A)= () {w: sup Ig(z)—g(w)|>0}

AT ADA it=won A

where the intersection is over all boxes A containing A, and wewrite ‘¢ = w on
A'ifg(e) = w(e)foree Ea. Let Dy a betheset of all w € © with the property:
there exist two pointsu, v € 9 A such that both u and v arejoined to d A by paths
using w-open edges of Ex \ Ex, but u isnot joined to v by such apath. If Dj A
does not occur, then k(¢, A) = k(w, A) forall ¢ € Q suchthat ¢ = won A,
implying that g(¢) = g(w). It followsthat

Dg(A) S (] Daa.
A ADA

Iteasily seenthat (), Da,a = {la > 2}, where |, isthe number of infinite open
clustersof E9 \ E, intersecting dA. Therefore,

(4.41) #(Dg) < ¢(Dg(A)) < ¢(la = 2).
By the finite-energy property (4.32),
(4.42) o1 >2)>0 if ¢(lp >2)>0.

By the O/ 1-infinite-cluster property, ¢ (I > 2) = 0, and therefore ¢ (Dg) = O as
required. O

Proof of Theorem 4.33. (a) Since ¢>g’q € Wpqforqg e [1, oo), we shall consider
the case when g € (0, 1) only. By Theorem 4.17(a), we may find ¢ € Wy q. Lét

1
(4.43) Ym =3 Y wod

XEAm

where Ay = [—m, m]9, and 7y o ¢ is the probability measure on (2, F) given
by x 0 ¢ (A) = ¢ (zx A) for the trandation 4 (y) = X + y of thelattice. Clearly,
x 0 ¢ € Wp g forall x, whence yrm belongsto the convex hull of Wp q. Let  be
an accumulation point of the family (vm : m=1,2,...) of measures.

Let e be aunit vector of Z9. By (4.43), for any event A,

|0 Am|
| Am|

(4.44) [¥m(A) — te o Ym(A)| < —-0 am-— oo,
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whenceyr is e-invariant. Certainly ¥ € coWp q, and the proof of (a) iscomplete.
(b) Thisfollows by Theorem 4.17(b).

(c) If p = 0 (respectively, p = 1), then ¢ is concentrated on the configuration 0
(respectively, 1), and the claim holds trivially. If p € (0, 1), it follows from (b)
and the main theorem of [72]. See also the footnote on page 79. O

Proof of Theorem 4.31. The clam istrivial when p = 0, 1, and we assume that
p € (0,1). The proof is straightforward under the stronger hypothesisthat ¢ €
Wp,q, andwebeginwith thisspecial case. Supposethat A = (An:n=1,2,...),
& € Q,and ¢ € Wpq aresuch that

T
¢=Nm ¢4, p.a

and assume that ¢ has the 0/1-infinite-cluster property. Let A be a box and let
A € F5. By Lemma4.13,

(445) fACAn 0% 5 q(A) =05 (Al Ta)w) forgh | .-aeo.
Let B be acylinder eventin 74 . By Theorem 4.33(b) and Lemma 4.39 applied

to the measure ¢, the function 1g(w)$R. p1q(A) is ¢-amost-surely continuous,
whence

$(1()d pq(A) = lim @3 o (18()d4 p.q(A)
= lim ¢y q(180)dh, o q(AITn) by (445)

s
= im ¢rn.pq(ANB)
— 6(ANB).

Since T is generated by its cylinder events, we deduce that
(4.46) (A Tr) = ¢ pq(A)  ¢-as,

whence ¢ € Rp g.

We require afurther lemmafor the general case. Let X : Q@ — R beabounded
random variable, set

v(X) = sup [X(@) — X(@)],

w,w' €
and let Dy be the discontinuity set of X, that is,

(4.47) Dx = {w € Q: Xisdiscontinuousat w}.
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(4.48) Lemma. Let un, u be probability measureson (€2, &) suchthat un = u
asn — oo. For any bounded randomvariable X : Q — R,

limsup |1n(X) — u(X)| < v(X)(Dx).

n—oo

Proof. By [107, Thm 11.7.2], there exists a probability space (£, 4, P) and ran-
domvariablespn, p : ¥ — Q suchthat: py haslaw wn, p haslaw w1, and pn, — p
almost surely. Therefore,

X(pn)lc(p) — X(p)lc(p)  P-as,

where C = @\ Dx. By the bounded convergence theorem,

ln(X) — n(X)| = [P(X(on) — X(p))|
=< PIX(pn) — X(p)I
= P(IX(on) — X(p)|1c(p)) +P(I1X(pn) — X(0)|1(p))
< P(IX(pn) — X(0)11c(p)) + v(X)P(1(p))
— 04+ v(X)u(C) = v(X)u(Dx) asn — oo. O

Let ¢ € coWp q have the O/1-infinite-cluster property, and write ¢ as ¢ =
limp— 00 ¢n Where

Kn
1 . Eni
4.49 = i i= lim o™ .
(4.49) #n K. ;%,l Pn,i MZd‘ﬁA,p,q

Thelatter isactually ashorthand, since A will in general approach Z9 along some
sequence of boxes which depends on the values of n and i, but this will not be
important in what follows.

Let A beabox,andlet A € F5. Let B beacylinder eventin 7. Since F,
are 7, are generated by the classes of such cylinders, it is enough to prove that

(4.50) $(18()Px pq(A) = ¢(AN B).
Let Da A bethe event given after (4.40), noting as before that
(4.51) Daad{la>=2 asatzf

where |, isthe number of infinite open clusters of Ed \ E that intersect 9A.
By (4.49) and Lemma4.48,

(452) 1imsup|gni (186}, p.q(A) = $3 41881 p.q(A)] < éni(la = 2.
A1Z
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asin (4.41). By Lemma4.13,

O3 'pa(ledi pa(A) =93 q(ANB)  fordllage s,
and therefore, on taking the limit as A 1 29,
(4.53) |¢n.i (18d4 p.q(A) — éni(ANB)| < gni(la > 2).

By (4.49) and Lemma4.39,

Kn

1
$(Led) po(A) = lim —HZ¢m(1B¢A 0.q(A),
i=1
Kn

. 1
d(ANB) = nIergo Ke igifﬁn,i(Aﬂ B),
whence

|¢(Le¢s p.q(A) — (AN B)|
Kn

1
= limsup = Z|¢n.<1B¢A 0.q(A) — dni(ANB)|
n—o0
1 K“
<I|msup—2¢n|(IA>2) by (4.53)
n—o0o
1 K“
<||msu|o—Z¢sm(DA A) if A D A, by (451)
n—oo
= ||m5Up¢n(DA,A)
n—oo
=¢(Da,a)
= ¢(ar >2) asA — 79
Thefinal probability equals 0 asin (4.42), and therefore (4.50) holds. O

Proof of Theorem 4.34. (&) By Theorem 4.33, there exists ¢ € co Wy g with the
0/1-infinite-cluster property. By Theorem 4.31, ¢ € Rpq. Convexity follows
immediately from Definition 4.29: for ¢, ¥ € Rp.q and « € [0, 1], the measure
a¢ + (1 — o)y sdtisfies the condition of the definition.

(b) Assume q € [1, c0). By Theorem 4.19(b) the q&b p.q &e trandation-invariant,

whence by Theorem 4.33(c) they have the 0/ 1-infi nite-cluster property. By The-
orem 4.31, each belongsto Rp q. Inequality (4.35) followsfrom Lemma4.14(b)
and Definition 4.29, on taking the limit as A — Z9.
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(© Theq&b p.q aretail-trivial by Theorem 4.19(d), and tail-triviality is equivalent to
extremallty, see[134, Thm 7.7]. Thereisamoredirect proof using the stochastic
ordering of part (b). If ¢>0, isnot extremal, it may be written in the form ¢0’ =
ap1 + (L — a)gz for somea € (0,1) and ¢1, 2 € Rpq. For any increasing
cylinder event A, ¢g’q(A) < min{¢1(A), ¢2(A)} by (4.35), in contradiction of the
above. A similar argument holdsfor ¢; . a

Proof of Proposition 4.37. (@) This is a consequence of Definition 4.29 in con-
junction with (3.3).

(b) Let ¢ satisfy (4.38) foral e € E, andlet A beafinitebox. For ¢-almost-every
£ € Q, the conditional measure 8 (-) = ¢(- | Ta)(€) may be thought of as a
probability measure onthefiniteset 2, = {0, 1}F4 with an appropriate boundary
condition. By (4.38) and Theorem 3.1(b), ué = ¢i’p’q for ¢g-amost-every &,
whence (4.30) holds and the claim follows.

(c) Letg € [1,00), and let X,Y : Q — R beincreasing, continuous random
variables. For ¢ € Rp g,

P (o (XY | T2))

= ¢(P.p.q(XY))

(¢A,p’q(X)¢;\’p’q(Y)) by positive association
=¢(¢(X | Ta)p(Y | Th))
—¢(pX | DY |T))  asAtz,

¢(XY) =

by the bounded convergence theorem and the backward martingal e convergence
theorem [107, Thm 10.6.1]. If ¢ istail-trivial,

X |T)=¢(X), ¢ [|T)=0e(), ¢-as.,

and the required positive-association inequality follows. O

4.5 Uniqueness via convexity of pressure

We address next the question of the uniqueness of limit- and DL R-random-cluster
measureson L9 for given p and g. Themain result of this section isthefollowing.
There exists a (possibly empty) countable subset Dq of the interval [0, 1] such
that ¢>8,q = ¢%’q, and hence there exists a unique random-cluster measure in that
| Wp.ql = |Rpqgl = 1, ifand only if p ¢ Dq. Further results concerning the
uniqueness of measures may be found at Theorems5.33, 6.17, and 7.33.
The'almost everywhere' uniquenessof random-cluster measureswill beproved
by showing that the asymptotic behaviour of the logarithm of the partition func-
tion does not depend on the choice of boundary condition, and then by relating
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the differentiability of the limit function to the uniqueness of measures. A certain
convexity property of thelimit function will play arolein studying itsdifferentia-
bility. Rather than working with the usual partition function Zf\(p, q) of (4.12),

we shall usethe function Y3 : R — R given by

(4.54) Yi(m.k)= Y exp{r|[Ea N n(@)| + kKo, A)},
weQi

and satisfying

(4.55) Zi(p.a) = @ — pAYS (7, 0),

where 7 = 7 (p) and k = «(q) are given by

(4.56) 2(p) = log (Tpp)’ «(q) = logq.

Note that

(4.57) ZA(p =1 Ya(r,0)=(@1-pEal

We introduce next afunction G(rr, ) which describes the exponential asymp-
toticsof Yf\ (r, k) asA 1 Z9. Inlinewith theterminology of statistical mechanics,
we call this function the pressure. All logarithmswill for convenience be natural
logarithms.

(4.58) Theorem [145, 150, 152]. Let A beabox of L9, The finitelimits

(4.59) G(r, k) = lim {imgvi(n, K)}, (7, k) € R,

I

arzd | [Ea|

exist and are independent of £ €  and of the way in which A ¢ z9. The
‘pressure’ function G is a convex function on its domain R2.

Inthe proof, we shall seethat G may be approximated from below and aboveto
any required degree of accuracy by smooth functionsof (r, «), see (4.68)—(4.70).

Weshall identify theset Dq mentionedat thestart of thissectionas Dq = Dy .
a set given in the next theorem with «(q) = logqg. This set corresponds to the
points of non-differentiability of the convex function G. Recall that, by convexity,
G isdifferentiableat (r, «) if and only if G has both its partial derivativesat this
point.

Let D’ betheset of all (7, «) at which G isnot differentiablewhen viewed asa
functionfromR? toRR. Since G isconvex, D’ hasL ebesguemeasure0, andindeed
D’ may be covered by a countable collection of rectifiable curves (see[115, Thm
8.18], [291, Thm 2.2.4]). For any line| of R2, therestriction of G to| is convex,
whence G restricted to | isdifferentiablealong| except at countably many points.
Each such point of non-differentiability onl liesin £’, but the converse may not
generaly betrue.

The two partial derivatives of G have special physical significance for the
random-cluster model, and one may show when q > 1 (that is, x > 0) that G has
one partial derivative at any given point (i, «) if and only if it has both.
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(4.60) Theorem.

(8 Foreachk € R, thereexistsa (possibly empty) countable subset ;. of reals
such that G(rr, k) isa differentiable function of = if and only if = ¢ D..

(b) Foreachr € R, thereexistsa (possibly empty) countablesubset D/ of reals
such that G(rr, k) isa differentiable function of « if and only if « ¢ D/ .

(c) For (i, k) € R x (0, o0), exactly one of the following holds:
(i) (r,x) € D', and G has neither partial derivative at (7, «),
(i) (m,x) ¢ D', and G hasboth partial derivatives at (7, «).

Parts (@) and (b) follow from the remarks prior to the theorem. The proof of
part (c) is deferred until later in this section. With D, given in (a), we write
Dg = i);(q).

For given g € (0, 00), one thinks of Dgq = :D[(( ) as the set of ‘bad’ values
of p. The situation when g e (0, 1) is obscure. When g € (1, 00), the set Dq
is exactly the set of singularities of the random-cluster model in the sense of the
next theorem. Here is some further notation. Let g € [1, co), and

(4.61) h°(p,a) = ¢ q(Je),  b=0,1,

where Je isthe event that e is open. Since the qﬁg’q are automorphism-invariant’,

hP(p, q) does not depend on the choice of e, and therefore equal sthe edge-density
under ¢5 ,. We write

(4.62) F(p,q) = G(r, «)

where (p, q) and (r, k) are related by (4.56), and G is givenin (4.59). We shall
use the word ‘ pressure’ for both F and G.

(4.63) Theorem. Let p € (0,1) and g € (1, co). The following five statements
are equivalent.

(@ p¢ Dg.

(b) (i) h%x, q) isa continuous function of x at the point x = p.
(i) hl(x, q) isa continuousfunction of x at the point x = p.

(c) Itisthe casethat hO(p, q) = h(p, q).

(d) Thereisauniquerandom-cluster measurewith parameters p and g, that is,

What is the set Dq? We shall return to this question in Section 5.3, but in
the meantime we summarize the anticipated situation. Let d > 2 be given, and
assumeq € [1, oo). Itisthought to be the case that Dy is empty whenq — 1is

"Thereisan error in[152, Thm 4.5] inthe case q € (0, 1). The correct condition thereis that
the measure ¢ be automorphism-invariant rather than translation-invariant.
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small, and is a singleton point (that is, the critical value pc(q), see Section 5.1)
when q islarge. It is conjectured that there exists Q = Q(d) > 1 such that

Z ifg=<Q,

{pe(@} ifg>Q.

This would imply in particular that |Rpq| = 1 unlessq > Q and p = pc(Q).
A further issue concerns the structure of Rp q in situations where |Rp q| > 1.
For further information about the non-uniquenessof random-cluster measures, the
reader is directed to Sections 6.4 and 7.5.

Proof of Theorem 4.58. Let p € (0,1) andq € (0, 00), and let (7, «) be given
by (4.56). We shall use a standard argument of statistical mechanics, namely the
near-multiplicativity of Yf\ (7, k) viewed as a function of A. Theirrelevance to
the limit of the boundary condition & hinges on the fact that [0A|/|A| — oo as
A 1 zZ9.

We show first that the limit (4.59) existswith &€ = 0, and shall for the moment
suppressexplicit referenceto the boundary condition. Letn = (n1,na, ..., Nq) €
Nd,write|n| = n1nz---nq,andlet A, bethebox ]_[id:l[l, n;]. By thetrandation-
invariance of Z (p, q), we may restrict ourselvesto boxes of this type.

Wefix k € N9, and write

(n,k):(ki H—:J | =1,2,...,d>, LEJ:]E[H—:J

By Theorem 3.63, for n > k,

d
k
(4.65) LEJ |:Iog Zpy, — d<Z %) log(1v q)] +109 ZA\A i

<logZy,
< LEJ [Iog Zae — d(

and furthermore,

K]

d
—.> log(1 A q)} +109 Zan\Ai»
i=1

(1= - /) 1o (s ) =100 Zagy

< (Il - Ik| - Ln/kJ)log<ﬁ>-
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Divide by |n| and let the n; tend to oo to find that, for all k,

d

(466) |ogzAk d<Z

1
2 k_> log(1v q)

§Iiminf{ilogZAn} I|msup{ilogZAn}
n—oo [[n| In|
d

1
< Iog Za, — d(z ” ) log(1 A q).

Assumethat g > 1, asimilar argument isvalid when g < 1. Therefore, the limit

(4.67) H(p,q) = I|m {ﬁlogZAn}

exists, and furthermore

d
1
(4.68) H(p,q) = { K logZa, — <Z k_|) log(1 v q)}

1
mf{ K logZa, — d(z E) log(1 A q)}.

i=1

o

Since Z 5, isacontinuousfunctionof p and g, these equationsimply that H (p, q)
may be approximated from below and above to any degree of accuracy by con-
tinuous functions, and is therefore continuous. We will obtain greater regularity
from the claim of convexity to be proved soon. Evidently, as A 1 79,

(4.69) —IogZA — 1H(p a),
|Eal

and, by (4.55) and (4.62),
(4.70) WEfll logYa (7, k) — —log(l— p) + %H(p, a)
=F(p,q) = G(m,«).

We show next that the same limit is valid with a general boundary condition.
Let A beafinite box, and let

(4.71) G5 (k) = 1 log Y5 (. ).
[EAl

Forw, & € Q,let o, € Q) beasin (4.2). Clearly,
k@, A) —10A] < k(@}, A) < k@, A) < k@3, A),
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whence
Y, k)e™ A < Y3 (k) < YR (k). Kk €0, 00),
and the same holds with the inequalities reversed when « € (—oo, 0). Therefore,

A
G (. k) — Kﬁ <G\ (mx) <G (r.k), Kk €[0,00),

and with the inequalities reversed if k € (—o00,0). Since |0A|/|EA] — O as
A 1 79, the limit of Gi exists by (4.70), and is independent of the choice of &.

It is clear from its form that Gi(n, «) is aconvex function on its domain R2.
Indeed, Theorem 3.73(b) includes a representation of its second derivative in an
arbitrary given direction as the variance of a random variable. We note from
Theorem 3.73(a) for later use that

1

(4.72) VG (7, k) =
[Eal

(63, p.q(11(@) NEAD. 85, o (K(@, A))).

Since, for any £ € Q, the Gi(n, k) are convex functions of (7, ) which
convergeto the finite limit function G(, k) as A 1 Z9, G isconvexonR2. [

Proof of Theorem 4.63.

(c) <= (d). By (4.36), |'Wpql = |Rpgl = 1if and only if ¢8,q = qﬁ%qq.
By Proposition 4.6 and the fact that ¢>g,q <g« ¢>%,q. ¢>8,q = cl)%’q if and only if
hO(p, q) = h(p, q). Therefore, (c) and (d) are equivalent.

(8 < (b) < (c). Thisisinspired by arelated computation for the Ising
model, [233]. Let p € (0, 1), g € (1, o0), and let (7, k) satisfy (4.56). Recall the
functions Gi givenin (4.71), and note from (4.72) that

¢
dG§, 1

4.73 —A =
@79 dz  [Eal

B p.q(11(@) NEA.

Since G is convex, £y is countable. By the convexity of the G,

dG},  dG d

For any box A and any edgee € E,,

(4.74)

1
(4.79) mcpxp,q(m«o) NEAD < ¢p q(Je)
< ¢p.q(Je)
1 1
= m(pA,p,q(M(w) NEAD,
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where we have used the automorphism-invariance of ¢>8,q and ¢%ﬁq , together with

the stochastic ordering of measures. We deduce on passing to thelimit as A 1 Z4
that

dG
(4.76) 4 =%hq0e) =9pqe).  ecE p¢ D

In particular, (a) implies (c).

Since G(x, «) is a convex function of , it has right and left derivatives
with respect to 7, denoted respectively by dG/dx*. Furthermore, dG/dx ™
(respectively, dG/dm ™) is right-continuous (respectively, left-continuous) and
non-decreasing. We shall prove that

dG dG

(4.77) T~ g = ®palle) —dpq(de).

and that

(478)  Ppq(Je) = Mgy (Je). Ppq(le) = lim ¢y ().

In advance of proving (4.77) and (4.78), we note the following. By (4.77),
(a) and (c) are equivalent. By (4.77)—(4.78), the following three statements are
equivalent for any given :

1 p¢ Dq,

2. h%x, q) isright-continuousat x = p,

3. hl(x, q) isleft-continuousat x = p.
By Proposition 4.28, hO(-, q) (respectively, h(-, q)) is left-continuous (respec-
tively, right-continuous), and therefore () isequivalent to each of (b)(i) and (b)(ii).

It remainsto prove (4.77) and (4.78). We concentratefirst on the first equation
of (4.78). By Proposition 4.28(b), h'(-, q) is right-continuous, whence

h'(p,a) = lim h'(p’, 9.
pip
Now Dq is countable, whence ¢8’,q = ¢é,1q, and in particular hO(p’, q) =
hi(p’, q), for dmost every p'. By the monotonicity of h°(-, q),
h'(p, @) = lim h%(p’, 9.
pip

as required. The second equation of (4.78) holds by a similar argument.
By the semicontinuity of thedG/dx*, (4.76), and Proposition 4.28,

daG . d 1

prp = |X|IP &G(X,K) = ¢p,q(~]e),
X¢ Dy

daG . d 0

PP l’ig &G(X,K) = ¢p.q(Je),
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and (4.77) follows. O

Proof of Theorem 4.60. Parts () and (b) follow by the remarks prior to the state-
ment of the theorem, and we turn to part (c). Recall first that G is differentiable
at (7, k), that is (7w, k) ¢ D', if and only if G possesses both partial derivatives
at (, k). It remainsto show therefore that, for k € (0, 00), # € D, if and only
if «k € D). Letk € (0,00). Since, by Theorem 4.63, D, is exactly the set of
m = m(p) suchthat ¢J ; # 7 4, it suffices to show the following.

(4.79) Lemma. Let p € (0,1), g € (1, 00), and let (, ) satisfy (4.56). Then
x € D} ifandonlyif ¢J 4 # é3 g

Proof. The function Gf\ of (4.71) isconvex in «, whence

d i d asA 178 £eQ D!
L
d« d« Tz €8, k¢ Dn,

asin (4.74). Inequalities (4.75) become

(4.80)

1

1

N 5 q(k(@, A))

1 1
> mqsp,q(k(a)s A))

1

> md&,p,q(k(w, A)),

sincek(w, A) isdecreasingin w. Therefore, by Theorem 3.73(a),

dc% [k, A)
(482 WE%"‘( [Eal )
K(w, A) dGl
1 A /7
Zd’p’q( [Eal )Z TR

For w € Q and x € Z9, let Cx = Cy(w) be the w-open cluster at x, and |Cy|
the number of its vertices. Asin[154, Section 4.1],

1 1

k A) = S, —

(@ 4) Z|cmA|—Z|cx|’
XeA

XeA

and

1 1 1
K(w, A) — - -
(@ 4) Z|Cx| Z<|mex| |Cx|)

XeA XeA

1
< < |dA].
<> oAy = 1Al
XEA:
X<>0A
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Thecj)g,q are t-ergodicfor al trandations T other than theidentity. By the ergodic
theorem applied to the family {|Cx| ™1 : x € Z9} of bounded random variables,

k(w, A)

(4.83) ¢p, ( A

) — ¢hq(ICol™  ¢pg-asandinLtasA t 29

By (4.80), (4.82), and (4.83),

dG 1 1 1
de = a%ralCol™) = Gdg(ICol ™, x ¢ D7

(4.84) 5

Thisimplies by the next proposition that qﬁg’q = ¢F1),q fork ¢ Dy.
(4.85) Proposition. Let pe (0,1) andq € [1, 00). If

(4.86) ¢p.q(ICol ™) = ¢ (ICol ™
then @9 4 = ¢ -

Proof. Suppose that (4.86) holds. There are two steps, in the first of which we
show that thelaw of thevertex-set of Co isthe sameunder ¢3 , and ¢ . Asinthe
proof of Proposition 4.6, thereexistsaprobability measure . on (2, F) x (2, ),
with marginals ¢ , and ¢5 4, and such that

(4.87) 1({(wo, w1) € Q%1 wp < wn}) = 1.
By (4.87), Cx(wo) € Cy(w1) forall x € Z9, u-almost-surely. Let

E = [ {(wo. w1) € Q%:|Cx(wo)| ™ = [Cx(en)|~*}.

xezd

By (4.86),
w(E) < Y u(ICx(wo)| ™t > |Cx(wn)| ) =0,
xezd
whence u(E) = 1.
If the vertex-set of Co(wp) is astrict subset of that of Co(w1), one of the two

statements following must hold:

(i) Co(wo) isfiniteand |Co(wo)| ™ > |Co(wr)| ™2,

(i) Co(wo) is infinite, |Co(wo)| ™t = |Co(w1)|~t = 0, and there exists x €

Co(w1) \ Co(wo).
By (4.86), the w-probability of (i) iszero. By considering the two sub-cases of (ii)
depending on whether Cy (wp) is finite or infinite, we find that the w-probabiltiy
of (ii) isno larger than
p(E) + u(l (wo) = 2),
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where | (w) is the number of infinite open clusters of w. By Theorem 4.33(c),
w(l(wo) > 2) = ¢8,q(| > 2) = 0. We conclude as required that the vertex-sets
of Co(wp) and Cp(w1) are equal, u-almost-surely. Therefore, by the trandation-
invariance of the ¢ ,

(4.88) PoqX Y =¢s (xHY), X yeZl

We turn now to the second step. Let J be the event that edge e = (X, y) is
open, and let K be the event that x and y are joined by an open path of E9 \ {e}.
By Proposition 4.37(a),

p R
¢g,q(\]e) = D¢B,q(Ke) + md’g,q(Ke)
p b &
— S K
p+<p+q(1— p) p>¢p’q( ®
and o
¢p.q(JeNKe) PR X ¥ Y)

.
Ke) = = =0 = ’
oale = G &Ko al@-p/lp+ad—pl

Hence, by (4.88),
#94(Je) = b q(J).  ecEl
whence, by Proposition 4.6, ¢ , = 5 - 0
We return now to the proof of Lemma4.79. Suppose conversely that ¢g’ q=

¢>%’q, and let 9 < g < q”. By Proposition 4.28(a) applied to the decreasing
function |C| 1,

oL (ICI™H < gL q(CI™YH = @S 4(1CI™h < g0 (ICI Y.
Teke the limitsasq’ 1 g and " | q along sequences satisfying « (q'), k(q") ¢

D!, and usethemonotonicity of thesefunctionsto find from (4.84) and Proposition
4.28 that

dG dG 1, , _ _

95~ 9= = gl%ealCl H—¢rq0CITH] =0.
Therefore, G hasthe appropriate partial derivative at the point (r, x), whichisto
say that « ¢ D! asrequired. OO
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4.6 Potts and random-cluster models on infinite graphs

Therandom-cluster model providesaway to study the Pottsmodel onfinitegraphs,
as explained in Section 1.4. The method is valid for infinite graphs also, as
summarized in this section in the context of the lattice L9 = (9, E9).

Let p e [0,1),q € {2,3,...},and p = 1 — e # as usual, and consider
the free and wired random-cluster measures, ¢3 , and ¢ 4, respectively. The
corresponding Potts measures on L9 are the freeand ‘1’ measures,

(489) TL’ﬂ’q = [{Ide JTA’/S,q,
4.90 ato o= limxt, .
(4.90) pa= M TApa

Themessurem g q iSthe Potts measureon A givenin (1.5). The measuren}\ A

is the corresponding measure with ‘1’ boundary conditions, given asin (1.5) but
subject to the constraint that ox = 1 for all x € dA. It isstandard that the limits
in (4.89)—4.90) exist. Probably the easiest proof of thisis to couple the Potts
model with a random-cluster model on the same graph, and to use the stochastic
monoatonicity of the latter to prove the existence of the infinite-volume limit.

We explainthisin thewired case, and asimilar argument holdsin the free case.
Part (a) of the next theorem may be taken as the definition of the infinite-volume
Potts measure 75 .

(4.91) Theorem [8].

(a) Let w be sampled from @ with law qﬁ%’q. Conditional on w, each vertex
x e 74 isassigned arandomspinoy € {1, 2, ..., q} in such a way that:
(i) ox = 1if X < o0,
(i) ox isuniformly distributedon {1, 2, ..., g} if x <4 oo,
(iii) ox = oy ifx <y,
(iv) oy, 0%y, - - ., Ox, areindependent whenever xi, X, ..., Xy are in diff-

erent finite open clusters of w.

Thelaw of thespinvector o = (o : X € Z9%) isdenoted byng’q and satisfies
(4.90).

(b) Leto besampledfrom>® ={1,2,..., q}Zd with Iaan}’q. Conditional on

o, eachedgee = (x, y) € EY isassigned a random state w(e) € {0, 1} in
such a way that:
(i) the states of different edges are independent,
(i) w(e) = 0if ox # oy,
(iii) if ox = oy, then w(e) = 1 with probability p,
The edge-configurationw = (w(e) : e € EY) haslaw ¢>%,q.

A similar theoremisvalidfor the pair qﬁg’q, mg,q, Withthedifferencethat infinite
open clusters are treated in the same way asfinite clustersin part (a).
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The Pottsmodel hasauseful property called ‘ reflection-positivity’. Itisnatural
to ask whether asimilar property is satisfied by general random-cluster measures.
It was shown in [43] that the answer is negative for non-integer values of the
parameter q.

Proof of Theorem 4.91. (@) Of the possible proofs we select one using coupling,
another approachmay befoundin[142]. Let Ap = [—n, n] andwriteQ, = Q5
and o} = ¢zl\n,p,q' Let R bethe set of all vectors w = (w1, wy, . ..) such that:
wn € Qnandwn > wpt1 forn > 1. Recall fromthe proof of Theorem 4.19(a) that
¢n >s ¢ny1forn > 1, andthat gn = ¢ 4 8N — oco. By [237, Thm 6.1], there
exists ameasure . on £ such that, for each n > 1, the law of the nth component
wn is¢n. Forw € £, thelimit ws = limp_ oo wp exists by monotonicity and,
by the weak convergence of the sequence (¢} :n=1,2,...), w haslaw qﬁ%’q.
Note that

(4.92) forec EY, wn(e) = wso(e) forallargen.

Let S = (S : x € 79) be independent random variables with the uniform
distributiononthe spinset {1, 2, ..., q}. The S; are chosen independently of the
®, and we abuse notation by writing w for the required product measure on the
product space 2 x X.

Letw € Q, and let the vector 7(w) = (ty (w) : w € Z9) be given by

1 if w < oo inthe configuration w,

Tw(w) = { .
S, otherwise,

where z,, = z,,(w) isthe earliest vertex in the lexicographic ordering of Z¢ that
belongsto the (finite) w-open cluster at w.

L et us check that:
(4.93) for w e 79, Tw(wn) = Tyw(ws) foral largen.

If w < 00N ws, then w <« oo in wy for al large n, whence 7, (wn) =
1 = 7y (wso) for al n. If, on the other hand, w <> oo in ws then, by (4.92),
Cy(wn) = Cy(weo) for al large n. Therefore, 1, (wn) = 1y (weo) for dl largen,
and (4.93) is proved.

Let W be a finite subset of Z9 and, for w € Q, define the vector tw(w) =
(tw(w) : w € W). By Theorem 1.13(a), for n sufficiently largethat W C Ap,
(4.94)

u(tw(wn) = ) =75 5 (00 = o forw € W), ae{l,2....q"W.
By (4.93), the vector Ty (wn) is constant for all large (random) n. Therefore,

w(wn) = Tw(woo) asn — oo,
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andso, fore € {1,2, ..., W,
p(tw(wn) = @) = p(tw(we) =)  8n — oo,

by the bounded convergence theorem. By (4.94), the vector Ty (ws) has as law
the infinite-volume limit of the finite-volume measure n[l\’ﬂ’q, and the claim is
proved.

(b) We continueto employ the notation of the proof of part (a), whereit wasproved
that the vector 7(wse) = (tx(wso) : X € Z9%) has law né’q. Since weo has law
¢>%’q, it sufficesto show that the conditional law of we given T (ws) isthat of the
given recipe.

By the definition of 7 (weo), theedgee = (X, y) satisfies ws, (€) = 0 whenever
x(weo) # Ty(wso). LEt e = (Xi, Vi), i = 1,2,...,n, beafinite collection of
distinct edges, and let D be the subset of 2 x X given by

D={(®9: 1@ =1y fori =1,2,...,n}.

For any event A defined in terms of the states of the edges g, we have by (4.92)—
(4.93) that

M(woo € A| (o, S) € D) = nli)n(;lou(wn € A| (wn, S) € D).

The law of wp is ¢ and, by Theorem 1.13(a), the vector (tx(wn) : X € Ap) has
law ”11\n,;3,q' By Theorem 1.13(b), the last probability equals yrp(A) where yrp is
product measure on {0, 1}" with density p. The claim follows. O
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Chapter 5

Phase Transition

Summary. When q € [1, 00), there existsacritical value pc(q) of the edge-
parameter p, separating the phase with no infinite cluster from the phase
with one or more infinite clusters. Partial results are known for both phases,
but important open problems remain. In the subcritical phase, exponential
decay is proved for sufficiently small p, and is conjectured to hold for
al p < pe(g). Much is known for the supercritical phase subject to the
assumption that p exceeds a certain ‘slab critical point’ Pc(q), conjectured
to equal pc(g). The Wulff construction is a high point of the theory of the
random-cluster model.

5.1 Thecritical point

The random-cluster model possesses an infinite open cluster if and only if pis
sufficiently large. Thereisacritical value of p separating the regimeinwhich all
open clusters are finite from that in which infinite clusters exist. We explore this
phasetransitioninthischapter. Withtheexception of thefinal Section 5.8, weshall
assumefor the entirety of the chapter that q € [1, co), and we shall concentrateon
the extremal random-cluster measures ¢g’q and q%’q. The quantities of principal

interest are the ¢g’q—percol ation-probabilities,

(5.1) 0°(p. ) = ¢ 4(0 < 00), b=0,1.

We define the critical points

(5.2) pe(q) = sup{p:6°(p.q) =0}, b=01

By Proposition 4.28(a), the #°(-, ) are non-decreasing functions, and therefore

=0 if p< pla,

b
(®3) o7(p. q){ >0 if p> p2(q).
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By Theorem 4.63, ¢0, = ¢34 for Amost every p € [0, 1]. Therefore,

6%p,q) = 61(p,q) for Amost every p, and hence pd(q) = p(q). Hence-
forth, we use the abbreviated notation

(5.4) pe() = pd@) = pi(@),

and we refer to pc(q) asthecritical point of the random-cluster model.

It is amost trivial to prove that pc(q) = 1 in the very special case when
the number d of dimensions satisfiesd = 1. In contrast, it is fundamental that
0 < pc(q) < 1whend > 2. Not agreat deal is known in generall about the
way inwhich pc(q) behaveswhen viewed as afunction of q. Thefollowing basic
inequalities are consequences of the comparison inequalities of Proposition 4.28.

(5.5) Theorem [8]. We have that

(5.6) < =< - =
Pe(q) pe(d) pe(a) o

From (5.6) we obtain that

(@—a)pc@)(1 - pe(q)) ,

57) 0 — pe(q’ .1 ,
(5.7 0< pc(q) — pe(@) < T 1 @) pd) <dq =q

whence, on setting q’ = 1,

Q- D peD)(A — pe(1))
(58 0=pe@ = pe(D) = = q-Dpn 4=t

Since0 < pc(1) < 1ford > 2,[154, Thm 1.10], we deduce the important fact
that

(5.9) O<p(@<1l g=1
By (5.7), pc(Q) is a continuous non-decreasing function of q. Strict mono-
tonicity? requires the further comparison inequality of Theorem 3.24.

(5.10) Theorem [151]. Let d > 2. When viewed as a function of g, the critical
value p¢(q) isLipschitz-continuousand strictly increasing ontheinterval [1, co).

In advance of proving Theorems 5.5 and 5.10, we state and prove two facts of
independent interest.

1Except for its behaviour for large g, see Theorem 7.34.
2The strict monotonicity of pc(q) as afunction of the underlying lattice was proved in [39],
see also [148].
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(5.12) Proposition [8]. For p € [0,1] andq € [1, 00),
Ph.pq0< dA) — 0% (p.q)  asA 1z

Thereis no ‘elementary’ proof of the corresponding fact for the O-boundary-
condition measure ¢>9\’ p.q" and indeed this is unproven for general pairs (p, q).

(5.12) Proposition. Let ¢a, A  Z9, beprobability measureson (2, ) indexed

by boxes A and satisfying ¢p = ¢ as A 1 Z9. If ¢ hasthe 0/1-infinite-cluster
property, then

Pa(X < Y) = (X < Y), x,yez9.

Proof of Proposition 5.11. Itisclear that
$p.q(0 < 0A) < ¢35 q(0 < IA) <) , 40« dA)  for ACA,

by positive association and the fact that {0 <> dA} € {0 <> dA} when A C A.
Wetakethelimitsas A 1 Z¢% and A 4 Z9 inthat order to obtaintheclaim. O

Proof of Proposition 5.12. Let x and y be verticesin abox A. Then,
PA(X < Y) = Pa(X < YinA)

—> dp(X < yinA)  asA 1z
— (X < Y) asA 4tz

Furthermore,
PAX < Y, X b YINA) <Pa(X, Yy < A, X <5 yinA)

> ¢(X,y < A, X <4 yinA)  asA 279
— P(X,y <> 00, X <5 Y) asA 179

Thelast probability equals 0 since ¢ hasthe 0/1-infinite-cluster property. O
Proof of Theorem5.5. Let1 <q <qand

PP
ag@d-p) qld-p’

(5.13)

We apply Theorem 3.21 to the probability ¢11\’ 0.0 (0« dA). By Proposition5.11,
onletting A 1 Z9,

o1 (p.q) <6Xp,q) < o1 (p. q).
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If p' < pe(q), then 81(p’, ") = 0, so that H1(p’, q) = 0 and therefore p’ <
pc(q). Thisimpliesthat pc(q’) < pc(q), thefirst inequality of (5.6). Similarly, if
P < pc(a) then p" < pe(q’), whence

Pe@  _ _ P@
a(d— pc(@) ~ 91— pe(@))’

and hence the second inequality of (5.6). O

Proof of Theorem 5.10. By (5.7),

0< P@=P@ 1 _gg
q-q 4q’

whence pc(q) is Lipschitz-continuous on the interval [1, co). Turning to strict
monotonicity, let y be given as in Theorem 3.24 with A = 2d, and let
1< gz < 1. Recadl that y(p,q) is continuous, and is strictly increasing in
p and strictly decreasingin q. We apply Theorem 3.24 to the graph obtained from
A by identifying all vertices of d A, with spanning set W = A \ 9A satisfying
deg(W) = 2d, to obtain that

Dr . (0 IA) < bk 1) 0,0 0A) if  y(pr. 1) < y(p2. Q).

Let A 1 z9 and deduce by Proposition 5.11 that

(5.14) 01 (pr, a1 < 6X(p2, ) if ¥ (p1, 1) < ¥ (P2, G).

We claim that

(5.15) Y (Pe(dy), g1) = 7 (Pc(d2), 2).

Suppose on the contrary that v (pc(d1), d1) < ¥ (pPe(d2), 92). By the continuity

of y, thereexist p1 > pc(gr) and pz < pc(gz) suchthat y (p1, d1) < y (P2, d2)-
By (5.14),

0 (p1, q1) < 6(p2, q2).

However, 61(p1, q1) > 0 and 61(po, g2) = 0, a contradiction, and thus (5.15)
holds. If pc(d1) = pc(02), then the strict monotonicity of y (-, -) and the fact that
02 < gz arein contradiction of (5.15). Therefore pc(g2) < pc(d1) as claimed. O
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5.2 Percolation probabilities

The continuity of the percolation probabilitiesd®(p, q) isrelated to the uniqueness
of random-cluster measures, in the sense that the 6°(-, ) are continuous at p if
and only if thereis a unique random-cluster measure at this value.

(5.16) Theorem. Letd > 2and g € [1, 00).
(a) Thefunction 6°(-, q) isleft-continuouson (0, 1] \ { pc(q)}.
(b) Thefunction 61(-, q) isright-continuouson [0, 1).
(©) 6%p,a) = 61(p,q) if and only if p ¢ Dq, where Dy is that of Theorem
4.63.
(d) Let p # pe(q). The functions 0°(-, ) and 6(-, q) are continuous at the
point p if and only if p ¢ Dg.

Clearly, 6°%(p,q) = 61(p,q) = 0if g € [1,00) and p < pc(q), and hence
DqNIO, pc(q)) = @, by part (c). Itispresumably thecasethat 6°(-, q) and (-, q)
are continuous except possibly at p = pc(q). In addition it may be conjectured
that 6°(-, q) is left-continuous on the entire interval (0, 1]. A verification of this
conjecture would include a proof that

0°(pe(@), @) = lim 6%p,q) =0.
ptpe(q)

This would in particular solve one of the famous open problems of percolation
theory, namely to show that 6 (pc(1), 1) = 0, see[154, 161].

The functions #°(p, q) and 61(p, q) play, respectively, the roles of the mag-
netizations for Potts measures with free and constant-spin boundary conditions.
We state this more fully as a theorem. Asin Section 1.3, we write o for the
spin at vertex u of a Potts model with g local states (where g is now assumed to
be integral). We denote by 74  (respectively, = /:SL,q) the ‘free’ (respectively, ‘1')
q-state Potts measure on LY with parameter B, see (4.89)—(4.90).

(5.17) Theorem. Letd > 2, p € (0,1), g € {2,3,...}, and let B satisfy
p=1-ef. Wehavethat:
(618  A-aHe°p.a)? = lim frpqo0=ow —q"},
(5.19) 1-q HoXp.q) =m5400=1—q".

Equation (5.19) is standard (see [8, 108, 150]). Equation (5.18) is valid also
with 6°(p, q) and 74 q replaced, respectively, by 61(p, q) and =%, and the proof
issimilar.

Proof of Theorem 5.16. We shall prove part (a) at the end of Section 8.8. Part (b)
is a consequence of Proposition 4.28(b) applied to the indicator function of the
increasing closed event {0 <> oc}. Part (d) followsfrom (a)—(c) and Theorem 4.63,
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on noting that the #°(-, ) are non-decreasing. It remainsto prove (c). Certainly
$0q = dpqif P & Dq (by Theorem 4.63), whence 6%(p, q) = 61(p, q) for
p ¢ Dq. Suppose conversely that g > 1 and

(5.20) 6%(p, q) = 6(p, q).

We shall now give the main stepsin a proof that

(5.21) h°(p, a) = h(p, @).

Thiswill imply by Theorem 4.63 that p ¢ Dy.

Let e = (u, v) be an edge, and Je the event that e is open. For w € Z9, let
ly, = {w < oo}, and let H,, be the event that w is in an infinite open path of
EY\ {e}. Asin the proof of Proposition 4.6, there exists a probability measure
on (R, F)? with marginals ¢ ; and ¢ 4, and assigning probability 1 to the set
of pairs (wg, w1) € Q2 satisfying wp < w1. Let F(w) bethe set of vertices that
arejoined to infinity by open paths of the configuration w € 2. We have that

(522)  0<y(F(wo) # F@1) = Y {bpq(lu) — 69 q(w)} =0.

wezd
by (5.20). Theevent J. N Iy N |, isincreasing, whence
(5.23) $pq(JeNluN 1) < 95 q(JeNluNly).
Also,

(524)  ¢5 (TN lunly) = g5 (JeN HuN Hy)
= ¢ q(Fe | Hu N Hy)¢d o (Hy N Hy).

However, o o
¢p.q(Je | HuN Hy) = ¢ q(Je | HuN H,)

by Proposition 4.37(a) and the fact (Theorem 4.34) that qﬁg’q, qﬁ%’q € Rpg- In
addition, qﬁg’q(Hu NH,) < q%’q(Hu N H,) since Hy, N H, isanincreasing event.
Therefore (5.24) implies that

(525) ¢8(TeNlunly) < ¢ q(Je | HuN H)L o (Hu N Hy)
= ¢pq(FeNHuUNHy) =5 (TN lunly).

Adding (5.23) and (5.25), we obtain that
B q(lunly) < @5 o(lun ).
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Equality holds here by (5.22), and therefore equality holds in (5.23), which isto
say that

(5.26) P q(deNluN 1) =¢s ((JeNlyN ).
It is obviousthat
(5.27) Boq(JeNTunly) =¢5(JeNTun 1)

since both sides equal 0; the same equation holdswith T, N 1, replaced by 1, N T,.
Finally, we prove that

(5.28) $9q(JeNTunTy) =¢pq(JenTunTy)

which, in conjunction with (5.26), (5.27), and the subsequent remark, impliesthe
required (5.21) by addition. Let ¢ > 0. Let A be abox containing u and v, and
let Ay = {u <k 0A, v <~ 0A}. We havethat

0 < 40 4(An) — b q(An)
= ¢0qunTy) — ¢t ;(unTy)  asApz¢
< ¥ (F(wo) # F(w1)) =0,
by (5.22). Therefore,

0< ¢0q(Ar) — ¢35 q(Ax) <€ foralllarge A,

and we pick A accordingly. The events {u <~ dA} and {v <+ 0A} are cylinder
events, whence

(5.29) 0< 62 pq(Ar) — dX pq(Ar) <2¢  forallageA,

and we pick A D A accordingly. We now employ a certain coupling of ¢g, 0.4
and 4&, 0.9 Similar couplingswill be encountered later.

(5.30) Proposition. Let p € (0,1) andq € [1, 00), and let A, A be finite boxes
of 79 satisfying A C A. Forw € Q,1et G = G(w) = {X € A : X <4 dA}.
There exists a probability measure ¥4 on Q2 x QX with marginals ¢$ | , and
qﬁ’ p.g" that assigns probability 1 to pairs (wo, w1) satisfying wo < w1, and with
the additional property that, conditional on the set G = G(wj1), both marginals
of A onEg equal the free random-cluster measure ¢g, p,q-
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Writing § for the class of all subsets of A that contain both u and v, we have
by the proposition that

Dh pq(JeNAN) = 9% pade. G=0) =D ¥a(w1 € Je. G(wr) = Q)

g€§ ge§

=Y va(w1 € Je| Glwr) = 9)¥a(Glw1) = 0)
ge§

=Y ¥a(wo € Je| Glwr) = 9)¥a(Glw1) = Q)
g<§

=Ya(wo € Je, w1 € Ap)

< Yalwo € Je. o € Ap) = @2 q(JeN An).

Therefore,
0< 2 pg(deNAn) = d3 pq(deN Ar)
= Yalwo € Je, wo € Ap, w1 ¢ Ap)
< Yal(wo € Ap, w1 ¢ Ap) < 2¢,
by (5.29). Let A 1+ 29, A ¢ 79, and € | 0in that order, to obtain (5.28). O

Proof of Proposition 5.30. Let ¢° = ¢g,p,q. Since ¢0 <4 ¢!, there exists
a coupled probability measure on Q% x Q% with marginals ¢°, ¢*, and that
allocates probability 1 to the set of pairs (wo, w1) wWith wg < wy. Thisfact is
immediate from the stochastic ordering, but we require in addition the special
property stated in the proposition, and to this end we shall develop a special
coupling not dissimilar to those used in [38] and [259, p. 254]. We do this by
building a random configuration (wp, w1) € Qg X Qi in a sequential manner,
and we shall speak of wg (respectively, wi) as the lower (respectively, upper)
configuration. We shall proceed edge by edge, and shall check the (conditional)
stochastic ordering at each stage.

After stage n wewill havefound the (paired) states of edges belonging to some
subset §, of Exo. We begin with § = &, and we build inwards starting at the
boundary of A. Let (g :1 =1, 2,..., L) beadeterministic ordering of the edges
inEx. Let g, bethe earliest edge in this ordering that isincident to some vertex
indA, and let

I = {every edgeoutside E, hasstateb),  b=0,1.
By the usual stochastic ordering,
(5.31) #°(ej, isopen | 19) < ¢*(e, isopen | 13).

Therefore, wemay find {0, 1}-valued random variableswo(gj, ), w1(g),) withmean
values asin (5.31) and satisfying wo(gj,) < wi1(gj,). Weset § = {g,} and

1P = 18N (g, hasstate wp(g,)},  b=0,1.
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Weiterate this process. After stager , wewill have gathered theinformation 10
(respectively, 1) relevant to the lower (respectively, upper) process, and we will
proceed to consider the state of some further edge g, ,. The analogue of (5.31),
namely

0 ; 0 1 ; 1
¢ (g, isopen| I°) < ¢~(gj,, isopen| I),

is valid since, by construction, wo(gj,) < wi(g) fors = 1,2,...,r. Thuswe
may pick a pair of random states wo(€j,,,), w1(gj,,,) for the new edge, these
having the correct marginals and satisfying wo(€j,,,) < w1(€j,,,)-

Next is described how we choose the edges g;,, g5, . ... Suppose the first r
stages of the above process are complete, and write § = {gj, :s=1,2,...,r}.
Let K; bethe set of vertices x € A such that there exists a path 7 joining x to
somez € dA, with the property that w1(e) = 1foral e € =. (Thisrequiresthat
every edge ein 7 has been considered in thefirst r stages, and that the w1-value
of each such e was found to be 1.) We let g, ., be the earliest edge in the given
ordering of E that does not belongto S but possesses an endvertex in K, .

Let us call atemporary halt at the stage when no new edge can be found. At
this stage, R say, we have reveaed the states of edgesin a certain (random) set
Skr. Let Fr bethe set of edgesin Ex that are closed in the upper configuration.
By construction, Fr contains exactly those edges of Ex that have at least one
endvertex in Kr and that have been determined to be closed in the upper configu-
ration. By the ordering, theedgesin Fr are closed in the lower configuration al so.
By construction, the lower (respectively, upper) configuration so far revealed is
governed by the measure ¢° (respectively, ¢%).

Suppose for the moment that A = A, inwhich case G(w1) = A \ Kr. When
extending the upper and lower configurations to edges in Eg, the only relevant
information gathered to dateisthat all edgesin the edge-boundary A¢G areclosed
in both configurations. We may therefore complete wo, w1 at one stroke by taking
them to be equal, with (common) law ¢g’ 0.q" This proves the proposition in the
special casewhen A = A. Consider now the general case A C A.

We explain next how to re-start the processat stage R. We began abovewith the
‘seed’ 9 A and we built a set of edges connected to d A by paths of open edgesin
the upper configuration, together with its closed edge-boundary. Having reached
stage R, we choose avertex x € A satisfying X ¢ Kr U (A \ dA) that isincident
to some edge of Fr. We then re-start the process with x as seed, and we continue
until we have revealed the open cluster Cy(w1) at x in the upper configuration.
We add the vertex-set of Cy (w1) to Kr to obtainalarger set K’. To Fr, weadd all
edgesincident to verticesin this cluster that are closed in the upper configuration,
obtaining thus a larger set F’. Next, we find another seed y ¢ K’ U (A \ 9A)
incident to some edge in F’. This process is iterated until no new seed may be
found.

At the end of all this, we have revealed the paired states of all edgesin some
set S. Let T bethe union of the vertex-sets of the open clusters of al seeds. Since
no further seed may be found, it isthe case that G(w1) = A \ T. Asbefore, the
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lower and upper configurations may be completed at one stroke by sampling the
states of edgesin Eg according to the free measure ¢, p,q- O

Proof of Theorem 5.17. Let 1 be the (coupled) probability measureon Q x ¥
given by the recipe of Theorem 4.91(a). We have that

75 q(00=1) = p(oo =110 < 00)8*(p,q)
+ (00 = 1] 0 <5 00)[1 — 6 (p, O]
1
=0 (p,q) + a[l—el(p, )l

and (5.19) follows.
Turning to (5.18), we have similarly to the above that

1
(19" H9p g0 < U) = 75,(00 = 0u) — g ue 74,

The claim is proven once we have shown that
(5.32) $pq(0 < w) — 0%p.a)®  as|ul — oo.
By the 0/1-infinite-cluster property of qﬁg’q, see the remark after (4.36),
5.q(0 < U) = 9 4 (0 < 00, U <> 00) +¢f y(U € C, |C| < 00).
Thelast probability tendsto zero as |u| — oco. Also,
$pq(0 < 00, U< 00) = ¢f q(0 < 00)?  asu| — oo,

since ¢>8,q ismixing, see Corollary 4.23. O

5.3 Uniqueness of random-cluster measures

We record in this section some information about the set of values of p at which
there exists a unique random-cluster measure.

(5.33) Theorem [8, 152]. Let q € [1,00) and d > 2. There exists a unique
random-cluster measure, in that |'Wp q| = |Rp gl = 1, if €ither of the following
holds:
@ 6%p, q) = 6%(p, ), whichisto say that p ¢ Dq,
(b) p> p/,where p’ = p'(q,d) € [pc(q), 1) isa certain real number.
By part (a), there is a unique random-cluster measure for any p such that
61(p,q) = 0, [8, Thm A.2]. In particular, there exists a unique random-cluster

measure throughout the subcritical phase, that is, when 0 < p < pc(Q). Itisan
important open problem to establish the same conclusion when p > pc(Q).
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(5.34) Conjecture. Letq € [1,00) andd > 2. We havethat ¢ 4 = ¢3 4, and
therefore | Wp q| = [Rp,ql = 1, if and only if either of the following holds:

(i) either p < pe(q) or p > pe(a),

(i) p= pc(@) and6*(pc(a), q) = 0.

Slightly moreisknown in the case of two dimensions. Itis provedin Theorem
6.17 that there is a unique random-cluster measurewhen d = 2 and p # p(Q),
where pg(q) = ,/q/(1+ ,/Q) isthe'self-dual’ value of p. Itisconjectured that
Pc(@) = psi(q) for g € [1, oo).

Proof of Theorem 5.33. The sufficiency of (a) was proved in Theorem 5.16(c).
We sketch a proof that ¢p , = ¢p o if p is sufficiently close to 1. There

are certain topological complicationsin this®, and we refrain from giving all the
relevant details, most of which may be found in a closely related passage of [211,
Section 2]. We begin by defining a lattice £ with the same vertex set as L9 but
with edge-relation

X~y if |x—y|l<1lforl<i=<d.

For w € Q, wecall avertex x whiteif w(e) = 1 forall eincident withx inL9, and
black otherwise. For any set V of verticesof .£, wedefineitsblack cluster B(V) as
the union of V together with the set of all vertices xg of £ for which thefollowing
holds: there exists a path Xo, €, X1, €1, ..., €1—1, Xn Of aternating vertices and
edges of £ such that Xg, X1, ...,Xn—1 ¢ V, X € V, and Xo, X1, ..., Xp—1 are
black. Note that the colours of verticesin V have no effect on B(V), and that
V C B(V). Let

d
IBOV)I =wp:Z|xi —yilixeV, ye B<V>}.

i=1

When V isasingleton, V = {x} say, we abbreviate B(V) to B(x).
For an integer n and a vertex x, the event {||B(x)|| > n} isadecreasing event,
whence

(5:35)  ¢pq(IBOOI =) <02 ,q(IBX)I =n)  forany box A
< ¢ax(IBOOI = 1),

where ¢4 » is product measure on E, with density # = p/[p + q(1 — p)],
and we have used the comparison inequality of Proposition 4.28(a). By a Peierls
argument (see [211, pp. 151-152)]) there exists a(p) such that: the percolation
(product) measure ¢, = IimATZd oA SAisfies

(5.36) ¢=(IBOOJ =) <e™P, n>1,
3An alternative approach may be based on the methods of Section 7.2.
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and furthermore o(p) > O if p is sufficiently large, say p > p’ for some
P’ € [pc(@), D).

Let Abeanincreasing cylinder event, and find afinitebox A suchthat A € Fx.
Let A beabox satisfying A € A. For any subset Sof A = Z% \ A containing
9 A, we define the ‘interna boundary’ D(S) of Sto be the set of al vertices x of
L satisfying:

@ x¢S

(b) x isadjacentin £ to some vertex of S,

(c) there exists a path of L9 from x to some vertex in A, this path using no

vertex of S,

LetS= SU D(S), and denoteby | (S) the set of vertices xg for which there exists
apath Xo, €, X1, €1, ..., en_1, Xn of LY with X, € A, x; ¢ Sforal i. Note that
every vertex of 91 (S) is adjacent to some vertex in D(S). We shall concentrate
onthecase S= B(9A).

Lete > Oand p > p’, where p’ is given after (5.36). By (5.35)—(5.36), there
existsabox A’ sufficiently large that

(5.37) Poq(Kaa)=1—€,  ADA,

where K A = {B/(EZ) NA =@}. Wepick A" accordingly, and let A 2 A’

Assumethat Ka a occurs, sothat | = 1 (B(dA)) satisfies| D A. Let # be
the set of all subsets h of A such that h € A. We note three facts about B(3A)
and D(B(3A)):

(@ D(B(dA)) isL9-connected in that, for al pairs x, y € D(B(dA)), there
exists apath of L9 joining x to y using verticesof D(B(dA)) only,

(b) every vertexin D(B(0A)) iswhite,

() D(B(3A)) is measurable with respect to the colours of verticesin | =
Z9\ 1, in the following sense: for any h € #,, the event {B(dA) = h,
D(B(dA)) = D(h)} liesin the o -field generated by the colours of vertices
in 1 (h).

Claim (a) may be proved by adapting the argument used to prove [211, Lemma
2.23]; claim (b) is a consequence of the definition of D(B(dA)); claim (c) holds
since D(B(dA)) is part of the boundary of the black cluster of £ generated by
dA. Full proofsof (a) and (c) are not given here. They would be rather long, and
would have much in common with [211, Section 2].

Leth € #,. The¢g’q-probability of A, conditional on {B(dA) = h}, isgiven
by the wired measure ¢|1(h)’p’q. This holds since: (a) every vertex in al (h) is
adjacent to some vertex of D(h), and (b) D (h) isLd-connected and all verticesin
D(h) are white. Therefore, by conditional probability and positive association,

(5.39) B0 q(A) = 69 (61 g (MK, )
> ¢9 4(#% p.q(Alk,,)  sincel €A
> ¢X pq(A) —¢ by (5.37).
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Let A+ 29 and e | Oin that order, and deduce that ¢ ; >« ¢p 4. Since
$9 q <st ¢p ¢, We concludethat ¢ 4 = ¢3 4. O

5.4 The subcritical phase

The random-cluster model is said to be in the subcritical phase when p < pc(q),
and this phaseisthe subject of the next three sections. Letg € [1, o0),d > 2, and
P < pc(q). By Theorem 5.33(a), ¢ 4 = ¢ o, ad hence | Wp gl = |Rp.ql = 1.
We shall denote the unique random-cluster measure by qﬁg’q.

The subcritical phase is characterized by the (almost-sure) absence of an infi-
nite open cluster. Thus al open clusters are amost-surely finite, and one seeks
estimates on thetail of thesize of such acluster. Asdescribedin [154, Chapter 6],
one may study both the ‘radius’ and the ‘volume' of a cluster C. We concentrate
here on the cluster C = Cy at the origin, and we defineits radius® by

(5.39) rad(C) = max{[ly|l : y € C} = max{|ly|| : 0 < y}.

It isimmediate that rad(C) > n if and only if 0 <> d Ay, where Ap = [—n, n]d.
We note for later use that there exists a positive constant 8 = 8(d) such that

(5.40) BICI¥? < rad(C) +1 < |C|.

It is believed that the tails of both rad(C) and |C| decay exponentially when
p < pc(q), but thisis currently unproven. It is easy to prove that the appropriate
limits exist, but the non-triviality of thelimiting valuesremainsopen. That is, one
may use subadditivity to show the existence of the constants

. 1

(5.41) v (p, q)=nILmoo{—ﬁlogcbg,q(OeaAn)},
, 1

(5.42) ¢(p. @) =nILmoo{—ﬁlog¢8,q(|C| > n)}.

It is quite another matter to show as expected that

(5.43) v(p.q) >0, ¢(p,q) >0  for p < pc(Q).

We confine ourselvesin this section to ‘ soft’ arguments concerning the existence
of ¢ and ¢; the ‘harder’ argumentsrelevant to strict positivity are deferred to the
next two sections. We begin by considering the radius of the cluster at the origin.
The existence of the limit in (5.41) relies essentially on positive association. We
writeey, = (n,0,0,...,0).

4Note the use of the distance function | - | rather than the function | - | of [154].
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(5.44) Theorem. Let 1 be an automorphism-invariant probability measure on
(2, ) which is positively associated. The limits

. 1
v(p) = nll[go {_ﬁ log (0 < Qw)} ;

exist and satisfy 0 < v(u) = ¥ (u) < oo, and
10 < en) <e ™ 40 dAy) < (2d%6HndLeTW W n> 1

(5.45) Corollary. Let p € (0,1] and g € [1, c0). Thelimit
. 1 0 : 1 0
v(p, @) = lim {—ﬁ 109 ¢p,q(0 < aq)} = lim {—ﬁ 109 ¢p 40 < aAn)}

exists and satisfies0 < ¢ = ¥ (p,q) < oo. There exists a constant o = o (d)
such that

(5.46) ¢8,q(0 <) <e, qbg’q(O < 0Ap) <ondle n>1
Proofs of Theorem 5.44 and Corollary 5.45. The proof of Theorem 5.44 follows
exactly that of the corresponding partsof [ 154, Thms6.10, 6.44], and the detailsare

omitted. For the second proof, it sufficesto check that ¢g,q satisfiesthe conditions
of Theorem 5.44. O

We turn next to the volume |C| of the open cluster at the origin. A probability
measure p on (2, F) issaid to satisfy the * uniform insertion-tolerance condition’
if, forsomeq, 8 € (0, 1),

o <u(le| Te) < B, w-amost-surely, for e € EY,

where Je is the event that e is open. Let E be a finite set of edges, and let
K1, Ko, ..., K| bethe componentsof the graph (9, E9 \ E). We say that i« has
the ‘ empty-boundary Markov property’ if: for all such sets E, given that every
edgein E isclosed, the configurationsonthe Kj,i = 1,2, ..., |, areindependent.

(5.47) Theorem. Let u be a trandation-invariant, positively associated proba-
bility measure on (€2, ) with the uniform insertion-tolerance property for some
o, B € (0, 1), and also the empty-boundary Markov property. The limit

. 1
(5.48) ;(M)znhm {——Iogu(|C| =n)}
— 00 n
exists and satisfies
o2
(5.49) w(C| =n) < Mne*”““), n> 1
o
Furthermore, 0 < ¢(u) < — log[a(1 — B)2@-D.
It isan easy consequence of (5.48)—(5.49) that

(5.50) —% logu(n < |C| < o0) = (1) asn — oo.
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(5.51) Corollary. Let p € (0,1) andg € [1, co). Thelimit

. 1 0
¢(p,q) = lim {—ﬁ log¢p q(ICI = n)}
exists and satisfies

q2(1_ p)2 —N¢

0
Cl = e S o
PpallCl=m = plp+ q(l— p)]

Proofs of Theorem5.47 and Corollary 5.51. These are obtained by following the
proof of [154, Thm 6.78], and the details are omitted. O

Sincecpg’q(o < 00) > Owhen p > pc(Q), it iselementary that

(5.52) v(p,q) =0  forp> pc(q).
It israther less obvious that
(5.53) ¢(p,a) =0 for p> pe(q),

and thisisimplied (for sufficiently large p) by Theorem 5.108. It is an important
open problemto provethat ¢ (p, q) > 0and ¢(p, q) > Owhen p < pc(Q).

(5.54) Conjecture(Exponential decay). Letq € [1, o). Theny(p, q) > Oand
¢(p, q) > Owhenever p < pc(Q).

A partial result in this direction is the following rather weak statement; related
results may be obtained via Theorem 3.79 as in Theorem 6.30.

(5.55) Theorem. Letq € [1,00) and 0 < p < pc(1). Then y(p,q) > O and
¢(p.a) > 0.

Proof. Let q € [1, co), while noting in passing that the method of proof isvalid
even when g € (0, 1), using the comparison inequalities of Theorem 3.21 asin
(5.118). By Proposition 4.28(a), ¢ , <st ¢p. Therefore,

$9.4(0 < dAn) < ¢p(0 < dAp),

whence ¥ (p, q) > ¥(p, 1), and the strict positivity of v follows by the corre-
sponding statement for percolation, [154, Thm 6.14].

Similarly,
¢pq(ICl =) <] 4(IC| = 1) < pp(IC| = ).
By [154, egn (6.82)],

—% loggp(IC| = n) — ¢(p, D asn — oo.

Furthermore, ¢(p, 1) > 0when p < pc(1), by [154, Thm 6.78]. O
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5.5 Exponential decay of radius

We address next the exponential decay of the radius of an open cluster. The
existence of the limit

. 1
(556) #(p.@) = fim {1 109620 > a0}

follows from Corollary 5.45, and the problem is to determine for which p, q itis
the casethat v (p, q) > 0. See Conjecture 5.54.

In the case of percolation, a useful intermediate step was the proof by Ham-
mersley [177] that ¢/ (p, 1) > O whenever the two-point connectivity function is
summable, that is,

¢p(IC) = Y ¢p(0 < x) < 0.

xezd
Similarly, Simon [300] and Lieb [234] proved the exponential decay of the two-
point function of Ising and other models under a summability assumption on this
function, see Section 9.3. Such conclusions provoke the following questionin the
current context: if qsg’q(o < 0Ap) decays at some polynomial rate asn — oo,
then must it necessarily decay at an exponential rate? An affirmative answer is
provided in the discussion that follows.

We concentrate here on the quantity

(5.57) L(p.q) = limsup{n?~1¢0 . (0 < dAn)}.
n—oo

By the comparison inequality, Proposition 4.28, L(p, q) is hon-decreasing in p,
and therefore,

L(p. ) { < 00 if p< gc(Q),
=o0 if p> Pc(q),

where
(5.58) Pe(@) = sup{p : L(p.q) < oo}.

Clearly pc(q) < pc(q), and equality is believed to hold.
(5.59) Conjecture[163]. If g € [1, 00), then Pc(q) = pc(Q).

Certainly pc(q) = pc(q) when g = 1, see[154], and we shall see at Theorem
7.33 that this holds also when q is sufficiently large. It isin addition valid for
g = 2, see Theorem 9.53 and the remarks thereafter.

The condition L(p, q) < oo amounts to the statement that the radius R =
rad(C) hasatail decaying at least asfastasn— (@1, Thisisslightly weaker thanthe
moment condition ¢3 ,(R1~1) < co. Infact, L(p.q) = 0if ¢ ((RI™1) < oo,
since

o0
110 g0 < dAn) = n"lgp ((R=m) < Y K lgp ((R=K).

k=n
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Thereis aconverse statement. If p < Pe(q) then L(p, q) < oo, implying that
n°pg q(0 < dAn) — 0 foral csatisfyingc < d — 1.

This in turn implies, as in [164, Exercise 5.6.4], that ¢
c<d-1.

We state next the main conclusion of thissection. A related resultisto befound
at Theorem 5.86.

q(R® < oo for al

(5.60) Theorem. Letq € [1, co). Thefunction ¢ in (5.56) satisfies ¥ (p,q) > 0
whenever 0 < p < Pe(Q).

The proof, which is delayed until later in the section, uses the method of ex-
ponential steepness described in Section 3.5. Let A be an event, and recall from
(2.54) the definition of the random variable H ,

Ha(w) = inf{ZW(e) —w@E)|: o € A}, w e Q.
e

We shall consider the event A, = {0 <> 9An}, and we write H,, for Hp,. The
guestion of ascertaining the asymptotics of Hy may be viewed as a first-passage
problem. Imagine you are travelling from 0 to dAp; travel along open edges
is instantaneous, but along each closed edge requires time 1. The fastest route
requires time Hp, and one is interested in the time-constant , defined as n =
limn_ 0o (N~ Hn}.

(5.61) Theorem (Existenceof time-constant). Let u beaprobability measureon
(Q, F) that is automor phism-invariant and Z9-ergodic. The deterministic limit

. 1
n(u) = nango {ﬁ Hn}
exists u-almost-surely and in L1().
The constant () is called the time-constant associated with .

Proof. See the commentsin [119, 211], and the later paper [58]. The existence
of the limit 5 is a consequence of a theorem attributed in [119, p. 748, Erratum]
and [211, p. 259] to Derrienic. O

We apply this to the measure . = ¢ , to deduce the existence, ¢ ,-almost-
surely, of the associated (deterministic) time-constant

. 1
(5.62) n(p,q) = lim {—Hn}.
n—oo | N
By Proposition 4.28, n(p, q) ishon-increasing in p, and we define

(5.63) pre(q) = sup{p : n(p. q) > 0}.

We seek a condition under which n(p, q) > 0. Asusual, C denotesthe vertex set
of the open cluster at the origin.
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(5.64) Theorem (Positivity of time-constant) [163]. Let p € (0,1) and q €
[1, 00). If ¢ 4(IC[?¥T€) < oo for some e > 0, then 5(p, q) > O.

We define the further critical point

(5.65) Pg(@) = sup{p: ¥ (p.q) > O},
with ¥ (p, q) asin (5.56). The correlation length £(p, q) is defined by

E(p, Q) =v(p,a L

subject to the conventionthat 0~1 = co. Notethat £(p, ) isnon-decreasingin p.
Thus¢g’q(0 < 0 Ap) decaysexponentially asn — ocifandonlyif £(p, q) < oo.

(5.66) Theorem. Letq € [1, co). Itisthe casethat pw(q) = pg(a).

By thistheorem and the prior observations,

(5.67) Prc(d) = Pg(Q) = Pe(d) < pc(a),

with equality conjectured. From the next section onwards, we shall use the ex-
pression Pe(q) for the common value of pic(q)), Pg(a), Pe(@)-

In the percolation case (when q = 1), the above first-passage problem and
the associated time-constant 1 (p, q) have been studied in detail; see [208, 211].
Several authors have given serious attention to a closely related question when
g = 2and d = 2, namely, the corresponding question for the two-dimensional
Ising model with the ‘passage time' Hy replaced by the minimum number of
changes of spin along paths from the originto d A, see[1, 90, 119]. The time-
constant in the Ising case cannot exceed the corresponding random-cluster time-
constant n(p, 2), sinceeach edge of thelsing model having endverticeswithunlike
spins givesrise to a closed edge in the (coupled) random-cluster model.

We turn now to the proofs of Theorems 5.60 and 5.66, and shall use the
‘exponential-steepness’ Theorems 3.42 and 3.45. Let A bean increasing cylinder
event. We apply (3.44) and (3.47) to the random-cluster measure ¢9\m’ p.q" noting

that 1
qd-n <C< _a .
S—r S—r
Letm — oo toobtainthat,for0O <r <s < 1,
(5.68) B q(A) < ¢9 (A exp{—4(s — 1) (Ha)}.

—log¢?,(A) C
0 .4
(5.69) $rq(Ha) = loglq/(s—r)] C—1

Notein passing that inequalities(5.68) and (5.69), with A = A, = {0 <> dAn},

imply that the correlation length £(p, q) isstrictly increasing in p whenever it is
finite, cf. [154, Thm 6.14].
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Proof of Theorem 5.66. Letr < s < pi(q). Sinces < py(q), there exists
y = y(s,q) > 0such that

(5.70) ¢s,q(Hn) = ny, n>1

Let A = Ay = {0 < 9Ap}. In conjunction with (5.70), (5.68) implies the

exponential decay of ¢r q(An), whencer < pg(q). Therefore pic(q) < pg(Q).
Conversely, supposethat r < s < pg(q). Thereexistsa = «(s, q) > 0 such

that ¢>gq(An) < e " By (5.69) with A= A, andsome 8 = B(r,s,q) > 0,

—log(e™*M) an
O H T ., . =T, a4 )
Pratfin) = odtass—n1 P Tilogiass—n] °
whencer < pic(q). Therefore pg(q) < prc(). O

There are two stages in the proof of Theorem 5.60. In the first, we apply
(5.68)—(5.69) with A = A, and we utilize an iterative scheme to prove that
¢g,q(An) decays ‘ near-exponentially’ when p < pe(q). In the second stage, we
use Theorems 5.64 and 5.66 to deduce full exponential decay. The conclusion of
the first stage may be summarized as follows.

(5.71) Lemma. Letg € [1,00),and let 0 < p < Pc(q). There exist constants
c=c(p,q) € (0,00), A = A(p, q) € (0, 1) such that

(5.72) $9q(An) < exp(—cn®),  nx>1.

Lemma 5.71 will be proved by an iterative scheme which may be contin-
ued further. If thisis done, one obtains that ¢g,q(An) decays at least as fast as

exp(—akn/ logk n) for any k > 1, where e = ax(p, q) > 0 and logk n isthe kth
iterate of logarithm, that is,

logtx =logx,  log“x =log(lvlog<tx), k> 2.

Proof of Lemma 5.71. We shall use (5.68) and (5.69) in an iterative scheme. In
the following, we shall sometimes use real quantitieswhen integers are required.
All terms of the form o(1) or O(1) areto beinterpreted in the limit asn — oo.

Fix g € [1, o0). For p < pc(q), thereexists c1(p) > 0 such that

(5.73) $9.q(An) < %, n>1

LetO<r <s<t < pe(q). By (5.69),

—l0g ¢ (An)
log D

(d—21logn

+0@1) > logD

¢4 (Hn) = +0(1)
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wherel < D = q/(t — S) < oo. We substitute thisinto (5.68) to obtain that

c2(r)
(5.74) ¢gq(An) = 918,00 n>1,

for some strictly positive and finite ca(r) and Ax(r). Thisholdsforalr < pe(q),
and is an improvement in order of magnitude over (5.73).

We obtain next an improvement of (5.74). Let m be a positive integer, and let
R =imfori =0,1,...,K,where K = [n/m]. LetLj = {dAR < AR 1},
and let Fj = Hy,;, the minimal number of extra edges needed for L; to occur.
Clearly,

K-1
(5.75) Ho> > Fi,
i=0

since every path from O to d A, traverseseach annulus Agr,, \ AR . Thereexists
aconstant p € [1, oo) such that [9AR| < pRI~1 for al R. By the trandation-
invariance of ¢3 .

(5.76) $9.q(Li) < 10AR 169 q(Am) < pn? 100 (Am).

LetO<r < s < pe(q), andlet c; = ca(S), A2 = Az(s) where the functions
c2(p) and Az (p) arechosen asin (5.74). By (5.74) and (5.76),

0 (. d-1 @ 1
(5.77) ¢s,q(|-|) =pn mA—TtA7 < >
if
(5.78) m = [(3pcx)n? (@142,

and we choose m accordingly (here and later, we take n to belarge). Now F > 1
if L;j does not occur, whence

K-1

(5.79) poq(Hn) = Y [1—¢2,(L] > 3K
i=0

by (5.75) and (5.77). Also,

(5.80) K = [n/m] > an®3

by (5.78), for appropriate constants a € (0, oo) and Az € (0, 1). By (5.68) and
(5.79),

(5.81) ¢lq(An) < exp(—can®?),  nx>1,
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wherecz = c3(r) € (0, o0) and Az = A3z(r) € (0, 1). O

Proof of Theorem 5.64. Assume the given hypothesis. We shall use an extension
of an argument taken from [119]. Let IT,, be the set of al paths of L9 joining the
originto d An. With T (sr) denoting the number of closed edgesin a path =, we
have that 1
T 1> —_

@122 e

Xem
where the summation is over all vertices x of =, Cy is the open cluster at x, and

|Cx N 7| isthe number of vertices common to Cyx and 7. By Jensen's inequality,

-1

T +1_ 1 1 1

— s = > =Gy -
|7 7| &= |Cyl :mZ }

Xemw Xemw

Therefore,

v

HnJrlZ inf T(r)+1 i
n melly |7 | Kn
where

Kn= sup :%Zm}.

mellp Xer

By (5.62), ¢ q(n = K~1) = 1, where

(5.82) K = limsup |:sup{|71| D ICk | = m}:| .

m—o0 Xer

The (inner) supremum s over al pathsfrom the origin contai ning m vertices. We
propose to show that ¢g’q(K < 00) = 1, whencen > 0 asrequired.

Let {Cx : x € 29} be a collection of independent subsets of Z¢ with the
property that Cy has the same law as Cx. We claim, asin [119], that the family
{ICx| : x € 79} isdominated stochastically by {My : x € Z9}, where

Mx = sup{ICy| : y € 29, x € Cy},

and we shall prove this inductively. Let v1, v2, ... be a deterministic ordering
of z9. Given the random variables {Cy : x € Z9}, we shall construct a family
{Dx : x € Z9} having the same joint law as {Cx : x e 74} and satisfying: for
each x, there exists y such that Dy < Cy. First, we set D,;, = C,,. Given
Dy;. Dy, - ... Dy, Wedefine E = Ly Dy;. If vny1 € E,weset D, = Dy,
for some j such that vhy1 € Dy;. If vnr1 ¢ E, we proceed as follows. Let
AcE bethe set of edges of Z¢ having exactly one endvertex in E. We may find
a (random) subset F of C,, ., suchthat F hasthe conditional law of C,, ., given
that all edges in A¢E are closed; we now set D,,, = F. We are using two
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properties of ¢g,q here. Firstly, thelaw of C,,, ., givenC,,, C,,, ..., C,, depends
only on A¢E, and secondly, ¢g,q is positively associated. We aobtain the required
stochastic domination accordingly.

By (5.82) (and subject to K and the Cy bei ng defined on the same probability
space),

m— 00 |7 |

_ L _
K <limsup | sup —ZMX:|n|=m} as.

Xem

By [119, Lemma?2],

m-— oo L |F| xel’

_ . )
K <2limsup|sup i =Y [Cx*:|T|=m } as.

where the (inner) supremum is over al animals I' of L9 having m vertices and
containing the origin. By the main result of [97], the right side is almost-surely
finite so long as each |f(fx|2 has finite (d + ¢)th moment for some e > 0. The
required conclusion follows. O

Proof of Theorem5.60. Let q € [1,00) and p < Pc(q). Findr such that p <
r < Pc(q). By Lemmab.71, thereexist ¢, A > 0 such that

¢lq(An) <exp(—cn®),  nx>1

This implies that ¢, (IC[?**1) < cc. By Theorem 5.64, n(r.q) > 0, and so
r < pic(Q). By Theorem 5.66,r < py(q), and the claim follows. O

5.6 Exponential decay of volume

For percolation, there is a beautiful proof of the exponential decay of volume
using only that of radius. This proof hinges on the independence of the states of
different edges, and may therefore not be extended at present to general random-
cluster models, see [154, Thm 6.78]. We shall instead make use here of the block
arguments of [209], obtaining thereby the exponential decay of volume subject to
acondition on p believed but not known to hold throughout the subcritical phase.
This condition differs dightly from that of the last section in that it involves the
decay rate of certain finite-volume probabilities.

Leta> 1, andlet
(5.83) L2(p. ) = limsup{n®~1p3_ (0 < dAn)}.
n—oo
Asat (5.57), L2(p, q) isnon-decreasing in p, and therefore,

=0 if p<PE@,

Lap, { p<P
®DY\ ¢ 0,00 ifp> PR,
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where
(5.84) pa(q) = sup{p: L%p,q) =0}.

Clearly P2(q) is non-decreasing in a, and furthermore pg(q) < Pc(q) for all
a>1 Weset

(@) = lim pE(a).
It is elementary that P°(q) < Pc(q), and we conjecture that equality holds.
(5.85) Conjecture. If g € [1, 00), then B2°(q) = Pe(q).
Hereisthe main result of this section.

(5.86) Theorem. Let g € [1, 00). There exists p(p, q), satisfying p(p,q) > 0
when p < P2°(q), such that

¢oq(CI=m<e™  n>1

The hypothesis p < P2°(q) isdlightly stronger than that of Theorem 5.60, and
so isthe conclusion, since ¢, (rad(C) > n) < ¢ 4(IC| = n).

Proof. We adapt the arguments of [209, Section 2], from which we extract the
mainsteps. For N > 1andi =1, 2, ..., d, we define the box

TnG) =[0,3N] "1 x [0, N] x [0, 3N]9.

For w € Q, ani-crossing of Ty (i) isan open path Xg, €, X1, €1, . . ., &y Of ater-
nating vertices and edges of Ty (i) such that thei th coordinate of xg (respectively,
Xm) is O (respectively, N). Such crossings are in the short direction. For b > 3,
we define

(5.87) T = @ xpy.p.q(Tn (i) hasani-crossing),

noting by rotation-invariance that t,E’, does not depend on thevalue of i.

Let N be a fixed positive integer. From L9 we construct a new lattice .£ as
follows. First, .£ hasvertex set Z9. Twoverticesx, y of £ aredeemed adjacentin £
if andonlyif |x; —y;| < 3foralli =1, 2,...,d. Thebettertodistinguishvertices
of L9 and £, we shall usebold lettersto indicatethelatter. Let w € 2. Vertex x of
L iscoloured white if there existsi € {1, 2, ..., d} suchthat Nx + Ty (i) hasan
i -crossing, and is coloured black otherwise. The event {x iswhite} isincreasing,
and is defined in terms of the states of edgesin the box A(x) = Nx + [0, 3N]9.

The following lemma relates the size of the open cluster C at the origin of 19
to the sizes of white clusters of .£. For x € Z9, we write Wy for the connected
cluster of white vertices of .£ containing x.
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(5.88) Lemma[209]. Let w € Q2. Assume that C contains some vertex v with
d
ve ][N & + DN —1].
j=1

for somex = (X1, Xo, . .., Xd) € Z9 satisfying
(5.89) IXj| >2 forsome je{l2...,d}.

There exists a neighbour y of the origin 0 of .£ such that

24 ((1C] — (4N)°
Proof. This may be derived from that of [209, Lemma 2]. O

Since 0 has fewer than 79 neighbourson .£,
(5.91) bp.q(ICl = 1) < 7990 4 (IWo| = An— 1),
where A = 772AN~9 Therefore,

(5.92) PoqCl=m =<7 > anMpq(m),

m>An—1
where ay, isthe number of connected sets w of m vertices of £ containing 0, and
Mp,q(m) = max{cj)g,q(all verticesin w arewhite) : jw| = m}.
By thefinal display of the proof of [209, Lemma 3],
(5.93) am < 747%™,

and it remains to bound qﬁg’q(all verticesin w are white).

Fix b > 3, to be chosen later. Let w be asabovewith |w| = m. Thereexistsa
constant ¢ = ¢(b) > Osuchthat: w containsatleastt verticesy(1), y(2), ..., y(t)
suchthatt > cmand theboxes Ny(r) + Apn,r = 1,2, ..., t, of L9 aredigoint.
We may choosesuchaset {y(r) :r =1,2,...,t} inaway which depends only
ontheset w. Then

(5.94) ¢>g’q(all verticesin w are white) < ¢g’q(y(r) iswhite,r =1,2,...,t).
Theevents {y(r) iswhite},r = 1,2, ...,t, are dependent under ¢g’q. However,
by positive association,

(5.95)

dp.q(Y(r)iswhite r =1,2,....t) < ¢p ,(y(r) iswhite,r =1,2,....t| E),
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where E istheevent that every edge ehaving both endverticesin Ny(r )+ Apn, for
any givenr € {1, 2,...,t}, isopen. Under the conditional measureqbg,q(- | BE),
theevents{y(r) iswhite},r = 1, 2, ..., t, areindependent, whence by symmetry

(5.96) ¢>g’q(y(r) iswhite,r =1,2,...,t) < {q&zl\bN’p’q(Oiswhite)}t

< ().
By (5.92)—(5.96),

(5.97) poq(ICl=m <70 > 727e)Mdry) ™.

m>An—1

Leta > 1and chooseb > 3+ a, notingthat X + Agn € Apn foral x € zd
lying in theregion R = [0, 3N]9~1 x {0}. If Ty (d) hasad-crossing, there exists
x € Rsuchthat x < X + dAN. Sinceqs}\bN,p’q <g ¢11\aN,p,q,

(5.98) TR <D Phgn.pqX < X+ IAN)

XeR

<RI}, p.q(0 < IAN)
= BN+ DL | pq(0 < IAN).

Let p < P2°(q), and choosea > 1 suchthat p < P2(q). Withb > 3+ a, the
right side of (5.98) may be made as small as required by a suitably large choice
of N, and we choose N in such away that 79e(dzf})¢ < 3. Inequality (5.97)
O

provides the required exponential bound.

5.7 The supercritical phase and the Wulff crystal

Percolation theory is a source of intuition for the more general random-cluster
model, but it has not always been possible to make such intuition rigorous. This
is certainly so in the supercritical phase, where several of the basic questions
remain unanswered to date. We shall work in this section with the free and wired
measures, ¢J , and ¢}, and we assume throughout that g € [1, c0).

The first property of note is the almost-sure uniqueness of the infinite open
cluster. A probability measure ¢ on (2, ) issaid to have the 0/ 1-infinite-cluster
property if the number | of infinite open clusters satisfies ¢ (1 € {0,1}) = 1.
We recall from Theorem 4.33(c) that every trandation-invariant member of the
closed convex hull of Wy ¢ has the 0/ 1-infinite-cluster property. By ergodicity,
see Corollary 4.23, we arrive at the following.
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(5.99) Theorem (Uniqueness of infinite open cluster). Let p € [0,1] and g €
[1, 00). We havefor b = 0, 1 that

(5.100) ¢g,q(| =1)=1 whenever Qb(p, q) > 0.

Letq € [1,00) and p > pc(Q). There exists (¢g’q—al most-surely) a unique
infinite open cluster. What may be said about the shapes and sizes of finite open
clusters? One expects finite clusters to have properties broadly similar to those
of supercritical percolation. Much progress has been made in recent years to-
wards proofs of such statements, but avital step remains unresolved. Aswastrue
formerly for percolation, the results in question are proved only for p exceeding
acertain ‘dab critical point’ Pc(q), and it is an important open problem to prove
that Pe() = pc(q) foral g € [1, oo).

Hereisanillustration. It is fundamental for supercritical percolation that the
tails of the radius and volume of afinite open cluster decay exponentially in n and
n@-D/d respectively, see [154, Thms 8.18, 8.65]. This provokes an important
problem for the random-cluster model whosefull resolution remainsopen. Partial
results are known when p > Pe(q), see Theorems5.104 and 5.108.

(5.101) Conjecture. Let p € [0,1] and g € [1, 00). Thereexist o = o (p, q),
y =v(p.q), satislying o (p. q). y (p. q) > Owhen p > pe(q), such that

¢p.q(n < rad(C) < 00) <€,
$iqn=<ICl<o0)<e™ ™ nxz1

We turn next to adiscussion of the so-called * Wulff construction’. Much atten-
tion has been paid to the sizes and shapes of clustersformed in modelsof statistical
mechanics. When a cluster C is infinite with a strictly positive probability, but
is constrained to have some large finite size N, then C is said to form a large
‘droplet’. The asymptotic shape of such adroplet, in the limit of large N, is pre-
scribed in general terms by the theory of the so-called Wulff crystal®. In the case
of the random-cluster model, we ask for properties of the open cluster C at the
origin, conditional ontheevent {N < |C| < oo} forlarge N. Therigorouspicture
is not yet complete, but techniques have emerged through the work of Cerf and
Pisztora, [83, 84, 276], which may be expected to reveal in due course acomplete
account of the Wulff theory of largefinite clustersin the random-cluster model. A
full account of thiswork would be too lengthy for inclusion here, and we content
ourselves with a brief summary.

The study of the Wulff crystal isbound up with the law of the volume of afinite
cluster, see Conjecture 5.101. It is straightforward to adapt the corresponding
percolation proof (see [154, Thm 8.61]) to obtain that

$Lq(Cl =) = e,

5Such shapes are named after the author of [325]. The first mathematical results on Wulff
shapes were proved for the two-dimensional Ising model in [104], see the review [55].

(©Springer-Verlag 2006



124 Phase Transition [5.7]

for some y satisfying y < oo when pe(q) < p < 1. It is believed as noted
above that this is the correct order for the rate of decay of ¢%qq(|C| = n) when
P> pc(@).

Before continuing, we make acomment concerning the number of dimensions.
The case d = 2 is specia (see Chapter 6). By the duality theory for planar
graphs, thedual of asupercritical random-cluster measure isasubcritical random-
cluster measure, and this permitsthe use of special arguments. We shall therefore
supposefor the majority of therest of thissectionthat d > 3; some remarks about
the two-dimensional case are made after Theorem 5.108.

A partial account of the Wulff construction and the decay of volume of afinite
cluster is provided in [83], where the asymptotic shape of dropletsis studied in
the special case of thelsing model. The proofsto date rely on two assumptionson
the value of p, namely that p is such that ¢° g = q&l cf. Conjecture 5.34, and
secondly that p exceeds a certain ‘dlab critical pomt pC(q) which we introduce
next.

Fixq e [1,00)andletd > 3. Let S(L, n) bethe dab given as
S(L,n) =[0,L —1] x [-n, n]9~2,

and let 1/4'; ’q” = ¢g(L1n)’ 0. bethe random-cluster measureon S(L, n) with param-
eters p, g, and with free boundary conditions. We denoteby I1(p, L) the property
that:

thereexistsa > 0 such that, for all nand all x € S(L, n), 1/;5 N0 < X) > a.

Itisnot hardto seethat TT(p, L) = M(p/,L)if p< pandL < L/, anditis
thus natural to define the quantities

(5102)  Pe(g, L) =inf{p: TI(p, L) occurs}, Pe(a) = Lleoo Pc(g. L).

Clearly, pe(@) < Pc(q) < 1. Itisbelieved that equality holds in that Pe(q) =
Pc(q), and it is amajor open problem to prove this®.

(5.103) Conjecture[276]. Letq € [1, c0) andd > 3. Then Pe(q) = pe(q).

Thecaseq = 1 of Conjecture5.103isspecial, since percol ation enjoysaspatial
independence not shared with general random-cluster models. This additional
property has been used in the formulation of atype of ‘ dynamicrenormalization’,
which hasin turn yielded a proof that Pc(1) = pc(1) for percolation in three or
more dimensions, see [24], [154, Chapter 7], [161]. Such arguments have been
adapted by Bodineau to the Ising model, resulting in proofs that Pc(2) = pc(2)
and that the pure phases are the unique extremal Gibbs stateswhen p # pc(2), see

60nemay expect themethodsof Section 7.5toyield aproof that Pe(q) = pe(q) for sufficiently
large q.
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[53, 54]. Such arguments do not to date have a full random-cluster counterpart.
Instead, in the random-cluster setting, one exploits what might be termed ‘ static
renormalization’ methods, or ‘ block arguments’, see[83, 276]. Onedividesspace
into blocks, constructs events of an appropriate nature on such blocks, having
large probabilities, and then allows these events to combine across space. There
have been substantial successes using thistechnique, of which the most striking is
the resolution (subject to side conditions) of the Wulff construction for the Ising
model.

We state next an exponential-decay theorem for the radius of a finite cluster;
the proof is given at the end of this section. It is an immediate corollary that
the ‘truncated two-point connectivity function’ q%’q(x < Y, X <+ 00) decays
exponentially in the distance || x — y/||, whenever p > Pc(q).

(5.104) Theorem. Let g € [1,00),d > 3, and p > Pc(q). There existso =
o(p, q) > Osuchthat

‘f’é,q(n <rad(C) < o00) <&M, n>1

We turn now to the Wulff construction. Subject to a verification of Conjecture
5.103, and of apositive answer to the question of the uniquenessof random-cluster
measureswhen p > pc(q), theblock argumentsof Cerf and Pisztorayieldalargely
complete picture of the Wulff theory of random-cluster modelswith q € [1, c0),
see[83, 276] and also [84]. Paper [81] is afinereview of Wulff constructionsfor
percolation, Ising, and random-cluster models.

The reader is referred to [81] for an introductory discussion to the physical
background of the WuIff construction. It may be summarized as follows for
random-cluster models. Let Ap = [—n, n]d, and consider the wired random-
cluster measure ¢11\n,p,q with p > pe(q). The larger an open cluster, the more
likely it is to be joined to the boundary d A,,. Suppose that we condition on the
event that thereexistsin Ay, an open cluster C that doesnot intersect d A, and that
has volume of the order of the volume n9 of the box. What can be said about the
shape of C? Since p > pc(Q), thereislittle cost in having large volume, and the
price of such acluster accumulates around its external boundary. It turns out that
the price may be expressed as a surface integral of an appropriate function termed
‘surfacetension’. This ‘surface tension’ may be specified as the exponential rate
of decay of acertain probability. The Wulff prediction for the shape of C isthat,
when re-scaled in the limit of large n, it converges to the solution of a certain
variational problem, that is, the limit shape is obtained by minimizing a certain
surface integral subject to a constraint on its volume.

For A € 79, let p(A) be the number of vertices x € A such that x < dA.
When p > pc(q), p(An) hasorder |[Ap|. Let C bethe open cluster at the origin,
and supposewe condition on theevent {|C| > an, CNdA, = &} wherea > 0.
This conditioning implies a changein value of p(An)/|An| anounting to alarge
deviation. The link between Wulff theory and large deviations is made more
concrete in the next theorem. The set Dy isgivenin Theorem 4.63 asthe (at most
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Figure5.1. Images of the Wulff crystal for the two-dimensional Ising model at two distinct
temperatures, produced by simulation in time, and reproduced by courtesy of Raphadl Cerf.

The simulations were for finite time, and the images are therefore only approximations to the

truecrystals. Thepicturesare 1024 pixelssquare, and theinverse-temperaturesare 8 = g‘ , %) .

The corresponding random-cluster modelshaveq = 2and p=1— e 4/3,1 — ¢ 10/11,

countable) set of values of p at which there is non-uniqueness of random-cluster
measures with cluster-weighting factor q.

(5.105) Theorem [81, 83]. Letq € [1,00) andd > 3. Let p € (Pc(q), 1) be
suchthat p ¢ £Dq. Thereexistsabounded, closed, convex set ‘W of RY containing
the origin in itsinterior such that the following holds. Let 6 = 61(p, @), and let
a € (0, 0) be sufficiently close to 6 that the re-scaled crystal

a\l/d W
W) = (1_ 5) KZEE
is a subset of the unit cube [—3, 319 Then, asn — oo,

1 o\ [d-1/d
71000}, pq(p(An) < alAn]) — —d (1-3) W,

The set ‘W is termed the ‘Wulff crystal’, and |'W| denotes its d-dimensional
Lebesgue measure. For proofs of this and later theorems, the reader is referred
to the original papers. The Wulff crystal for the closely related 1sing model is
illustrated in Figure 5.1.

Theorem 5.105 may be stated without explicit reference to the set ' W. The
geometry of ‘W becomes important in the complementary theorem, following. 1t
isframed in terms of the convergence of random measures, and the point mass on
the point X € R is denoted by Jx.
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(5.106) Theorem [81]. Let q € [1,00) andd > 3. Let p € (Pc(q), 1) be such
that p ¢ £Dq. There exists a bounded, closed, convex set W of RY containing the
origininitsinterior such that the following holds. Under the conditional measure
obtained from q%’q by conditioning on the event {n® < |C| < oo}, the random

measure 1
nd Z Ix/n

xeC

convergesin probability, with respect to the bounded, uniformly continuous func-
tions, towardsthe set {# 1 (a+ x) dx : a € R} of measures, whered = 61(p, q).
The probabilities of deviations are of order exp(—cnd—1).

The meaning of the conclusion is as follows. For k > 1, for any bounded,
uniformly continuous function f : R4 — RX, and for any ¢ > 0, there exists
c=c(d,k, p,q, f,e) > 0such that

<o)

where Eil)’q is the measure obtained from qﬁ%’q by conditioning on the event
{n% < |C| < o0}, and | - | isthe Euclidean norm on R¥. Thisisaway of saying
that the external boundary of a large finite open cluster with cardinality approxi-
mately nd resembles the boundary of atranslate of n'W. Within this boundary, the
open cluster has density approximately 6, whilst the density outsideis zero. It is
presumably the case that the a in (5.107) may be chosen independently of f and
€, but this has not yet been proved.

One important consequence of the analysis of [83] is an exact asymptotic for
the probability that |C| islarge.

(5.107) $pq (a acRIst.

1
n_dz f(x/n)_ef , f(a+ x)dx

xeC Xe

d—1
>1-e " 7 n>1,

(5.108) Theorem [81]. Let q € [1,00) andd > 3. Let p € (Pc(q), 1) be such
that p ¢ Dq. Thereexistsy = y(p, ) € (0, oo) such that

1
a1 Iogcpé’q(nd <I|C| <00) > —y ash — oo.

The above results are valid in two dimensions a so although, as noted earlier,
this case is special. When d = 2, the dlab critical point Pc(q) is replaced by the
infimum of values p at which thedual processhasexponential decay of connections
(see (6.5) for the relation between the dual and primal parameter-values). That is,
whend = 2,

a1l — pg(@))
Pg(@) + a1 — pg(@))

where pg(q) is given at (5.65). Fluctuations in droplet shape for random-cluster
modelsin two dimensions have been studied in [17, 18].

Pc(@) =
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Proof of Theorem5.104. We adapt the proof of [87] asreportedin[154, Thm 8.21].
We shall build the cluster C at the origin (viewed as a set of open edges) step by
step, in amanner akin to the proof of Proposition 5.30. First, we order the edges
of L9 in some arbitrary but deterministic way, and we write g for theith edgein
this ordering. Let w € 2. We shall construct a sequence (Co, Do), (C1, D1), ...
of pairs of (random) edge-sets such that C; € Cj ;1 and D;j € D41 for eachi.
Every edgein each C; (respectively, D;) will be open (respectively, closed). Let
Co = Do = @. Havingfound (Cr, D) form=0, 1, ..., n, wefind the earliest
edgee ¢ C, U Dy in the above ordering such that e has an endvertex in common
with some member of C,,; if C, = o we take e ¢ Dy, to be the earliest edge
incident to the origin if such an edge exists. We now define

(ChU{e}, Dp) ifeisopen,

C !D = i i
(Cn+1. Dny1) {(Cn, Dnh U {e}) if eisclosed.

This processis continued until no candidate edge e may be found, whichisto say
that we have exhausted the open cluster C. If C, = C for some n then we define
C =Cforl > n, sothat

(5.109) C = lim Cn.

n—o00

Let Hy = {x € 79 %1 = n}, and let G, be the event that the origin belongs
to a finite cluster that intersects Hy. The box Ap has 2d faces, whence, by the
rotation-invariance of ¢ ;,

(5.110) $p.q(0 < dAn, |C| < 00) < 2d¢y 4(Gn).
We shall provethat, for p > Pe(q), thereexists y > 0 such that
(5.112) $pqGn) <€,  nx1

and the claim of the theorem is an immediate conseguence.

Theideaof the proof of (5.111) isasfollows. Since p > Pec(q) by assumption,
we may find an integer L suchthat p > Pe(q, L). Write S(L) = [0, L) x 791,
and

(5.112) S(L)=S(L)+ (i —Ley = [(i — DL,iL) x 297,

wheree; = (1,0,0,...,0). Supposethat Gy, occurs for somem > 1. Then
each of theregionsS (L),i = 1,2, ..., m, istraversed by an open path = fromthe
origin. Since p > Pc(q, L), thereis ¢%(L)’p’q—probability 1that S(L) contains

an infinite open cluster, and = must avoid al such clustersfori = 1,2,..., m.
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JAN
HaL

0AM |

v2
v3

Figure 5.2. Any path = from the origin to Hp (with n = 4L in this picture) traverses the
regions § = §(L),i =1, 2, 3, 4. Thevertex vj where r first hitsthe slab § may be joined
(with strictly positive conditional probability) within the slabto d A .

By a suitable coupling argument, the chance of thisis smaller than o™ for some
a=aoa(p,q,L) <1l

We have to do a certain amount of work to make this argument rigorous.
First, we construct the open cluster C at the origin as the limit of the sequence
(Cm : m = 1,2,...) in the manner described above. Next, we construct a
sequence vy, v, ... of vertices in the following manner. We set v1 = O, the
origin. Fori > 2, welet

m; = min{m > 1: Cy, contains some vertex of §(L)},
and we denote the (unique) vertex in question by vi. Such av; existsif and only
if some vertex in S (L) lies in the open cluster at the origin. We obtain thus a
sequence vy, vy, . .., vt Of verticeswhere

T=sup{i :CNS(L) #a}.
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LetS(L, N) =[0, L) x[-N, N]9~%. Since p > Pe(q, L), wemayfinda > 0
such that
9% N paO o) >0, veSL,N).

By positive association,
(5.113) ¢g(L,N),p,q(v < dAM) > o2, veSL,N), 0<M<N.

Let n be a positive integer satisfyingn > L, and writen = rL + s where
0<s< L. Leen < M < N, and consider the probability ¥n(Gn,m) where
UN = ¢11\N,p,q and Ghm = {0 < Hp, 0 < dAm). Later, we shal take the
limitas M, N — oco. Ontheevent Gy m, wehavethat T > r,and vj <> dAm in
S(L),fori =1,2,...,r. Therefore,

(5.114) YN (Gnm) < UN(A),

where _
j
A ={T>=j}n {ﬂ{vi + dAM inS(L)}}.
i=1
Now Ag = 2, and Aj © Aj1for j > 1, whence
r
(5.115) YN (Gnm) < Yn(AD [ [Un(A | A-D.
j=2

Letj €{2,3,...,r}, andconsider theconditional probability v/n (A | Aj_1);
thecase | = lissimilar. We have that

UN(A) | Aj-1)
< > Un(v 4 dAm in§ (L) |v=v, T=j A1)
veH(j-nL xyn@j =v | T =], A_DyYn(T = j | Aj_).
We claim that

(5.116) Un(v 4 0AMINS (L) |vj =v, T >j, A_1) <1-d?

Thiswill imply that
UNATA-D < (A—a®) Y YN =v]T =], A

UEH(J',]_)L

=1—a2,

yielding in turn by (5.114)—5.115) that
YN (Gnm) < (1—a?).
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Let N — oo and M — oo to obtain that
¢p.q(0< Hy, 06 00) < (1—cd)WH n>1,

and (5.111) follows as required.

It remains to prove (5.116), which we do by a coupling argument. Suppose
that we have ‘built’ the cluster at the origin until the first epoch m = mj at which
Cm touches S (L) and, in so doing, we have discovered that vj = v, T > j,
and Aj_1 occurs. Theevent E, = {v < dAm in §(L)} is measurable on the
o-field generated by the edge-statesin § (L), and the configuration on § (L) is
governed by a certain conditional probability measure, namely that featuring in
(5.116). This conditional measure on § (L) dominates (stochastically) the free
random-cluster measureon § (L) N An = S(L, N) + (j — D Ley. Sincethelast
regionisatrandate of S(L, N),

YN(Ey [vj=v, T> ], Aj_p < 1—a?,
by (5.113), and (5.116) is proved. O

5.8 Uniquenesswhenq < 1

Only a limited amount is known about the (non-)uniqueness of random-cluster
measures on LY when q < 1, owing to the absence of stochastic ordering and
the failure of positive association. By Theorems 4.31 and 4.33, there exists at
least one translation-invariant member of co Wy g, and this measure is a DLR-
random-cluster measure. One may glean alittle concerning uniqueness from the
comparison inequalities, Theorem 3.21, from which we extract the facts that, for
the random-cluster measure ¢, p,q on afinitegraph G = (V, E),

(5.117) #G,p.1 <st PG.ppq If 4=<1 p1=<p2,

. P1 p2
5.118 f 1 .
(5118) ¢ p1zsdepeq If Q=1 57— T

Onemay deducethefoll owing by making comparisonswith the percol ation model.

(5.119) Theorem. For d > 2, thereexists p’ = p/(d) < 1 suchthat thefollowing
holds. Let p € (0, 1), g € (0, 1], andwriter = p/[p+ q(1— p)]. We havethat
|'Wp.ql = |Rp,ql = 1 whenever either 6(z,1) =0or p> p'.

Exponentia decay holds similarly when g € (0,1) and 7 < pe(1). Thatis,
thereexistsy = ¥ (p, q) > 0 such that ¢g’q(|C| =n) < e ", seethe comment
in the proof of Theorem 5.55.

Proof /. The proof is similar to that of Proposition 5.30 and is therefore only
sketched. Let p, q besuchthat g € (0,1) and6(x,1) = 0, and let A and A be

"Seedso[8, 156, 281].
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boxes satisfying A € A. A cutset is defined to be a subset S of Ex \ E such
that: every pathjoining A to 0 A usesat least oneedgeof S, and Sisminimal with
this property. For acutset S, we writeint Sfor the set of edgesof Ex possessing
no endvertex x such that X <> dA off S, andwewrite S= SUintS. Thereisa
partial order on cutsetsgivenby § < S if §1 C §2
Let Ae Fp. Let A, X beboxessuchthat A C A C ¥,andleté, t € Q. By
(5.118), there exists a probability measure s on {0, 1}F= x {0, 1}¥= x {0, 1}
such that the following hold.
(i) The set of triples (w1, w2, w3) satisfying w1 < w3z and wp < w3 has ¥y-
probability 1.
(ii) Thefirst margina of ¥y is ¢§p’q, the second marginal restricted to Ex is
¢Z’ p.q" and the third marginal is the product measure ¢y, .

(iii) Let M denotethe maximal cutset of A every edge of whichis closed in ws,
and notethat M existsif and only if wz € {0 A <4 dA}. Conditional on M,
the marginal law of both {w1(e) : e € int M} and {w2(€) : e € int M} isthe
free measure ¢i?1tM,p,q'

By conditioningon M,

(5.120) |83 p.a(A) = 85 pq(A] < drr(9A < 94).

By Theorem 4.17(a), there exists a probability measure p € Wy q, and we
choose t € Q and an increasing sequence A = (Ap : n=1,2,...) such that
¢gn,p’q = pasn — oo. Supposethat p’ € Wy qandp’ # p. Thereexistsé € Q

and anincreasing sequence X = (X :n=1,2,...) suchthat d’%n,p,q = .
For msufficiently largethat A € A, letn = ny satisfy Ay € . By (5.120)

W|th A = Am, E = Env

(5.121) (851 5.9(A) = i p.g (A = $507 (A < 9AM).

Letn — oo and m — oo inthat order. Since 6 (xr, 1) = 0, theright sidetendsto
zero, and therefore p’(A) = p(A). Thisholds for al cylinders A, and therefore
p’ = p,acontradiction. It followsthat | Wp q| = 1. An alternative argument uses
the method of [117].

Suppose next that ¢ € Rp g SO that, for any box A,
SA|Ta)E) =) pq(A  ¢-as
By (5.120) with ¥ = A = A, and p as above,
(A = p(A)] = lim [$@(A] Tan)) = Prp p.q(A)]
< 1im ¢anx (@A < 8Am) =0,

whence Rp q = {p}-

A similar proof of uniquenessisvalidfor large p, using (5.117) and theapproach
taken for Theorem 5.33(b). O
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Chapter 6

In Two Dimensions

Summary. The dual of the random-cluster model on a planar graph is a
random-cluster model also. The self-duality of the square | attice givesrise
tothe conjecturethat pc(q) = pgy(q) forq € [1, 0o), where pgy(q) denotes
the self-dual point ,/q/(1+.,/0). Using duality, one obtains the uniqueness
of random-cluster measures for p # pg(q) and q € [1, co). The phase
transition is discontinuous if q is sufficiently large. Results similar to those
for the square lattice may be obtained for the triangular and hexagonal lat-
tices, using the star—triangle transformation. It is expected when g € [1, 4)
that the critical process may be described by a stochastic L dwner evolution.

6.1 Planar duality

The duality theory of planar graphs provides a technique for studying random-
cluster models in two dimensions. We shall see that, for a dual pair (G, Gq)
of finite planar graphs, the measures ¢, p.q and ¢, py,q ae dual measuresin a
certain sense to be explained soon, where p and pq arerelated by pg/(1— pq) =
g(1 — p)/p- Such aduality survives the passage to a thermodynamic limit, and
may therefore be applied al so to infinite planar graphsincluding the square lattice
LL2. The squarelattice hasthe further property of being isomorphicto its (infinite)
dual, and this observation leads to many results of significance for the associated
model. We begin with an account of planar duality in the random-cluster context.

A graph is called planar if it may be embedded in R? in such away that two
edges intersect only at acommon endvertex. Let G = (V, E) be a planar (finite
or infinite) graph embedded in R2. We obtain its dual graph Gq = (Vg, Eq) as
followst. We placeadual vertex within each face of G, including any infinite face
of G if such exist. For each e € E we place adual edgeey = (Xqg, Yq) joining the
two dual verticeslying in the two faces of G abutting e; if these two faces are the
same, then X4 = yg and g isaloop. Thus, Vq isin one-one correspondence with

1The roman letter ‘d’ denotes ‘dual’ rather than ‘ dimension’ .
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Figure6.1. The planar dual of the square lattice L2 isisomorphic to L2.

the set of faces of G, and Eq isin one-one correspondence with E. Itiseasy to
see asin Figure 6.1 that the dual L of the square lattice L2 isisomorphic to L2.

What is the relevance of graphical duality to random-cluster measures on G.
Suppose that G is finite. A configuration w € Q = {0, 1}F givesriseto adual
configuration wq € Qq = {0, 1}F¢ given by wq(eg) = 1 — w(e). That is, eq is
declared openif and only if eisclosed?. Asbefore, to each configuration wq there
corresponds the set n(wg) = {€4 € Eq : wg(eg) = 1} of its ‘open edges', so that
n(wq) isin one—one correspondencewith E \ n(w). Let f (wq) be the number of
faces of the graph (Vy, n(wg)), including the unique infinite face. By drawing a
picture, one may easily be convinced (see Figure 6.2) that the faces of (Vy, n(wq))
are in one—one correspondence with the componentsof (V, n(w)), and therefore

(6.1) f (wd) = k().

We shall make use of Euler’sformula (see [320]), namely

(6.2) k(w) = V| = In(@)| + f(w) — 1, w € Q,
and we note also for later use that

(6.3) [n(@)| + [n(wd)| = |EI.

Letg € (0, 00) and p € (0, 1). The random-cluster measure on G is given by

1
where the constant of proportionality dependson G, p, and q. Therefore,

()]
$G,p,q(w) x <%p) qk(w)’ w e 2,

p —[n(wd)l
(6.4) ¢G,p,q(a))0<<rp) qf @ by (6.1) and (6.3)

_ [n(wq)l
N <Lpp) > q<@d by (6.2) applied to wg

X 9Gg, pg,q(@d),

2This differs from the convention used in [154].
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Figure6.2. A primal configuration o (with solid lines and vertices) and its dual configuration
wqg (with dashed lines and hollow vertices). The arrows join the given vertices of the dual to a
dual vertex in the infinite face. Note that each face of the dual graph corresponds to a unique
component of the primal graph lying ‘just within’.

where the dual parameter py is given by
Pe _ad-p
1- pd p

Notethat thedual valueof py satisfies (pgq)g = p. Since(6.4) involvesprobability
measures, we deduce that

(6.5)

(6.6) ¢G,p,q(0)) = ¢Gd,pd,q(0)d), w € Q.

It will later be convenient to work with the edge-parameter

_q72p
1-p’

Nl

(6.7) X

for which the primal/dual transformation (6.5) becomes
(6.8) XXg = 1.

The unique fixed point of the mapping p — pq is easily seen from (6.5) to be
the self-dual point ps3(q) given by

Ja

(6.9) Psd(q) = 1+ va

We note that

6. pa(@).q(@) o q2I@ITK@) o g3 (Ko tk@),

3We shall work at alater stage with the parameter y = p/(1 — p), for which the primal/dual
relationisyyq = Q.

(©Springer-Verlag 2006



136 In Two Dimensions [6.1]

Figure6.3. Thedual of thebox A (n) = [—n, n]2 isobtained fromthebox[—n—1, n]2+(%, %)
by identifying all verticesin its boundary.

by (6.1)—(6.2). This representation at the self-dual point psy(q) highlights the
duality of measures.

When we keep track of the constants of proportionality in (6.4), we find that
the partition function

Zc(p, Q) = Z pn@1l(1 — p)lE\n@lgk)

we
satisfies the duality relation
Vi1 1-p [E]
(6.10) Zo(p.a) =gV~ (W) ZG4(Pd. 9).
Therefore,
(6.12) Z6(psa(@), ) = q'VI"1 2181 (psa(@), ).

We consider now the square lattice L2 = (Z2, E?). Let A(n) = [—n, n]?,
viewed as a subgraph of 1.2, and note from Figure 6.3 that its dua graph A(n)q
may be obtained from the box [-n — 1, n]2 + (3, 3) by identifying all boundary
vertices. By (6.6), and with a small adjustment on the boundary of A (n)q,

(6.12) ¢9\(n),p,q(“’) = ¢zlx(n)d,pd,q(“’d)
for configurations w on A(n). Let A be a cylinder event of @ = {0, 1}E2, and

write Aq for the dual event of Qq = {0, 1B, that is, Aq = {wg € Qg : € A).
Onlettingn — oo in (6.12), we obtain by Theorem 4.19(a) that

—1
bp.q(A) = Py, q(Ad),
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Figure6.4. The box S(5) and its dual S(5)g. There exists no open crossing of S(5) from left
toright if and only if there exists an open dual crossing of S(5)q from top to bottom.

where the notation ¢ is used to indicate the random-cluster measure on the dual
configuration space Q4. By asimilar argument,

-0
Dp.q(A) = bp, q(Ad).
We summarize the above in a theorem.

(6.13) Theorem. Consider the square lattice .2, and let q € [1, 00). For any
cylinder event A,

Wq(A =Fro(A),  b=01,
where Ag = {wg € Q4 : w € Al.

Thereisakey application of duality to the existence of open crossings of abox.
Let S(n) = [0, n+1] [0, n] and let S(n)q beitsdual box [0, n] x[—1, n]+(3, 3).
Let LR(n) bethe event that there exists an open path of S(n) joining some vertex
on its left side to some vertex on itsright side. It is standard that LR(n)q is the
event that there exists no open dual crossing from the top to the bottom of S(n)q.
Thisis explained further in [154, Section 11.3] and illustrated in Figure 6.4.

(6.14) Theorem. Let g € [1, co). We have that

Ppu@.aLRM) +¢p,qqLRM) =1 n=1

Proof. Apply Theorem 6.13 with b = 0 to theevent A = LR(n), and use the fact
_1 [
that ¢, o (LR(N)a) = ¢ q(LR(N) = 1 — ¢ 4(LR(N)). O
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6.2 The value of the critical point

It is conjectured that the critical point and the self-dual point of the square lattice
are equal.

(6.15) Conjecture. Thecritical value pc(q) of the square lattice L2 is given by

Va

14+./a

Thishasbeenprovedwhenq = 1,q = 2,andwhenq > 25.72. Theq = 1case
was answered by Kesten, [207], in his famous proof that the critical probability
of bond percolationon 1.2 is % For g = 2, thevalue of pc(2) given above agrees
with the Kramers-Wannier [221] and Onsager [264] calculations of the critical
temperature of the Ising model on Z2, and is implied by probabilistic results in
the modern vernacular, see [5] and Section 9.3. The formula (6.16) for pc(q) has
been established rigorously in [224, 225] for sufficiently large (real) values of q,
specifically q > 25.72 (see also [153]). Thisis explored further in Section 6.4,
see Theorem 6.35.

Several other remarkable conjectures about the phase transition on L2 may
be found in the physics literature as consequences of ‘exact’ but non-rigorous
arguments involving ice-type models, see [26]. These include exact formulae for
the asymptotic behaviour of the partition function lim  ,,2{Z A (p, o)}*/!41, and
also for the edge-densities at the self-dual point ps(q), that is, the quantities
hP(q) = ¢gsd(q)’q(eis open) for b = 0, 1. These formulae are summarized in
Section 6.6.

Conjecture 6.15 asserts that pc(q) = psa(q) for q € [1, 00). One part of this
equality is known. Recall that 6%(p, q) = ¢ 4(0 < o0).

(6.16) Pc(Q) = q €[l 00).

(6.17) Theorem [152, 314]. Consider the square lattice L%, and let q € [1, 00).
(@ We havethat 6°(ps(q), q) = 0, whence pe(q) > psa(Q).
(b) Thereexists a unique random-cluster measure if p # ps(q), that is,

Ja
1+.9

The complementary inequality pc(q) < ps(q) haseluded mathematicians de-
spiteprogressby physicists, [183]. Hereisanintuitiveargument tojustify thelatter
inequality. Supposeonthecontrary that pc(q) > psg(q), Sothat pc(q)g < Psd(q)-
For p € (pc(d)d, pc(d)) we have also that pg € (Pe(d)d, Pe(@)). Therefore, for
p € (pc(@)d, Pc(d)), both primal and dual processes comprise (almost surely) the
union of finite open clusters. This contradicts the intuitive picture, supported for
p # pc(q) by our knowledge of percolation, of finite open clusters of one process
floating in an infinite open ocean of the other process.

Conjecture 6.15 would be proven if one could show the sufficiently fast decay
of qsg’q(o < dA(n)) asn — oo. An example of such a statement may be found
at Lemma6.28, and another follows. Recall from Section 5.5 the quantity pc(q).

[Rpgl =[Wpgl=1 if p#
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(6.18) Theorem [163]. Letq € [1, co) and supposethat, for all p < pc(q), there
exists A = A(p, Q) < oo with

A
0 o
(6.19) qﬁp’q(O < 0A(N)) < = n>1

Then Pe(Q) = pe(d) = Psa(@)-

Rigorous numerical upper bounds of impressive accuracy have been achieved
for the square lattice and certain other two-dimensional lattices.

(6.20) Theorem [15]. The critical point pe(q) of the square lattice L2 satisfies

(6.21) Pc(q) < q € [2, 00).

__ V1
Vi—a 1+ g

For example, when g = 10, we have that 0.760 < p:(10) < 0.769, to be
compared with the conjecture that pc(10) = +/10/(1 + +~/10) ~ 0.760. The
upper bound in (6.21) isthe dual value of pgy(q — 1). See also Theorem 6.30.

Exact valuesfor the critical points of the triangular and hexagonal lattices may
be conjectured similarly, using graphical duality together with the star—triangle
transformation; see Section 6.6.

Proof of Theorem6.17. (a) Thereareat |east two waysof provingthis. Oneway is
to usethe circuit-construction argument pioneered by Harris, [181], and devel oped
further in [47, 130], see Theorem 6.47. We shall instead adapt an argument of
Zhang using the 0/ 1-infinite-cluster property, see [154, p. 289]. Let p = ps(Q),
so that ¢ , and ¢}  are dual measuresin the sense of Theorem 6.13.

Forn > 1, let Al(n) (respectively A'(n), Al(n), AP(n)) be the event that some
vertex on the left (respectively right, top, bottom) side of the square T(n) =
[0, n]? lies in an infinite open path of L2 using no other vertex of T(n). Clearly
Al(n), A'(n), Al(n), and AP(n) areincreasing eventswhose union equalsthe event
{T(n) < oo}. Furthermore, by rotation-invariance,

(622) forb=0,1andn>1, qﬁg’q(A“(n)) isconstant foru =1, r,t, b.

Supposethat 6°(p, q) > 0, whenceby stochasticordering6*(p, q) > 0. Since
the ¢g,q have the 0/ 1-infinite-cluster property,

S (AMUAMUAMUAM) -1  asn— co.

By positive association,

bp.q(T(N) <5 00) = ¢ o (A D (AT B o (AUM) ] 4 (AP(M)),
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Figure6.5. Verticesa and b liein infinite open clustersof L2\ T(N), and verticesx and y lie
in infinite open clusters of the dual lattice ]Lg \ T(N)q. If there exists a unique infinite open

cluster of L2, then there exists an open path 7 joining a to b, and thusthe infinite dual clusters
at x and y are dijoint.

implying by (6.22) that

(6.23) Phq(A'(M) > 1 asn— oo, foru=1rtb.

We choose N such that

(6.24) ppq(A“(N)) > £ foru=1lrtbadb=01
Moving to the dual lattice, we define the dual box

(6.25) Ta=1[0,n%+ @3, 3.

Let B'(n) (respectively, B'(n), B(n), BP(n)) betheevent (in ©24) that some vertex
on the left (respectively right, top, bottom) side of T (n)q liesin an infinite open
path of the dual lattice }Lg using no other vertex of T (n)q. Clearly,

(626)  $pq(BUN) = ¢l (AUNY) > Z  foru=1r,tb.

Consider now theevent A = Al(N) N A"(N) N BY(N) N B?(N), viewed asa
subset of ©2 and illustrated in Figure 6.5. The probability that A does not occur
satisfies

bp.q(A) < ¢p q(A(N)) + 69 4 (A(N)) + ¢ (BIN)) + ¢ 4(BP(N))
<3  by(6.24) and (6.26),
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giving that ¢ (A) > Fforb=0,1

Wenow usethefact that every random-cluster measurecpk&q hasthe0/1-infinite-
cluster property, see Theorem 4.33(c). If A occurs, then L2 \ T(N) contains two
digoint infinite open clusters, since the clusters in questions are separated by
infinite open paths of the dual; any open path of .2 \ T(N) joining these two
clusters would contain an edge which crosses an open edge of the dual, and no
such edge can exist. Similarly, on A, the graph }Lﬁ \ T(N)q containstwo digoint
infinite open clusters, separated physically by infinite open paths of L2 \ T(N).
Thewholelattice L2 contains (almost surely) a uniqueinfinite open cluster, and it
followsthat there exists (almost surely on A) an open connection r of 1.2 between
the fore-mentioned infinite open clusters. By the geometry of the situation (see
Figure 6.5), this connection forms a barrier to possible open connections of the
dual joining the two infinite open dual clusters. Therefore, amost surely on A,
the dual lattice contains two or more infinite open clusters. Since the latter event
has probability O, it follows that ¢g,q(A) = 0in contradiction of the inequality
¢h.q(A) > 3. Theinitia hypothesisthat 6°(p, q) > Ois thereforeincorrect, and
the proof is complete.
(b) By part (a), 61(p,q) = 0 for p < psi(q), whence, by Theorem 5.33(a),
|Rp.ql = [Wpql = 1for p < psi(Q).

Suppose now that p > pg(q) so that, by (6.5), p? < ps(q). By part (a) and
Theorem 4.63,

Egd,q(ed isclosed) = Etd’q(ed is closed), ec E?
and by Theorem 6.13,
. —1b, .
bp.q(eisopen) = ¢ . (eq is closed), b=0,1.

Therefore, ¢ 4 (eisopen) = 3 4(eisopen), and the claim follows by Theorem
4.63. O

Proof of Theorem6.18. Under thegivenhypothesis, pc(q) = pe(q). Supposethat
Psd(d) < Pc(q), and that (6.19) holds with p = psi(q) and A = A(psa(Q). Q).
By Theorem 5.33, d’gsd(q),q = bp(q.qr IMPlying (6.19) with d’gsd(q),q replaced
by #p@.a-

If, for illustration, A < % then, by a consideration of the left endvertex of a
crossing of S(n),

1

A
(627)  Fpy@aLRM) = P q LR < N+ D= < 5,

in contradiction of Theorem 6.14. Therefore pgy(q) = pc(Q).
Moregenerally, by Theorem 5.60, ¢° (0 < dA(n)) decaysexponentialy

Psd(a),q
asn — oo. Exponential decay holds for ¢%xsd(q),q also, as above, and (6.27)
followsfor large n. Therefore, psg(q) = pc(q) as claimed. O
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We precede the proof of Theorem 6.20 with alemma.

(6.28) Lemma. Letq € [1, c0), and let p and pq satisfy (6.5). With C the open
cluster at theoriginand b € {0, 1},

it ¢ (rad(C)) <oco then 61°(p,q) > 0.
In particular, pc(q) = psg(q) under the condition:
$9(rad(C)) < oo, p < pu(a).

Proof4. Let A(n) =[—n,n)%,andletl <r <t < co. By Theorem 6.13,
I
Sr L (IAM) 4 DA®M) = ¢pd,q<U As(r, t)),
S=r

where Ag(r, t) isthe event that (s + 3, 3) belongs to an open circuit of the dual,
lyingin A(t)g\ A(r)gandhaving A(r) initsinterior. By thetrandation-invariance
of random-cluster measures, Theorem 4.19(b),

-1
¢ (OAM) 4 IAWD) < Zagd’q(rad(cd) >r+59),

S=r
where Cgy isthe open cluster at the origin of the dual lattice. Lettingt — oo,
o
(6.29) P (DA() 4 00) < Z Ppq(rad(C) =1 +5).
S=r

Suppose that ¢, (rad(C)) < oo, and pick R such that

Z 5, q(rad(C) > s) < 1.

s=2R
By (6.29), ¢35 L (DA (R) <5 00) < 1, whence 01 °(p, q) > Oasrequired. [

Proof of Theorem 6.20. Let q € [2,00) and b € {0, 1}. By the forthcoming
Theorem 6.30, q%d’q(rad(C)) < oo when pg < pg(q — 1). By Lemma 6.28,

6%(p, q) > 0 whenever

P> (Pa(q—1)y = /A O

RN =Ty

4An alternative proof appearsin [141]. See also [314].
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6.3 Exponential decay

A valuable consequence of the comparison methods developed in [15] is the ex-
ponential decay of connectivity functionswhen g € [2, oo) and

Jg-—1
P=Pul@-V =" 4=1

(6.30) Theorem (Exponential decay) [15]. Let q € [2, 00), and consider the
random-cluster model on the box A(n) = [—n, n]2. There existsa = «(p, q)
satisfying a(p, g) > Owhen p < pg(q — 1) such that

Prm.pq0< dAM) <€, nx1
By stochastic ordering,
Prmy.p.g©@ < IAM) < Gy pq(0 < IAM),  m<n,
and therefore, on taking thelimit asn — oo,
$pq0 < d0AM) <e*™  p<pu@—1),9=2 m=>1
by the above theorem. In summary,

Psd(d — 1) < Pe(@) < psd(Q), q=2,

where pe(q) is the threshold for exponentia decay, see (5.65) and (5.67). We
recall the conjecturethat Pc(q) = pe(q).

Proof. We use the comparison between the random-cluster model and the Ising
model with external field, asdescribedin Section 3.7. Consider thewired random-
cluster measure on abox A with q € [2, c0). By Theorem 3.79 and the note
following (3.83), the set of verticesthat arejoined to 3 A by open pathsis stochas-
tically smaller than the set of + spinsin the Ising model on A with 4+ boundary
conditions and parameters 8’, h’ satisfying (3.80). The maximum vertex degree
of L2is A = 4 and, by (3.82),

eﬁ4:q;2_1:1+1/q—1,

Jqg-1
s0 that
Jg-—1
1-efi= VA2 Psd(q — 1).
1+9-1
Letp=1—e? < pg(q—1). By (3.83), " < 0. By stochastic domination,
(6.31) Pr.pq0 < dA) < Tx @ oT AN,

where {0 <1 9A} is the event that there exists a path of A joining O to some
vertex of 9 A al of whose vertices have spin +1. By results of [88, 182] (see the
discussion in [15, p. 438]), the right side of (6.31) decays exponentialy in the
shortest side-length of A. O
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6.4 First-order phase transition

The q = 1 case of the random-cluster measure is the percolation model, with
associated product measure ¢p = ¢p 1. One of the outstanding problems for
percolationisto provethe continuity for all d of the percolation probability 6 (p) =
¢p(0 < oo) at thecritical point pc = pc(1), see[154, Section 8.3]. By astandard
argument of semi-continuity, this amountsto proving that 6 (pc) = 0, whichisto
say that there exists (almost surely) no infinite open cluster at the critical point.
The situation for general q is quite different. It turns out that 61(pc(q), q) > 0
for dl large g.

(6.32) Conjecture. Consider the d-dimensional lattice LY whered > 2.
(@ 6°(pe(@), q) = Ofor g € [1, 00).
(b) Thereexists Q = Q(d) € (1, oco) such that

1 =0 ifg<Q,
0=(pc(q), Q) { ~0 ifq> 0.

In the vernacular of statistical physics, we speak of the phase transition as
being of second order if 61(pc(q), q) = 0, and of first order otherwise. Thus
the random-cluster transition is expected to be of first order if and only if q is
sufficiently large. Therearetwoissues: to provetheexistenceof a‘ sharptransition
ing’, andto calculatethe‘critical value' Q(d) of q. Thefirst problemisstrangely
difficult. It is natural to seek some monotonicity, perhaps of the function f (q) =
61(pe(q), g), but this has proved el usive even in two dimensions. Asfor the value
of Q(d), it isbelieved® that Q(d) isnon-increasingin d and satisfies

4 ifd=2
(633 Q@) = { 2 ifd>6.

A first-order transitionis characteri zed by adiscontinuity inthe order-parameter
61(p, q). Two further indicators of first-order transition are: discontinuity of the
edge-densities hP(p, g) = ¢} 4(eisopen), b = 0, 1, and the existence of a so-
called ‘non-vanishing mass gap’. The edge-densities are sometimes termed the
“energy’ functions, since they arise thusin the Potts model.

The term ‘mass gap’ arises in the study of the exponential decay of correla
tions in the subcritical phase, in the limit as p 1 pc(q). Of the various ways
of expressing this, we choose to work with the probability ¢g’q(0 <~ JA(N)),
where A(n) = [—n, n]9. Recall from Theorem 5.45 that there exists a function
¥ = ¥(p, q) such that

$9q0 < dAM) ~e™  asn— oo,
5See[26, 324] and the footnote on page 183.
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where ‘~’ denotes|ogarithmic asymptotics. Clearly, ¥ (p, ) isanon-increasing
function of p, and ¥ (p, q) = 0if #%(p, q) > 0. It isbelieved that v (p, q) > O
if p< pc(q). We speak of the limit

= i ,
n(a) pTlprchq)I/f(D P

asthemassgap. Itisbelieved that thetransitionisof first order if and only if there
isanon-vanishing mass gap, that is, if «(q) > 0.

(6.34) Conjecture. Consider the d-dimensional lattice LY whered > 2. Then
=0 ifg < Q(d),

>0 ifg> Q(d),

where Q(d) isgiven in Conjecture 6.32.

w(Q) {

The first proof of first-order phase transition for the Potts model with large q
was discovered by Kotecky and Shlosman, [220]. Amongst the later proofsis that
of [225], and thisis best formulated in the language of the random-cluster model,
[224]. It takes a very simple form in the special case d = 2, as shown in this
section. The general case of d > 2 istreated in Chapter 7.

Therefollows areminder concerning the number a,, of self-avoiding walks on
1.2 beginning at the origin. It is standard, [244], that a%/” — Kk ash — oo, for
some constant x termed the connective constant of the lattice. Let

4
Q=i (c+vir=a)]".
We havethat 2.620 < ¥ < 2.696, see [302], whence 21.61 < Q < 25.72. Let

<1+¢a)4}

Q) = 1Io
WQ)—2—4 g qK4

noting that v (q) > Oif andonly if g > Q.

(6.35) Theorem (Discontinuous phase transition when d = 2) [153, 225].
Consider the square lattice L2, and let g > Q.
(@) Critical point. Thecritical point isgiven by pc(q) = ./q/(1+ ,/Q).
(b) Discontinuoustransition. We have that 6%(pc(q), q) > O.
(c) Non-vanishing mass gap. For any v < ¢(q) and all largen,

¢3c(q>,q(0 < dAn) <e ",

(d) Discontinuous edge-densities. The functions hP(p, q) = ¢B,q(eisopen),
b = 0, 1, are discontinuous functionsof p at p = pc(q).

Similar conclusions may be obtained for general d > 2 when q is sufficiently
large (g > Q(d) for suitable Q(d)). Whereas, in the case d = 2, planar du-
ality provides an especially simple proof, the proof for general d utilizes nested
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sequences of surfaces of RY and requires a control of the effective boundary con-
ditions within the surfaces. See Section 7.5.

By Theorem 6.17(b), whenever q is such that the phase transition is of first
order, then necessarily pc(q) = psd(Q)-

The idea of the proof of the theorem is asfollows. Thereis a partial order on
circuitsT" of L2 given by: I' < I'' if the bounded component of R2 \ I is a subset
of that of R? \ I'". We work at the self-dual point p = psy(q), and with the box
A(n) with wired boundary conditions. Roughly speaking, an ‘outer contour’ is
defined to be a circuit I" of the dual graph A (n)q all of whose edges are open in
the dua (that is, they traverse closed edgesin the primal graph A (n)), and that is
maximal with this property. Using self-duality, one may show that

. 1 q Iri/4
1) (T" isan outer circuit) < — <7> )
A(), Psa(9).9 qg\1+ /9

for any given circuit " of A(n)q. Combined with a circuit-counting argument of
Peierls-type involving the connective constant, this estimate implies after a little
work the claims of Theorem 6.35. The idea of the proof appeared in [225] in
the context of Potts models, and the random-cluster formulation may be found in
[153]; see aso Section 7.5 of the current work.

Proof of Theorem 6.35. This proof carries a health warning. The use of two-
dimensional duality raisescertainissueswhich aretediousto resolvewith complete
rigour, and we choose not to do so here. Such issues may be resolved either by
the methods of [210, p. 386] when d = 2, or by those expounded in Section
72forgeneral d > 2. Letn > 1,let A = A(n) = [—n,n]%, and let Aq =
[—n,n—1]2+ (3, 3) bethoseverticesof thedual of A thatlieinside A (thatis, we
omit thedual vertexintheinfinitefaceof A). Weshall work with ‘wired’ boundary
conditionson A, and we let w € Q4 = {0, 1}*A. The exterior (respectively,
interior) of a given circuit I' of either L2 or its dual L3 is defined to be the
unbounded (respectively, bounded) component of R2\ I'. A circuit " of Aq is
called an outer circuit of aconfiguration w € Q24 if thefollowing hold:
(a) all edges of T" are open in the dual configuration wg, which is to say that
they traverse closed edges of A,
(b) theoriginof L2 isin theinterior of T,
(c) every vertex of A lyingin the exterior of I", but within distance of 1/+/2 of
some vertex of T", belongs to the same component of w.
See Figure 6.6 for an illustration of the meaning of ‘ outer circuit’.

Each circuit " of Aq partitionstheset E, of edgesof A into three sets, namely

E = {e € E, : eliesintheexterior of I'},
| ={eeE, : eliesintheinterior of I'},
I"={ecEy:eqeT}.
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Figure 6.6. The solid lines represent open edges of A. The dashed lines include an outer
circuit " of the dual Ag.

The set | forms a connected subgraph of A. We write G C {0, 1}E for the set
of configurations of edgesin E satisfying property (c) above.

Let F C E,, and write Vg for the set of vertices incident to members of F.
For w € {0, 1}, let

7 (w) = p‘”(w”(]__ p)|F\’l(w)\qk(w)’

where k(w) is the number of components of the graph (Vg, n(w)). We shall
sometimes impose a boundary condition on F asfollows. Let de F be the set of
verticesin Vg that belong to infinite paths of L2 using no other vertex of Vg. We
write )

7t(w) = p1@I(L— plFu@Igk@ 4, (0, 1)F,

where k() isthe number of componentsof (Vg, 7(w)) counted according to the
convention that componentsthat intersect det F are counted only as onein total.

Our target isto obtain an upper bound for the probability that a given circuit I'
is an outer circuit. Let I be a circuit of Ag with Oin itsinterior. Since no open
component of o contains points lying in both the exterior and interior of an outer
circuit, the event OC(I') = {I" isan outer circuit} satisfies

1
(6.36) #3.p.q(OCIN) = —1 3 Lo (@)} @)
A o
1
=z - pzgz
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Figure6.7. Theinterior edges | of I' are marked in the leftmost picture, and the dual 14 inthe
centre picture (the vertices marked with a cross are identifi ed as a single vertex). The shifted
set|* = Ig+ (%, %) isdrawn in the rightmost picture. Notethat I* € | UT'.

wherewry =y , ., Z) isthewired partition function of A, and
Zg= ) ng@).  Zi= ) m©).
' eGr o"€{0,1}!

We use duality next. Let 14 bethe set of dual edgesthat crossthe primal edges
in I, and let m be the number of verticesof A insideI". By (6.10),

637 _ ~4m-1 1_p Hl 1
(6.37) Zi=q o Zj,(pd, @),

where pq satisfies (6.5), led (pg; q) isthepartition functionfor dual configurations
on (Vy, lg) with wired boundary conditions, and Vg is the set of vertices incident

to I4 (with the convention that all vertices of Vg on its boundary are identified, as
indicated in Figure 6.7).

The partition functions have the following property of supermultiplicativity
when q € [1, co). For any dual circuit " with the origin in itsinterior,

(6.38) 7} = > 7k (w)

weGr x{0,1}Vr’

> > wg@) Y wfp@)

o'eGr w//e{o’l}lur’

_ 7151
—_ ZEZIUF/.

Let1* =Ig+ (%, %), where |4 isviewed as asubset of R2. Note from Figure 6.7
that 1* € | U T, and therefore

(6.39) Zim = Z1
by Lemma 3.69 and inequality (3.70). By (6.38)—(6.39),
(6.40) Zy = ZEZj. = Z¢ Z},.
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Set p = p«(Q) = /0/(1+ /0). By (6.36)—6.40) and (6.11),

Ziz

(6.41) #hpa(OC) = 1 pIT2Et
ziz1
—(1— p)Tl m-1-1j1] ZEZlg
1-p''q —z}\

< @ pMlgnt-2lt,
Since each vertex of A (insideI") has degree 4,
dm = 2|l |+ ||,

whence

Iz
(642) ¢ pq(OC()) < (1— )TlgdIr-1 = 1 <L4) .
- g\a+v

The number of dual circuits of A having length | and containing the originin
their interior is no greater than |, where g isthe number of self-avoiding walks
of 1.2 beginning at the origin with length |. Therefore,

Z¢l (OC(I)) < i Iﬂ ( q >|/4
- A,p.q — q a+ \/q)4 :

1=4

Now!|~tloga — « asl — oo, wherek istheconnectiveconstant of 2. Suppose
that g > Q, sothat qx* < (1 + /)% Thereexists A(q) < oo such that

Zqﬁ}\’p,q(OC(r)) < A@), n>1
r

If A(q) < 1 (whichholdsfor sufficiently large q) then, by the assumption of wired
boundary conditions,

B pq(0 < dA) = ¢} , 4(OC(I) occursfor no T)
>1—A@Q) > 0.

On letting n — oo, we obtain by Proposition 5.11 that 6(p,q) > 0 when
p = /q/(1+ /7). By Theorem 6.17(a), this implies parts (a) and (b) of the
theorem when q is sufficiently large.
For general q > Q, wehaveonly that A(q) < co. Inthiscase, wefind N < n
such that
Y. $hpe(OCM) < 3,

I': T outside A(N)
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X \/y‘\f\\/ \ X+ (6n,0)

Figure 6.8. Six copies of arectangle having width n and height 2n may be put together to
form arectangle with size 6n by 2n. If each is crossed by an open path joining the images of
x and y, then the larger rectangle is crossed between its shorter sides.

whereI" is said to be outside A (N) if it contains A(N) initsinterior. Then
$x.pa(AN) & 3A) = 3.

Let n — oo tofind that ¢ ,(A(N) < o00) > 3, implying that 61(p,q) > O as
required.

Turningto part(c), let p = pg = p«(q) = /q/(1+,/Q). Let A, betheevent
that the annulus A, = A(3n) \ A(n — 1) contains an open circuit with 0 in its
interior. By Theorem 6.13 and (6.42),

¢A(r),p,q(An) < ( 4> , r > 3m.
m=8n q 1+ ‘/q)

We have used the fact that, if A, occurs, there exists a maximal open circuit I" of
A(r) containing 0 and with length at least 8n. Inthe dual of A(r), ' congtitutes
an outer circuit. Letr — oo to obtain that

0 00 mam q m/4
(6.43) ¢p,q(An)sm§n a ((1+Jﬁ)4> . r>3m

Let LR, denote the event that there exists an open crossing of the rectangle
R, = [0, n] x [0, 2n] fromitslefttoitsright side, and set Ap = ¢g’q(LRn). There
existsa point X on the left side of R, and a point y onits right side such that

An

0 .
¢pqg(X < yin Rn) > m

By placing six of these rectangles side by side (as in Figure 6.8), we have by
positive association that

. A 6
(6.44) $9.q(x < x+ (6n,0)in[0, 6n] x [0, 2n]) > <m> .
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Figure 6.9. If each of four rectangles with dimensions 6n by 2n is crossed by an open path
between its shorter sides, then the annulus A, contains an open circuit having the origin inits

interior.

We now use four copies of therectangle [0, 6n] x [0, 2n] to construct the annulus
An (see Figure 6.9). If each of these copies contains an open crossing, then the

annulus contains a circuit around 0. By positive association again,

. an 24
(6.45) ®p.q(An) = (m) .

Finaly, if 0 < dA(n), then one of the four rectangles [0, n] x [—n, n],
[-n,n] x [0,n], [-n, 0] x [—n,n], [-n,n] x [—n, Q] is traversed by an open

path between its two longer sides. Therefore,
(6.46) Pp.q(0 < DA(N) < 4hn.
Combining (6.43)—(6.46), we obtain that

$9.4(0 < JAM) < 42n + D[P 4 (A] Y2

i . m/4) 1/24
54(2n+1)2:2 q ((1+ﬁ)4> } |

m=8n

Now, m~tlogan — x asm — oo, and part (c) follows.

By parts (b) and (c), ¢° q £ ¢t Part (d) follows by Theorem 4.63. [J

pc(@), pc(@).9°
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6.5 General latticesin two dimensions

Planar duality is an important technique in the study of interacting systems on
atwo-dimensional lattice .£, but it is no panacea. It may be summarized in the
two statements: the external boundary of a bounded connected subgraph of £
is topologically one-dimensional, and the statistical mechanics of the boundary
may be studied via an appropriate stochastic model on a certain dual lattice L£Lg.
Duality provides a relation between a prima model on £ and a dual model on
£Lg. Insituationsin which the dual model isrelated to the primal, or to some other
known system, one may sometimes obtain exact results. The exact calculations of
critical probabilitiesof percolation modelsonthe square, triangul ar, and hexagonal
lattices are examples of this, see [154, Chapter 11]. Individualsless burdened by
the pulse for mathematical rigour have exploited duality to obtain exact but non-
rigorous predictionsfor other two-dimensional processes (see, for example, [26]),
of which amajor example is the conjecture that pc(q) = ./q/(1 + ,/q) for the
random-cluster model on 2. Such predictions are often beautiful and usually
provocative to mathematicians.

Weshall not exploreduality ingeneral here, noting only in passing theexistence
of many open problems of significance in extending known results for, say, the
square lattice to general primal/dual pairs. We discuss instead two specific issues
relating, in turn, to the critical points of ageneral primal/dual pair, and in the next
section to exact calculations for the triangular and hexagonal lattices.

Hereisour definition of alattice, [154, Section 12.1]. A latticeind dimensions
is a connected loopless graph £, with bounded vertex degrees, that is embedded
in RY in such away that:

(8 thetrandations x — x + e are automorphisms of £ for each unit vector e
parallel to a coordinate axis,

(b) al edgesare of non-zero length, and

(c) every compact subset of RY intersects only finitely many edges.

Let £ = (V,E) be a planar two-dimensional lattice, and let Ly be its dual
lattice, defined asin Section 6.1. We shall require some further symmetries of £,
namely that:

(d) the reflection mappings pn, pv : RZ — R? given by

PhY) = (=X, ), v, Y) = (X, —Y), (X, y) € R?

are automorphisms of L.

Let p € [0, 1] andq € [1, co). Under the above conditions, the random-cluster
measurequg B existfor b = 0, 1, and areinvariant under horizontal and vertical
trand ations, and under horizontal and vertical axis-reflection. They areinaddition
ergodic with respect to horizontal and vertical translation (separately), and they
are positively associated. Such facts may be proved in exactly the same manner
as were the corresponding statements for the hypercubic lattice L9 in Chapter 4.

Let pc(q, &£) denotethe critical value of the random-cluster model on £.
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(6.47) Theorem. Thecritical points pc(d, £), Pc(d, L4) satisfy the inequality
(6.48) Pe(d, £) = (Pc(Q, L)) 4.

Proof. Let p > pc(q, £), sothatcpalc’p’q(o < 00) > 0. Theargumentsleading to

the main result of [ 130] may be adapted to the current setting® to show that all open
clustersinthedual lattice .£4 arealmost-surely finite. Therefore, pg < pc(d, £L4g),
whence p > (pc(q, £4)) 4 as required. a

Equality may be conjectured in (6.48). Suppose that £ and Lq are isomor-
phic or, weaker, that pc(q, ££) = pc(q, Lg). Inequality (6.48) implies then that
Pc(d, &L£) > psg(q) (see Theorem 6.17(a) for the case of the square lattice). If
(6.48) were to hold with equality, we would obtain that pc(q, £) = ps(Q).

Theorem 6.47 may be used to provethe uniqueness of random-cluster measures
for p # pc(d, £). Some further notation must first be introduced to deal with
case when £ is not edge-transitive’. Let S= [0, 1)2 C R?. Let |5 be the set of
edges of £ with both endverticesin S, and Es the set of edges with exactly one
endvertex in S. Let

(6.49) Ns(@) = > @+ Y 0(e), we Q=1{0,1)F,
eclg ecEsgs
and define the edge-density by
(6.50) h(p. ) = g8 pq(Ns),  b=0,1
Ns(1) " Pd

If £ is edge-trangitive, it is easily seen that h?c(p, q) is simply the probability
under ‘1’33, 0.4 that a given edgeis open.

(6.51) Theorem. Let £, L4 be a primal/dual pair of planar lattices in two di-
mensions and suppose £ satisfies (a)—(d) above. Let p € [0, 1] and g € [1, 00),
and assumethat p # pe(q, L£).
(i) Theedge-density h?c(x, ) isa continuousfunction of x at the point x = p,
forb=0, 1.
(i) Itisthe casethat h%(p, q) = h%(p, @).
(iii) Thereis a unique random-cluster measure on £ with parameters p and q,
that is, ['Wp,q(L)| = |Rp,q(L)| = 1, inthe natural notation.

Inthe notation of Theorem4.63, wehavethat Dgq C {pc(q, L£)}. Inparticulars,
if there exists a first-order phase transition at some value p, then necessarily

SPaper [130] treats vertex-models on Z2 governed by measures with certain properties of
translation/rotation-invariance, ergodicity, and positive association. The arguments are however
more genera and apply also to edge-models on planar graphs with corresponding properties.

A graph G = (V, E) is called edge-transitive if: for every pair e, f € E, there exists an
automorphism of G mapping eto f. See Sections 3.3 and 10.12 for arelated notion of transitivity.

8Related matters for Potts models are discussed in [47].
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p = pc(g, L£). Asin Theorem 5.16, the percolation probabilities 92(-, q) =
¢>f’£’p’q(0 < o0), b = 0,1, are continuous® except possibly at the value p =
pC(qﬂ °C)

Proof. (i) For p < pe(q, L£), thisfollowsasin Theorems4.63 and 5.33(a). When
p > pc(d, £), we have from (6.48) that pg < pe(q, Lg). Asin Theorem 6.13,

h%(p. o)+ h%  (pa. @) = 1.

By part (i) applied to the dual lattice L4, each h?c(x, q) is continuous at the point
X = pg. Parts (ii) and (iii) follow as in Theorem 4.63, see also the proof of
Theorem 6.17(b). O

6.6 Square, triangular, and hexagonal lattices

There is a host of exact but non-rigorous ‘results' for two-dimensional models
which, while widely accepted by physicists, continue to be subjected to mathe-
matical investigations. Some of these claims have been made rigorous and, in so
doing, mathematicians have discovered new structures of beauty and complexity.
The outstanding contemporary example of new structure provoked by physicsis
the theory of stochastic L dwner evolutions (SLE). This has had considerable im-
pact on percolation, Brownian motion, and on other systems with a property of
conformal invariance; see Section 6.7 for a short account of SLE in the random-
cluster context.

Amongst ‘exact’ but non-rigorous results for the random-cluster model is the
claim that, for the square lattice, pc(q) = ,/4/(1+ ,/0). Baxter's 1982 book
[26] remains a good source for this and related statements, usually in the context
of Potts models but extendable to random-cluster modelswith g € [1, o). Such
statements are achieved typically by following a sequence of transformations be-
tween models, arriving thus at a ‘ soluble ice-type model’ on a new graph termed
the ‘medial graph’. It has proved difficult to ascertain whether such methods are
entirely rigorous, since they involve chains of argument which may seem indi-
vidually innocuous but which omit significant analytical details. We attempt no
more here than brief accounts of some of the conclusions together with a partial
mathematical commentary.

Consider thesquarelatticeL2. Instead of workingwith asingle edge-parameter
p, we allow greater generality by associating with each horizontal (respectively,
vertical) edge the parameter py, (respectively, py), and we write p = (pn, pv)-
It will be convenient asin (6.7)—(6.8) to work instead with the parameters x =
(Xh, Xv) given by

Nl

_1 —
2

_aip 9ty
— , v =
1-pn 1-py

9This may also be proved directly for a primal/dual pair, using the arguments of Theorems
5.33 and 6.47.

Xh

3
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and their dual values xp 4, Xy, Satisfying
XnXhd = 1, XyXyd = 1.

Write ¢g %4 for a corresponding random-cluster measure on a graph G, and
moreover

b _ b b _ b
o= lim g XD =97q0 < )

Theduality map of Section 6.1 mapsarandom-cluster model on L2 with param-
eter X = (Xn, Xv) toarandom-cluster model on ]Lﬁwith parameter Xg = (Xv,ds Xh,d)-
The primal and dual models have the same parameters whenever x, = xy¢ and
Xy = Xnd, Which isto say that

(6.52) XpXy = 1,

and we refer to the model as * self-dual’ if (6.52) holds. The following conjecture
generalizes Conjecture 6.15.

(6.53) Conjecture. Let xp, xy € (0, 00) andq € [1, 00). Forb =0, 1,

=0 if xpxv < 1,

0°(x, q) {

>0 if xpxv > 1.

The proof in the case of percolation (when g = 1) may be found at [154, Thm
11.115]. Partial progressin the direction of the general conjectureis provided by
the next theorem.

(6.54) Theorem. Let xp, Xy € (0, 00) and q € [1, co). Then

0, q) =0 if xpxy < 1.

Proof. Letn > 1, and let
D) ={yeZ?: |y1l+|y2— 2l <n+ 1}

be the ‘offset diamond’ illustrated in Figure 6.10. The proof follows that of
Theorem 6.17(a), but working with D(n) in place of T (n). We omit the details,
noting only that the proof uses the 0/1-infinite-cluster property of the measures
¢>Q,q, and the symmetry of the model under reflection in both the vertical axis of

R? and theline {(y1, 3) : y1 € R}. O

Here are two exact but non-rigorous claims for this model. We recall from
Theorem 4.58 the ‘pressure’ function G given in the current context as

G, q) = lim iIogYA(p,q) , (X, Q) € (0, 00)% x [1, 00),
atz2 | |Eal
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Figure 6.10. The diamond D(n) of the square lattice L2 when n = 2, and the associated
‘dual’ diamond D(n)g of the dual lattice L3.

where

Ya(p.q) = (1— pr)2Eal(1 — p)=2EalZ, (p, )
— Z (Xh\/a)‘”h(w)‘(Xvﬁ)‘”V(w)‘qk(w),

a)EQA

and np(w) (respectively, ny(w)) istheset of open horizontal (respectively, vertical)
edges of the configuration w € Q, = {0, 1}*. By duality asin Section 6.1,

(6.55) G(x,q) = G(xg, @) + 2 l0g(xpxv), X € (0, 00)2.

By mapping the random-cluster model onto an ice-type model asin [26, Section
12.5], one obtains the following exact computation,

G(x. Q) = 3% (Xn) + 3¥(x) + 3l0gd,  Xnxy = 1,

where the function ¢ : (0, co) — R isgiven asfollows.
(i) When0 < g < 4, choose u € (0, 37) and y € (O, 1) by

siny
2cospu = , X=——0i,
va Sn(u —7)

and then

_ 1 [ sinh((r — wt) sinh2yt)
Voo =3 /,OO t sinh(rt) cosh(uet) dt
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(ii) Wheng =4, let t = x/(1+ x), and then
o0 efy
Y (X) =/ TSechysinh(Zty)dy.
0

(i) Whenq > 4,choose > 0and 8 € (0, 1) by

. _sinhp
2coshr =.,/q, x= SnhG.—B)’
and then
0 e
Y =B+ —sech(nk) sinh(2np).
n=1

Our second exact asymptotic relation concernsthe mean density of open edges,

. 1
h°(p. q) = AnTngz{mcbﬁ,p,qam)}, b=0.1.

By the trandlation-invariance of the infinite-volume measures, the mean numbers
of open horizontal and vertical edges satisfy

2 b b b
mm,p,q(lnhl) — hp(p, @) = ¢p, q(en isopen),
(6.56) 2A
T Phpallm = (P, ) = ¢ q (e is open),

as A 1 72, where e, (respectively, e,) is arepresentative horizontal (respectively,
vertical) edge of L2. Therefore,

h°(p. a) = 3[hh(p. a) + ho(p. ).
As before, except possibly on the self-dual curve xpxy = 1, thefunctionshﬁ(-, q),
h2(-, q) are continuous and hY,,(p, @) = hi, (p,q). [We write hiv to indicate
that either possibility, chosen consistently within a given equation, isvalid.] In

addition, asin Proposition 4.28, the hﬁ,v(-, q) areleft-continuousand the h%,v(-, a)
right-continuous everywhere, in that

how(@. @) = limhp, (' @), hy,(p.a) = limhg, (0. @), pe© D%
p'1tp p'ip
By duality asin Theorem 6.13,

(6.57) ho% P, @ +hippa.q) =1,  pe 012

(©Springer-Verlag 2006



158 In Two Dimensions [6.6]

Figure6.11. Thetriangular lattice T and its dual (hexagonal) lattice H.

Itisbelieved when g € [1, 4) that the transition is of second order, and thusin
particular that the hh,V(p, g) are continuous on the self-dual curve. Thisimplies
that

hoy(P. @) = hi,(@.a).  pe(0,1% qell 4.
It follows from this and (6.57) that one should have
(658)  h°(p.a)=3[nA(.a) +hl(p. )] =%, b=0.1,
when xpxy = landq € [1, 4).

The transition is expected to be of first order when q € (4, 00), and the exact
computations reported in [ 26, Section 12.5] yield when xpxy = 1 that

hi (P, @) = Xn[ ¥ (X)) — £ Xev) Po]

(6.59) 1 ,
hiy (0. @) = X[ ¥ (Xhw) + £ (Xhw) Po],
where N
snha
= Po = [ [ [tanh(mx)]?
£00 1+ x2+2xcoshi’ 0 nl;[l[an (MM
with A given asin case (iii) above. Since 2cosh A = /4,
1
54/0—4
(=270
1+x2+x/q

a formula which underscores the relevance of the condition q > 4. In the sym-
metric case X, = Xy = 1, we deduce when q > 4 that the discontinuity of the
edge-density at the critical point equals
JiA
2+ Va

h'(p.a) —h%(p, o) = ]_[ [tanh(ma)]?.
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Figure6.12. Inthe star—triangle transformation, aternate triangles of T are replaced as shown
by stars. The triangular lattice T is thereby transformed into a copy of the hexagonal lattice
H. The shaded triangles are referred to henceforth as grey triangles.

We turn now from specul ation concerning the (self-dual) square | attice towards
rigorous mathematics concerning thetriangul ar/hexagonal pair of lattices, denoted
by T and H respectively. It is elementary that T is the planar dual of H, and vice
versa (see Figure 6.11). Thisfact permitsarelation asin Theorem 6.13 between
therandom-cluster model on T with parameters p, g and that on H with parameters
Pg: 9. Thereisasecond transformation between T and H called the * star—triangle
transformation’ andillustratedin Figure6.12. Alternate trianglesof T arereplaced
by stars, and the resulting graph isisomorphic to H. We shall henceforth refer to
the shaded triangles in Figure 6.12 as grey triangles.

We explain next the use of the star—triangle transformation?, and this we do
with the extra generality allowed by assigning to each edge e the individual edge-
parameter pe. Rather than working with the pe, we shall work with the variables

_ Pe
1—pe
see the footnote on page 135. For any finite subgraph G = (V, E) of T,

1
— w(€) k(w)’ c{0,1 E
$6.p.a(@) Y(;(p,q){llye }q © €0

ecE

Ye

Suppose that G contains some grey triangle T = ABC with edge-set ET =
{e1, e, e3}, drawn on the left side of Figure 6.13. We propose to replace T by
the star S on theright side, adding thereby a supplementary vertex, and with the
edge-parameter values y;, Y5, y3 as shown. We shall see that that, under certain
conditions on the y; and y;, the probabilities of a large family of ‘connection
events' are not altered by this transformation. The conditionsin question are as
follows:

(6.60) V(Y. Y2, ¥3) =0,
(6.61) yvivi=q for i=123,

10References to the star—triangle transformation in the context of the Potts model may be
found in [26, 324]. See ds0[92].
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C C
Y3 Y1
Y2 —>
Yo Y3
A Vi B A B

Figure 6.13. Bond parameters in the star—triangle transformation. The ‘grey’ triangle T on
theleft isreplaced by the star Son theright, and the corresponding parameters are as marked.

where

(6.62) Yr(Y1, Y2, ¥3) = Y1Y2Y3 + Y1Y2 + Y2Y3 + Y3y1 — Q.

We note for later use that ¥m (Y3, Y5, Y3) = 0 under (6.60)—(6.61), where

(6.63) YY1, Y2, Y3) = YiYays — q(y1 + Y2 + y3) — ¢

Let w € {0, 1}F, and define the equivalence (connection) relation <>, on V in
theusual way, thatis, u <> v if and only if thereexistsaopen path of w fromutov.
We think of <>, asarandom equivalencerelation. Write GS = (V S, ES) for the
graph obtained from G after the replacement of T by S, noting that VS is obtained
from V by the addition of avertex in the interior of T. Each oS € {0, 1}E° gives
rise similarly to an equivalencerelation on V which we denote as <> s.

(6.64) Lemma. Letq € (0, 00). Let G = (V, E) beafinitesubgraphof T andlet
T = ABCheagreytriangleof G asabove. Let p e (0, 1)E, andlet pS e (0, 1)E°
be such that: p§ = peforee E\ Et,andon T and S the corresponding
parameters y;, y; satisfy (6.60)—(6.61). The law of <>, under ¢ p q isthe same
asthelaw of <> s under ¢gs ps q-

Proof. Let e1, e, e3 (respectively, €) be the edges of T (respectively, S), and
write y; (respectively, yi) for the corresponding parametersasin Figure 6.13. Let
(w(e) : e e E\{e1, e, e3}) begiven, and consider the conditional random-cluster
measures P, (respectively, PS) onthe g (respectively, on thee). Therearethree
digoint classes of configuration » which must be considered, depending on which
of the following holds:

(@ A, B, C areindistinct open clusters of w restrictedto E \ {e1, e, €3},
(b) two membersof {A, B, C} arein the same such cluster, and the third is not,
(c) A, B, and C arein the same such cluster.

In each case, we propose to show that, under (6.60)—(6.61), the connections be-
tween A, B, C have the same conditional probabilities under both P and PS.
Therequired calculations are simple in principle, and we shall omit many details.
In particular, we shall verify the claim under case (b) only, the other two cases
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being similar. Assume then that (b) holds, and suppose for definiteness that the
configuration w is such that: A and B arejoined off T, but C isjoined off T to
neither A nor B. By Theorem 3.1, the probabilities of connectionsinternal to T
are given asfollows:

1
Py (A< BandB ¢ CinT) = Cyi’,

PJ (A< BandB < CinT) = —yq.
(6.65) I
P, (A< Band A< CinT) = Zysq,

. 1
PIT(As B« CinT) = 3 (V1Y2Y3 + y1y2 + Y2¥3 + yayna,
where

(6.66) Y = (y1y2Ys + Y1y2 + Y2Y3 + Yay1 + Y2 + ya)q + (1 + y1)g?.

Notethat the eventsin question concern the existence (or not) of open pathswithin
T only. The remaining term PCI(A <+ B <4 CinT) isgiven by the fact that the
sum of the probabilities of al such configurationson T equals 1.

The corresponding probabilities for connectionsinternal to S are:

1
PJ(A < BandB 4 CinS) = 7 y;ys0”.

. 1
P5(A¢ BandB < CinS) = VRSREEE
(6.67) 1
PI(A< Band A« CinS = —yiysa,

PS(A< B« Cing) = %y/lyéygq,
where
(6.68) Y = (y1YsY5+ Yi¥o+ Y1YHA + (YoYs + Vi + V5 + ¥5)AZ + 0.

It is left to the reader to check that, under (6.60)—(6.61), the probabilities in
(6.65) and (6.67) are equal. Similar computations are valid in cases (a) and (c)
also, and it follows that, in loose terms, the replacement of T by Sis ‘invisible
to connections elsewhere in the graph G. O

Lemma 6.64 allows us to replace one grey triangle of G by a star. This pro-
cess may be iterated until every grey triangle of G has been thus replaced. If G
isitself a union of grey triangles, then the resulting graph is a subgraph of the
hexagonal lattice H. By working on a square region A of T and passing to the
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limitas A 1 T, we find in particular that connectionson T have the same proba-
bilities as connectionson H so long asthe edge-parameterson T satisfy (6.60) and
the corresponding parameters on H satisfy (6.61). In particular the percolation
probabilities are the same. We now make the last statement more specific.

Write Et (respectively, Ey) for the edge-set of T (respectively, H). Letp =
(pe:ecEr) e (0,1)", and let yo = pe/(1 — pe). We speak of p as being of
typey if, for every grey triangle T, the three parameters y1, yo, y3 of the edges of
T satisfy ¥rr(y1, Y2, ¥3) = y. Supposethat p isof type 0, asin (6.60). Applying
the star—triangle transformation to every grey triangle of T, we obtain a copy H
of the hexagonal lattice, and we choose the parameters p’ = (p; : e € Ey) of
edges of thislattice in such away that (6.61) holds. By the above discussion, the
percolation probabilities 62 and 62 satisfy

(6.69) o2(p.a) =05 q).  b=01,
whenever g € [1, 00).

A labelledlatticeisalattice £ together with areal vector p indexed by theedge-
set of L£. An automorphism of alabelled lattice (£, p) is agraph automorphism
7 of &£ suchthat pre) = pe for every edgee.

Equation (6.69) leads to a proposal for the so-called ‘ critical surfaces’ of the
triangular and hexagonal lattices. The crudeargument isas follows. Supposethat
p, p’ are as above. If 69(p, q) > O then, by (6.69), 63(p’,q) > 0 dso. If we
accept apicture of an infinite primal ocean of H encompassing bounded i slands of
itsdual, then it follows that Gﬁﬁd((p/)d, g) = 0. If theinitial labelled lattice (T, p)
has a sufficiently large automorphism group then it may, by (6.61), be the case
that (Hg, (p’)q) isisomorphicto (T, p), in which case

0= 6, ((0)a, ) = 63(p. ).

Thisisacontradiction, and we deduce that Oq?(p, g) = O whenever p isof typeO.
On the other hand, some readers may be able to convincethemselvesthat there

should exist no non-empty interval («, 8) € R such that: neither T nor its dual
lattice possesses an infinite cluster whenever the type of p liesin («, 8). One
arrives via these non-rigorous arguments at the (unproven) statement that

=0 if pisof non-positivetype,
(6.70) 62(p. q) { N -

> 0 if pisof grictly positive type,
with asimilar conjecture for the hexagonal lattice.

Let p1, p2, p3 € (0, 1) andlety; = pi/(1— p;i). Werestrict the discussion now
to the situation in which every grey triangle of T has three edges with parameters
P1, P2, P3, in some order. The corresponding process on H has parameters p;
where the y/ = p{/(1 — p) satisfy (6.61). The assertions above motivate the
proposals that:

T hascritical surface  y1y2y3 + Y1Y2 + Yaya + yay1 — q = 0,

(6.71) - VAV / / / 2
H hascritical surface  y;yoy5 — q(yy + Yo+ Y3 — g =0,
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in the sense that ]
=0 ifyr(y) <0,

>0 ifyr(y) >0,

with a similar statement for H. It is not known how to make (6.71) rigorous,
neither isit even accepted that the above statementsaretruein generality, since no
explicit assumption has been made about the automorphism groups of the labelled
latticesin question.

We move now to the specia case of the homogeneous random-cluster model
on T, with constant edge-parameter pe = p for every edge e. One part of the
above discussion may be made rigorous, as follows.

62(p, q) {

(6.72) Theorem. Let g € [1, 00).
(a8) Consider the random-cluster model on thetriangular lattice T, and let p be
suchthaty = p/(1— p) satisfies y3 + 3y? — q = 0. Then62(p, @) = 0,
and therefore pc(q, T) > p.
(b) Consider therandom-cluster model on the hexagonal lattice H, and let p’ be
suchthaty = p’/(1— p') satisfiesy® —3qy — g2 = 0. Then62(p’, q) = 0,
and therefore pe(q, H) > p'.

Proof. This may be proved either by adapting the argument used to prove The-
orems 6.17(a) and 6.54, or by following the proof of Theorem 6.47. The former
approach utilizes the 0/1-infinite-cluster property, and the latter approach makes
use of the circuit-generation procedure pioneered in [181] and extended in [130].
Under either method, it is important that the labelled lattices be invariant under
trandations and possess axes of mirror-symmetry. O

It is generally believed that the critical values of T and H are the values given
in Theorem 6.72. To provethis, it would suffice to have areasonable upper bound
for ¢% p’q(O < dA(n)), where A(n) = [—n, n]?. Seethe related Theorem 6.18
and Lemma6.28.

We close this section with an open problem. Arguably the simplest system on
the triangular | attice which possesses insufficient symmetry for the above proof is
that in which every horizontal (respectively, vertical, diagonal) edgeof T hasedge-
parameter py, (respectively, py, pg). The ensuing labelled | attice has properties of
trand ation-invariance but hasno axisof mirror-symmetry. Instead, itissymmetric
under reflections in the origin. We conjecture!! that the equivalent of Theorem
6.72 holds for this process, namely that

(6.73) 02(p.d) =0 if Yr(pn, Py, pa) =O.
Indeed, one expects that the critical surfaceis given by 1 (pn, pv, pg) = 0. The

proof of the corresponding statement for the percolation model may be found at
[154, Thm 11.116].

11Note added at reprinting: this conjecture has been verified in [327].
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6.7 Stochastic Lowner evolutions

Many exact calculations are ‘known’ for critical processes in two dimensions,
but the required physical arguments have sometimes appeared in varying degrees
magical or revelationary to mathematicians. The recently developed technology
of stochastic Lowner evolutions (SLE), discovered by Schramm [294], promi ses
a rigorous underpinning of many such arguments in a manner consonant with
modern probability theory. Roughly speaking, the theory of SLE informs us of
the correct weak limit of acritical processinthelimit of large spatial scales, andin
addition provides a mechanism for performing calculations for the limit process.

Let U = (—o0, 00) x (0, oo) denote the upper half-plane of R?, with closure
U. We view U and U as subsets of the complex plane. Consider the ordinary
differential equation

d _
agt(2)= , ze U\ {0},

Ot (Z) - Bl(t
subject to the boundary condition go(z) = z, wheret € [0, 00), « is a positive
constant, and (B; : t > 0) is a standard Brownian motion. The solution exists
when g (2) is bounded away from B¢. More specifically, for z € T, let t; bethe
infimum of all times r such that 0 is alimit point of gs(z) — Bys in the limit as
st 1. Welet

Hi={zeU: 1>t} Ki={zeU:r <t}

so that H; isopen, and K; iscompact. It may now be seen that g; is aconformal
homeomorphism from Hy to U.

We cdl (g : t > 0) astochastic Lowner evolution (SLE) with parameter «,
written SLE,, and we call the K; the hulls of the process. Thereis good reason
to believe that the family K = (K : t > 0) providesthe correct scaling limit of a
variety of random spatial processes, the value of « being chosen according to the
processin question. General properties of SLE,, viewed as a function of «, have
been studied in [284, 316], and a beautiful theory has emerged. For example, the
hulls K form (almost surely) asimple path if and only if « < 4. If ¥ > 8, then
SLE, generates (almost surely) a space-filling curve.

Schramm [294, 295] has identified the relevant value of « for several different
processes, and hasindicated that percolation has scaling limit SLEg. Full rigorous
proofsare not yet known even for general percolation models. For the special case
of site percolation on the triangular lattice T, Smirnov [304, 305] has proved the
very remarkable result that the crossing probabilities of re-scaled regions of R?
satisfy Cardy’s formula, and he has outlined a connection to a ‘full scaling limit’
andto the process SLEg. (Thislast statement isillustrated and partly explainedin
Figure 6.14.) Thefull scaling limit for critical percolation on T asan SL Eg-based
loop process was announced by Camia and Newman in [75] and the proofs may
be foundin [76].
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Figure 6.14. Site percolation on the triangular lattice with p equal to the critical point %
and with amixed boundary condition along the lower side. The interface traces the boundary
between the white and the black clusters touching the boundary, and istermed the ‘ exploration
process'. In the limit of small lattice-spacing, the interface convergesin a certain manner to
the graph of a function that satisfies the Lowner differential equation driven by a Brownian
motion with variance parameter « = 6.

It is possible to perform calculations for stochastic L dwner evolutions, and in
particular to confirm, [230, 307], the values of many critical exponentsassociated
with site percolation on the triangular lattice. The outcomes are in agreement
with predictions of mathematical physicists considered previously to be near-
miraculous, see [154, Chapter 9]. In addition, SLEg satisfies the appropriate
version of Cardy’sformula, [80, 227].

The technology of SLE isamajor piece of contemporary mathematics which
promises to explain phase transitions in an important class of two-dimensional
disordered systems, and to help bridge the gap between probability theory and
conformal field theory. It has in addition provided complete explanations of
conjectures made by mathematicians and physicists concerning the intersection
exponents and fractionality of frontier of two-dimensional Brownian motion, see
[228, 229].

Further work is needed to prove the validity of the limiting operation for other
percolation models and random processes. Lawler, Schramm, and Werner have
verifiedin[231] the existence of the scaling limit for loop-erased randomwalk and
for the uniform spanning-tree Peano curve, and have shown them to be SLE, and
SL Eg respectively. It isbelieved that self-avoiding walk on L2, [244], has scaling
limit SLEg/3. Schramm and Sheffield have proved that the so-called harmonic
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explorer and the interface of the discrete Gaussian free fiel d have common limit
SLE4, see [296, 297].

We turn now to the random-cluster model on L2 with parameters p and q.
Forq € [1, 4), itisbelieved asin Conjectures 6.15 and 6.32 that the percolation
probability 6(p, q), viewed as a function of p, is continuous at the critical point
pc(9), and furthermore that pe(q) = /q/(1 + /). It seemslikely that, when
re-scaled in the manner similar to that of percolation, the cluster-boundaries of
the model convergeto alimit process of SLE type. It will remain only to specify
the parameter « of the limit in terms of q. It has been conjectured in [284] that
kK = k(q) satisfies

cos(4r /k) = —3./3, k € (4,8).

This value is consistent with the above observation that « (1) = 6, and also with
thefinding of [231] that the scaling limit of the uniform spanning-tree Peano curve
is SLEg. Werecall from Theorem 1.23 that the uniform spanning-tree measureis
obtained as alimit of the random-cluster measureas p, g | O.

There are uncertainties over how this programmewill develop. For a start, the
theory of random-cluster modelsisnot so complete asthat of percolationand of the
uniform spanning tree. Secondly, the existenceof spatial limitsis currently known
only in certain special cases. The programmeishowever ambitiousand promising,
and may ultimately yield a full picture of the critical behaviour, including the
numerical values of critical exponents, of random-cluster modelswith g € [1, 4),
and hence of 1sing/Pottsmodelsalso. Thereisgood reason to expect early progress
for the case q = 2, for which the random-cluster interface should converge to
SLE1¢/3, and the Ising (spin) interface to SLEg, [306]. The reader is referred to
[295] for a survey of open problems and conjectures concerning SLE.
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Chapter 7

Duality in Higher Dimensions

Summary. The boundaries of clusters in d dimensions are (topologically)
(d — 1)-dimensional and, in their study, one encounters new geometrical
difficulties when d > 3. By representing the random-cluster model as a
seguence of nested contours with alternately wired and free boundary con-
ditions, one arrives at the proof that the phase transition i s discontinuous for
sufficiently large g. There is a random-cluster analysis of non-translation-
invariant states of Dobrushin-type when d > 3, q € [1, c0), and p is
sufficiently large.

7.1 Surfaces and plaguettes

Duality isafundamental techniqueinthestudy of anumber of stochastic modelson
aplanar graph G = (V, E). Domainsof G which are ‘ switched-on’ in the model
are surrounded by contours of the dual graph Gy which are ‘ switched-off’. We
make this more concrete as follows. We take as sample spacethe set Q@ = {0, 1}F
where, asusual, an edge eiscalled openin w € Q if w(e) = 1. There exists no
open path between two vertices x, y of G if and only if there existsacontour inthe
dual graph that separates x and y and that traverses closed edgesonly. Such facts
have been especially fruitful in the case of percolation, because the dual process
of closed edgesisitself apercolation process. We saw similarly in Section 6.1 that
the dual of arandom-cluster model on aplanar graph G isarandom-cluster model
on the dual graph Gy, and this observation led to alargely complete theory of the
random-cluster model on the square lattice. When d = 2, one may summarize
thiswith thefacile remark that 2 = 1+ 1, viewed as an expression of the fact that
the co-dimension of alinein R? is 1. The situation in three and more dimensions
is much more complicated since the co-dimension of alinein R% isd — 1, and
oneisled therefore to a consideration of surfaces and their geometry.

We begin with a general description of duality in three dimensions (see, for
example, [6, 139]) and we consider for the moment the three-dimensional cu-
bic lattice L. The dual lattice LY is obtained by translating L2 by the vector
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Figure7.1. A unit cube of the primal lattice L3, and a plaquette of the dual lattice. The open
circles are vertices of the dual lattice ]Lg placed at the centres of the primal unit cubes. Each

edge e of L3 passes through the centre of some face common to two unit cubes of the dual

lattice, illustrated here by the shaded region, and this face isthe ‘ plaguette’ associated with e.
3 = (3,3, 2); each vertex of L3 lies at the centre of a unit cube of the primal
lattice L3. We define a plaquette to be a (topologically) closed unit square in
R® with corners lying in the dual vertex set Z® + 3. That is, plaguettes are the
bounding faces of the unit cubes of the dual lattice ]Lg. Each edge e of 1.8 passes
through the centre of adual plaguette, namely the plaguette that is perpendicular
to e and passes through its centre, see Figure 7.1.

Two distinct plaquettes hy and h are called 1-connected, written hy 5 hy, if:
either hy = hp, or h1 N hy is homeomorphic to the unit interval [0, 1]. A set of
plaquettesis called 1-connected if they are connected when viewed as the vertex-

set of agraph with adjacency relation L. Consider af nite, connected, open cluster
C of L3. It hasan external edge-boundary A¢C comprising all closed edges with
exactly one endvertex in C. Edgesin AcC correspond to plaquettes of the dual
]Lg’, and it turns out that this set of plaguettes contains a 1-connected surface that
separates C from co. Thus, connectivity in the primal latticeis constrained by the
existence of 1-connected ‘ surfaces' of dual plaquettes.

Here is a plan of this chapter. There appears in Section 7.2 a topological
argument which is fundamental to the study of the random-cluster model with
d > 3. This extends the two-dimensional duality results of [210, Appendix] to
three and more dimensions. There are two principal componentsin the remain-
der of the chapter. In Sections 7.3-7.5, a representation of the wired and free
random-cluster models as polymer models (in the sense of statistical mechan-
ics) is established and developed. This leads to the famous result that the phase
transition of the random-cluster model is discontinuouswhend > 2 and q is suff-
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iciently large, [224]. The second component is the proof in Sections 7.6—7.11 of
the existence of ‘ Dobrushininterfaces for all random-cluster modelswithd > 3,
g € [1, 00), and sufficiently large p. This generalizes Dobrushin’s work on non-
trand ation-invariant Gibbs states for the Ising model, [103], and extends even to
the percolation model. A considerable amount of geometry is required for this,
and the account given here draws heavily on the original paper, [139].

7.2 Basic properties of surfaces

The principal target of this section is to study the geometry of the dual surface
corresponding to the external boundary of a finite connected subgraph of LY. The
results are presented for d > 3, but the reader is advised to concentrate on the
cased = 3. We write LY for the dual lattice of LY, being the translate of LY by

thevector 3 = (3, 1,.... ).
Letd > 3and let By = [0, 1]9, viewed as a subset of RY. The elementary
cubes of Lg are trandlates by integer vectorsof the cube Bg — 5 = [—3, 3]9. The

boundary of Bo — 3 is the union of the 2d sets P, , given by
I R

fori =1,2,...,dandu = 0, 1. A plaquette (in Rd) is defined to be a trand ate
by an integer vector of some P, ;. We point out that plaquettes are (topologically)
closed (d—1)-dimensional subsetsof RY, and that plaquettesarelineswhend = 2,
and are unit squareswhen d = 3 (see Figure 7.1). Let H denotethe set of al pla-
quettesinRY. Thestraight line-segment joining the verticesof anedgee = (x, y)
passes through the middle of a plaquette denoted by h(e), which we call the dual
plaquette of e. Moreprecisely, if y = x+ ¢ whereg = (0,...,0,1,0,...,0)is
the unit vector in the direction of increasing i th coordinate, then h(e) = P 1 + x.

Lets € {1,2,...,d — 2}. Two distinct plaguettes h; and h, are said to be
s-connected, written hq R ho, if hy N hy contains a homeomorphic image of the
s-dimensional unit cube [0, 1]°. We say that h1 and hy are O-connected, written

he 2 hy,ifhinh, . Notethathy °~* hyif and only if hynh, ishomeomorphic
to [0, 1]9-2. A set of plaquettes is said to be s-connected if they are connected
when viewed asthe vertex-set of agraph with adjacency relation R, Of particular
importanceisthe case s = d — 2. Thedistance ||h1, hy|| between two plaguettes
h1, hy is defined to be the L°° distance between their centres. For any set H of
plaguettes, we write E(H ) for the set of edges of L9 to which they are dual.

We consider next some geometrical matters. Thewords'‘ connected’ and ‘ com-
ponent’ should be interpreted for the moment in their topological sense. Let
T < RY, andwrite T for theclosureof T in RY. We definetheinsideins(T) to be
the union of all bounded connected components of RY \ T; the outside out(T) is
the union of all unbounded connected componentsof RY\ T. Theset T issaid to
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separateRY if R4\ T has more than one connected component. For aset H € H
of plaquettes, we definethe set [H] < RY by

(7.2) [H] = {x e RY : x € h for someh € H}.

We call afinite set H of plaquettes a splitting set if it is (d — 2)-connected and
RY\ [H] contains at |east one bounded connected component.

The two theorems that follow are in a sense dua to one another. The first
is an analogue! in a general number of dimensions of Proposition 2.1 of [210,
Appendix], where two-dimensional mosaics were considered.

(7.3) Theorem [139]. Letd > 3, and let G = (V, E) be a finite connected
subgraph of L9, There exists a splitting set Q of plaquettes such that:
(i) V cins([Q)),
(i) every plaquettein Q isdual to some edge of E® with exactly one endvertex
inV,
(iii) if W is a connected set of vertices of L9 such that V N'W = &, and there
exists an infinite path on L9 starting in W that uses no vertex in V, then
W C out([Q)).

For any set § of plaguettes, we defineits closure § to be the set
(7.4) §=38U{heH:his(d— 2)-connected to some member of 5}.

Let § = {h(e) : e € D} be a(d — 2)-connected set of plaquettes. Consider
the subgraph (z9, E9 \ D) of L9, and let C be a component of this graph. Let
Ay, sC denote the set of al vertices v in C for which there exists w € 79 with
h((v, w)) € §,andlet Ag sC denotetheset of edges f of C forwhichh(f) € §\4.
Note that edgesin Ae sC have both endvertices belonging to Ay sC.

(7.5) Theorem [139]. Letd > 3. Let s = {h(e) : e € D} bea (d — 2)-connected
set of plaquettes, and let C = (V¢, Ec) be a finite connected component of the
graph (z9, E9 \ D). There exists a splitting set Q = Qc of plaquettes such that:
(i) Ve < ins([Q)),
(i) Q <,
(iii) every plaquettein Q isdual to some edge of E9 with exactly one endvertex
inC.

Furthermore, the graph (Ay sC, AesC) is connected.

This theorem will be used later to show that, for a suitable (random) set § of
plaquettes, the random-cluster measure within a bounded connected component
of RY \ [8] is that with wired boundary condition. The argument is roughly as
follows. Let w € Q,andlet § = {h(e) : e € D} beamaximal (d — 2)-connected

1This answers a question which arose in 1980 during a conversation with H. Kesten.
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set of plaguettes that are open (in the sense that they are dual to w-closed edges
of LY, see (7.9)). Leth = h(f) € 5\ 8. It must be the case that f is open,
sinceif f were closed then h( f) would be open, which would in turn imply that
h(f) € 8, acontradiction. That isto say, for any finite connected component C of
(29, E9\ D), every edgein A¢ sC isopen. By Theorem 7.5, theboundary Ay sC,
when augmented by the set Ag sC of edges, is a connected graph. The random-
cluster measure on C, conditional on the set §, is therefore awired measure.

We shall require one further theorem of similar type.

(7.6) Theorem. Letd > 3andlets = {h(e) : e € D} beafinite (d—2)-connected
set of plaquettes. Let C = (V, E) bethe subgraphof (z9, E9\ D) comprising all
vertices and edgeslying in out([8]). There exists a subset Q of § such that:
(i) Qis(d — 2)-connected,
(i) everyplaquettein Q isdual to some edge of EX with at least one endvertex
inC.
Furthermore, the graph (Ay sC, Ae sC) is connected.

Proof of Theorem7.3. Related resultsmay befoundin[82, 101, 159]. Thetheorem
may be proved by extending the proof of [159, Lemma 7.2], but instead we adapt
the proof given for three dimensions in [139]. Consider the set of edges of 1.9
with exactly one endvertexin V, and let P be the corresponding set of plaquettes.

Let x € V. Weshow first that x € ins([P]). Let U bethe set of all closed unit
cubesof RY having centresin V. Sinceall relevant setsin this proof aresimplicial,
the notions of path-connectednessand arc-connectednesscoincide. Recall that an
unbounded path of RY from x is a continuous mapping y : [0, oo) — RY with
y(0) = x and unbounded image. For any such path y satisfying |y (t)] — oo as
t — oo, y hasafinal point z(y) belonging to the (closed) union of al cubesin
U. Now z(y) € [P] for al such y, and therefore x € ins([P]).

Let A5 denote s-dimensional Lebesgue measure, so that, in particular, 1o(S) =
|S|. A subset Sof RY iscalled:

{ thin  if Aq_3(S) < oo,
fat  if Aq—2(S) > 0.

Let P1, Po, ..., Py be the (d — 2)-connected components of P. Note that
[RIN[PR]isthin, fori # j. We show next that there existsi such that x e
ins([P]). Suppose for the sake of contradiction that thisis false, which isto say
that x ¢ ins([R]) forali. Thenx ¢ Pi =[R]Uins((R]) fori =1,2,...,n.
Note that each P; isaclosed set which does not separate RY.

Leti # j. We claim that:

(7.7) either P; N P; isthin, or one of the sets P;, P; isasubset of the other.

To see this, suppose that P; N P; is fat; we shall deduce as required that either
ﬁi gﬁ- orﬁ Qﬁj.
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Suppose further that P; N[P;] isfat. Since[P;] isaunion of plaguettesand P;
isaunion of plaquettesand cubes, all with cornersin z9 + % thereexistsapair hy,
ha of plaguettesof L8 suchthat hy “~° hy, andg = hy nh, satisfiesg € P N[R].
We cannot have g € [PR] since [R] N [P;] is thin, whence int(g) < ins([R]),
where int(g) denotes the interior of g viewed as a subset of R4~2. Now, [P}] is
(d — 2)-connected and [P;] N [P;] isthin, so that [Pj] is contained in the closure
of ins([P]), implying that [P;] < P; and therefore Pj < P;.

Suppose next that P; N [Pj] is thin but P; Nins([P}]) is fat. Since [R] is
(d — 2)-connected, it has by definition no thin cutset. Since [P] N [P] isthin,
either [P] € P; or [R] is contained in the closure of the unbounded component
of RY\ [P}]. Thelatter cannot hold since P; Nins([P}]) isfat, whence[P] € P;
and therefore P; C P;. Statement (7.7) has been proved.

By (7.7), we may write R = Uin=1 Pj asthe union of distinct closed bounded
sets |5’| i = 1,2,...,k wherek < n, that do not separate RY and such that
BN IS] isthinfori # j. By Theorem 11 of [223, §59, Section 11]2, R does not
separate RY. By assumption, x ¢ R, whence x lies in the unique component of
the complement RY \ R, in contradiction of the assumption that x € ins([P]). We
deduce that there exists k such that x € ins([ Px]), and we define Q = P.

Consider now avertex y € V. Since G = (V, E) is connected, there exists a
path in L9 that connects x with y using only edgesin E. Whenever u and v are
two consecutive vertices on this path, h({u, v)) doesnot belongto P. Therefore,
y liesin theinside of [Q]. Claims (i) and (ii) are now proved with Q as given,
and it remainsto prove (iii).

Let W beasin (iii), and let w € W be such that: there exists an infinite path
on ¢ with endvertex w and using no vertex of V. Whenever u and v are two
consecutive vertices on such a path, the plaquette h({u, v)) doesnot liein P. It
followsthat w € out([P]), and therefore w € out([Q]). O

Proof of Theorem7.5. Let H = (AysC, AesC). Let X € Ay sC, and write Hy
for the connected component of H containing x. We claim that there exists a
plaguette hy = h({y, z)) € § suchthat y € Hy.

The claim holds with y = x and hy = h({x, 2)) if x has a neighbour z with
h((x, z)) € §. Assumethereforethat x hasno such neighbour z. Sincex € Ay sC,
x has some neighbour u in ¢ with h((x, u)) € 8 \ 8. Following a consideration

of the various possibilities, there exists B € § such that i °<? h((x, u)), and
either (a) h= h({u, z)) for some z,
or (b) h=nh((v,2) for somev, z satisfyingv ~ x, z~ u.

2This theorem states, subject to amild change of notation, that: “If none of the closed sets Fg
and F1 cuts 84 between the points p and q and if dim(Fg N F1) < d — 3, their union Fo U Fy
doesit neither”. Here, 84 denotesthe d-sphere.
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If (a) holds, wetakey = u (e Hx) and hy = ﬁ.le (a) does not hold but (b) holds
for some v, z, wetakey = v (€ Hy) andhx = h.

We apply Theorem 7.3 with G = Hy to obtain a splitting set Qy, and we claim
that

(7.8) QxNs #o.

This we prove as follows. If hy € Qy, the claim is immediate. Suppose that
hx ¢ Qx, sothat [hx] Nins([Qx]) # @, implyingthat § intersects both ins([ Qx])
and out([Qx]). Since both § and Qy are (d — 2)-connected sets of plaquettes, it
followsthat § U Qy is (d — 2)-connected. Therefore, thereexist h’ € §, h” € Qy

such that h' “~* h". 1f h" e 8, then (7.8) holds, so we may assume that h” ¢ §,
and hence h” € § \ 6. Thenh” = h((v, w)) for some v € Hy, and therefore
w € Hy, acontradiction. We conclude that (7.8) holds.

Now, (7.8) impliesthat Qx C 3. Suppose on the contrary that Qyx £ 8, so that

thereexisth’ € §, h” € Qy \ 8 such that h’ a2 h”. Thisleadsto acontradiction
by the argument just given, whence Qx C §.

Suppose now that x and y are vertices of H such that Hy and Hy are distinct
connected components. Either Hy lies in out([Qy]), or Hy lies in out([ Qx]).
Since Qx, Qy < 4§, either possibility contradicts the assumption that x and y are
connected in C. Therefore, Hy = Hy asclaimed. Part (i) of the theorem holds
with Q = Qx. O

Proof of Theorem 7.6. This makes use the methods of the last two proofs, and
is only sketched. Let Q C H be the set of plagquettes that are dual to edges of
EY \ E with at least one endvertex in V. By the definition of the graph C =
(V,E), Q C§. Let Q1, Q2, ..., Qm bethe (d — 2)-connected components of
Q. If m > 2, there exists a non-empty subset H € § \ Q suchthat Q U H is
(d — 2)-connected but no strict subset of Q U H is (d — 2)-connected. Each
h = h(e) € H must be such that at least one vertex of e lies in out(Q), in
contradiction of the definition of Q. It followsthat Q is (d — 2)-connected.
Theconnectivity of (Ay sC, Ae sC) may beprovedin very much the same way
asin the proof of Theorem 7.5. O

7.3 A contour representation

The dual of a two-dimensional random-cluster model is itself a random-cluster
model, as explained in Chapter 6. The corresponding statement is plainly false
in three or more dimensions, since the geometry of plaguettes differsfrom that of

edges. Consider an edge-configuration w € © = {0, 1}]Ed, and the corresponding
plaguette-configuration = = (s (h) : h € H) given by

(7.9) r(h(e) =1— w(e), ec kY.
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Thus, h(e) isopen if and only if eis closed. The open plaguettes form surfaces,
or ‘contours’, and one seeks to understand the geometry of the original process
through a study of the probabl e structure of such contours. Contoursare objectsof
some geometrical complexity, and they demand a proper study in their own right,
of which the results of Section 7.2 form part.

The study of contours for the random-cluster model has as principal triumph
a fairly complete analysis of the model for large g. The central feature of this
analysis is the proof that, at the critical point p = pc(q) for sufficiently large
g, the contour measures of both free and wired models have convergent cluster
expansions. Thisimpliesadiscontinuousphasetransition, the existence of amass
gap, and a number of other facts presented in Section 7.5.

Cluster (or ‘polymer’) expansionsform a classical topic of statistical mechan-
ics, and their theory is extensive and well understood by experts. Rather than
devel oping the theory from scratch here, we shall in the next section abstract those
ingredients that are relevant for the current application. Meanwhile, we concen-
trate on formulating the random-cluster model in amanner resonant with polymer
expansions. The account given hereis an expansion and elaboration of that found
in [224]. A further treatment may be found in [65, 66].

Henceforthin thischapter we shall assume, unless otherwise stated, thatd = 3.
Similar results are valid whenever d > 3, and stronger results hold when d = 2.
A plaquette is taken to be a closed unit square of the dual lattice L3, and each
plaquette h = h(e) is pierced by a unique edge e of IL3.

Since the random-cluster model involves probability measures on the set of
edge-configurations, we shall consider functions on the power set of the edge-
set E2 rather than of the vertex-set Z3. Let E be a finite subset of E3, and let
Le = (VE, E) denotetheinduced subgraph of 1L3. We shall consider the partition
functions of thewired and free random-cluster measures on this graph, and to this
end we introduce various notions of ‘boundary’. Let D be a (finite or infinite)
subset of E2, and write D = E3\ D for its complement.

(i) The vertex-boundary 9D isthe set of al x € Vp such that there exists an
edgee = (X, z) withe ¢ D. Notethat 9D = aD.

We shall require three (related) types of ‘edge-boundaries’ of D.
(ii) The 1-edge-boundary 9D is defined® to be the set of all edgese € D such
that thereexists f ¢ D with the property that h(e) 2 h(f).

(iii) The external edge-boundary Ae:D isthe set of all edgese ¢ D that are
incident to some vertex in 9 D.

(iv) The internal edge-boundary AinD is the external edge-boundary of the
complement D, that is, AjntD = AeiD. In other words, Aj:D includes
every edge e € D that isincident to somex € aD.

3when working with L9 for general d, 3D would be taken to be the (d — 2)-edge-boundary,
given similarly but with 1 replaced by d — 2.
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Letpe (0,1),9 € (0,00),andr = p/(1— p). Asisusua in classical statis-
tical mechanics, it isthe partition functionswhich play leading roles. Henceforth,
we take E to be afinite subset of E3. We consider first the wired measureon L,
which we define viaits partition function®

(7.10) ZY(E) = Z r\D\quD,E),

D:DCE
D2deE

where k1(D, E) denotes the number of connected components (including the
infinite cluster and any isolated vertices) of 13 after theremoval of edgesin E \ D.
This definition (7.10) differs dightly from that of (4.12) with ¢ = 1, but it may
be seen via Theorem 7.5 that the corresponding probability measure amounts to
the wired measure on the edge-set E \ d¢E. It is presented in the above manner
in order to facilitate certain relations to be derived soon.

We define similarly the free partition function on Lg by

(7.11) 2%|®)= > (1Dl gk(Ve\9E. D)

D:DCE
DNAjnE=2

wherek®(G) denotesthe number of connected componentsof agraph G including
isolated vertices®. Since AjE includes every edge e € E that is incident to
some vertex X € JE, every x € 9E isisolated for all sets D contributing to
the summation in (7.11), and these vertices are not included in the cluster-count
k(Ve \ 9E, D). The measure defined by (7.11) differs dightly from that given at
(4.11)—(4.12) with £ = 0, but it may be seen that the corresponding probability
measure amounts to the free measure on the graph (Vg, E \ AintE).

By an argument similar to that of Theorem 4.58, there exists a function F,
termed the pressure, such that

_ 1 1 . 1 0
(7.12) F(p.a) EI'TrEB{lEl log Z (E)} EIIqus{lEl log Z (E)},
where the limit istaken in a suitable ‘ van Hove' sense.

We introduce next the classes of ‘wired’ and ‘free’ contours of the lattice I3,
Forse {0, 1) ande, f € E3, wewritee ~ f if h(e) ~ h(f). A subset D of E3is
said to be s-connected if it is connected when viewed as a graph with adjacency
relation ~. Thus, D is s-connected if and only if the set {h(f) : f € D} of
plaguettesis s-connected. Let D C E2, and consider its external edge-boundary
y = AextD. Wecall the set y awired contour (respectively, free contour) if itis

4t is convenient in the present setting to think of a configuration as a subset of edges rather
than as a 0/1-vector. We adopt the convention that Z1() = 1.
SWeset ZO(E) = 1if E\ AjE = 2. In particular, Z9%(@) = 1.

(©Springer-Verlag 2006



176 Duality in Higher Dimensions [7.3]

Figure7.2. Examplesof wired and free contoursin two dimensions. The solid lines comprise
D, the dashed lines are the contours, and the dotted lines the dual plaquettes. A wired con-
tour resembles an archipelago joined by causeways, a free contour resembles a single island
traversed by canals.

1-connected and E3 \ D is finite (respectively, it is 1-connected and D is finite).
Illustrations of wired and free contoursare presented in Figure 7.2. For any (wired
or free) contour y, the unique infinite connected component of E3 \ y is denoted
by ext(y) (or ext y), andwedefinealsoy = E3\ ext(y) andint(y) = 7\ y. Note
by Theorem 7.5 that every finite connected cluster C of E2 \ y liesin theinside
of some splitting set Q = Q¢ of plaguettes drawn from {h(e) : e € y}.

The set of all wired (respectively, free) contours of L3 is denoted by Cw
(respectively, Gs), and we write 4, (respectively, y) for atypica wired (respec-
tively, free) contour. Thelength ||y || of acontour is defined as

il Z{ l{x,y) i xeay, (x,y) €7}
|{(X7 y) X e Vint}/v <X’ y> ¢ |nt]/}

For y € Cw N Cx, the appropriate choice of ||y || will be clear from the context. In
each case, we count the number of ordered pairs (X, y); for example, for y € Cy,
if X,y € 9y and e = (x, y) € ¥, then e contributes a total of 2to ||y|. We note
for later use that, by elementary counting arguments,

; € Cw,
(7.13) v.E T

, y € Cr.

(7.14) 2d|Vy\ oy | = 2yl = vl Y € Cw,
(7.15) 2d|Vinty | = 2linty | + (¥, y € Cx,
and furthermore®,

(7.16) [adnty) <lyl < Iy, y € Cw,
(7.17) la(nty) < Iyl y € Ct.

6The second inequality of (7.16) follows from the fact that every edge in awired contour y is
incident to some vertex in 3. See (7.18).
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It may be seen by Theorem 7.5 that
(7.18) Ainy =y, v €Cw.

Two contours 1, y2 of the same class are said to be compatibleif 11 U y2 isnot
1-connected. We call the pair y1, y2 externally compatibleif they are compatible
andinadditiony1 C ext(y2) andjz C ext(y1). f I' = {y1, ¥2, ..., yn} isafamily
of pairwise externally-compatiblecontoursof the sameclass, wewriteT = | J; 7,
ext(l) = E3\ T, and int(I") = T\ I". Here, we have used I to denote the set of
edgesin the union of the y;.

LetTw = {y1, y2, . . ., ym} beafamily of pairwiseexternally-compatiblewired
contours. It may be seen that

m
AintF = U Aintﬂ,
i=1

and, by (7.11),
o m
(7.19) 2°w) =[] 2%m.
i=1
Similarly, if Ts = {y1, y2, ..., yn} is afamily of pairwise externally-compatible

free contours, then

n
de(intTy) = ] de(intys),
i=1

and, by (7.10),

n
(7.20) q"tzintry) = [ | Z%inty).
i=1

A key step in the transformation of the random-cluster model to a polymer
model isthe derivation of recursive expressionsfor Z1(E) and Z%(E) in terms of
partition functions of subsets of E. We describe this first for the wired partition
function Z1(E). Thesubset E < E3iscalled co-connected if |E| < oo and E3\ E
is connected. Let E be co-connected. Let D € E besuch that 9cE € D. Let
Do be the set of edges in the unique infinite connected component of D U E°,
andletT'(D) = AeitDoso. Theset I'(D) may be expressed as a union of maximal
1-connected sets 4, i = 1, 2,..., m, which are pairwise externally-compatible
wired contours, and we write 'y (D) = {y1, ¥2, ..., ¥m}. Note that every edge
in"'(D) belongsto E \ deE. Thus, to each set D there corresponds a collection
I'w(D), and the summation in (7.10) may be partitioned according to the value
of I'w(D). For agiven family 'y, = {y1, ¥2, ..., ym} Of pairwise externally-
compatible wired contoursin E \ de¢E, the corresponding part of the summation
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in (7.10) is over sets D with 'y (D) = TI'y, and the constraints on such D are as
follows:

1. D containsno edgein any y;,
2. D contains every edge of E not belongingto T'y,.
Thisleadsvia(7.18) and (7.19) to the formula

(7.21) ZME) =y rIBqzOmy)
TwCE\3E

where the summation is over al families I'y, of pairwise externally-compatible
wired contours contained in E \ dcE. By Theorems 7.3 and 7.5, each such Ty, is
co-connected.

Weturn now to the free partition function Z9(E). Let D € E\ AjnE. Let DS,
be the set of edgesin the uniqueinfinite 1-connected component of D¢ = E3\ D,
andlet I'(D) = AjnDS,. Theset I'(D) may be expressed as a union of maximal
1-connected sets y;, i = 1,2,..., n, which are pairwise externally-compatible
free contours, and we write I't(D) = {y1, v2, ..., yn}. We note that every edge
inI"(D) belongsto E. Thus, to each set D there corresponds a collection I's(D),
and the summationin (7.11) may be partitioned according to the value of I'1(D).
For agiven family T's = {y1, y2, ..., yn} Of pairwise externally-compatible free
contoursin E, onesumsover sets D with 't (D) = I't, and the constraintson such
D areasfollows:

1. D CintTy,
2. fori =1,2,...,n, D contains every edgein inty; that is 1-connected to
some edgein y;.
Thisleads by (7.11), (7.20), and Theorem 7.5 to the formula

(7.22) Z0E) = ) gVEVEITNmrlgn=1z3int 1),
I'icE

where the summation is over all families I't of pairwise externally-compatible
free contours y contained in E. By Theorems 7.3 and 7.5, each such intT; is
co-connected.

Thenext step isto transform the random-cluster model into a so-called polymer
model of statistical mechanics. To the latter model we shall apply certain standard
results summarized in the next section, and we shall return to the random-cluster
application in Section 7.5.
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7.4 Polymer models

The partition function of alattice model in afinite volume A of RY may generally
be written in the form

(7.23) zn) =Y []em.

XCA yeXx

wherethe summation” isover all compatiblefamilies T in A (including the empty
family, which contributes 1) comprising certain types of geometrical objects y
called ‘ polymers'. The nature of these polymers, of the weight function ® (which
weshall assumeto be non-negative), and of themeaning of * compatibility’, depend
on the particular model in question. We summarize some basic properties of such
polymer models in this section, and shall apply these results to random-cluster
modelsin the next section. The current target is to communicate the theory in the
broad. Thedetails of thistheory havethe potential to complicate the message, and
they will therefore be omitted in almost their entirety. In the interests of brevity,
certain liberties will be taken with the level of rigour. The theory of polymer
modelsiswell developed in the literature of statistical mechanics, and the reader
may consult the papers [85, 216, 219, 274, 275, 326], the book [301], and the
referencestherein.

Thediscontinuity of the Potts phasetransition wasprovedfirst in [220] viaaso-
called chesshoard estimate. Thisstriking result, combined with the work of [218],
inspired the proof via polymer models of the discontinuity of the random-cluster
phase transition, [224]. The last paper is the basis for the present account.

The study of polymer modelsiswider than is required for our specific applica-
tions, and ageneral approach may befoundin[219]. For the sake of concreteness,
we note the following. Our applications will involve co-connected subsets A of
3. Our polymerswill be either wired or free contoursin the sense of the last sec-
tion, and ‘ compatible’ shall beinterpreted in the sense of that section. Our weight
functions ® will be assumed henceforth to be strictly positive and automorphism-
invariant, inthat ®(y) = ®(ry) for any automorphism t of L3.

One seeks conditions under which the limit

: 1
(7.24) f(®) = /I\|T|?]f:13 {m IogZ(A)}

exists, together with bounds on the deviation
(7.25) o(A, @) = |A|f(D) —logZ(A).

These are obtained by elementary arguments under the assumption that the @ (y)
decay exponentialy in the size of y, with a sufficiently negative exponent. With

"We adopt the convention that Z(2) = 1.
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each polymer y we associate a natural measure of ‘size’ denoted by ||y || and, for
7 € (0, 00), we cal ® ar-functional if

(7.26) o(y) <e Tl forall y.

Theprincipal conclusionsthat follow are not stated unambi guously asatheorem
since their exact hypotheses will not be specified. Throughout this and the next
section, the terms ¢ and ¢; are positive finite constants which depend only on the
particular type of model and not on the function ®. These constants may depend
on the underlying lattice (which we shall take to be IL3), and may therefore vary
with the number d of dimensions.

(7.27) ‘Theorem’. There exist ¢, c1, ¢2 € (0, oo) such that the following holds.
Let ® bea r-functional with t > c.

(a) Thelimit f (®) existsin (7.24), and satisfies0 < f (®) < e @7,
(b) Thedeviationin (7.25) satisfies |o (A, ®)| < |dA|e %" for all finite A.

The polymer model is said to be convergent when the condition of the above
‘Theorem’ is satisfied.
Sketch proof. Hereare somecommentson the proof. Theexistenceof the pressure
f (®) in part (a) may be shown using subadditivity in amanner similar to the proof
of Theorem 4.58. Thispart of theconclusionisvalidirrespective of theassumption

that ® be a t-functional, although it may in general be the case that f (®) = oo.
One obtains aformulafor the limit function f (®) in the following manner. Let

(7.28) Y(E) = (=DF\*logz(n). E CE3 |E| < o0.
ACE

By theinclusion—exclusion principle®,

(7.29) logZ(A) = Y ¥(E).

ECA

By (7.23), Z(A1 U Ap) = Z(A1)Z(A) if A1 and A, have no common vertex.
By (7.28), ¢ is automorphism-invariant and satisfies

(7.30) Yv(E)=0 if E isnot connected.

Under the assumption of ‘ Theorem’ 7.27, one may obtain after a calculation that
(7.31) [v(E)| < e ®TIEI

for a suitable definition of the size || E|| and for some ¢3 € (0, 00).

~ BAsin[144].
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Formula (7.29) motivates the proposal that, for any given e € E3,

1 ¥ (E)
(@) AITrJE3{|A| 0g Z( )} EéE ER

and this may be proved rigorously by use of (7.31) with sufficiently large . The
inequality of part (a) follows. By (7.29) again,

E
CSUED S BETEVERE

ecA E:ecE
and, by (7.30),
oA, @) < D DY [Y(E)
XedA E:xeVg
Part (b) follows by (7.31) and a combinatorial estimate. O

Turning to probabilities, the partition function Z(A) givesriseto a probability
measure « on the set of compatible familiesin A, namely

1
K@)=266¢@L T C A,

where ®(X) = ]_[yEZ ®(y). Thefollowing elementary result will be useful later.

(7.32) Theorem (Peierlsestimate). Let y bea polymer of A. The «-probability
that y belongsto a randomly chosen compatible family satisfies

k({Z:y e Z)) < @).

Proof. Wewrite ¥ 1 y to meanthat ¥ isacompatiblefamily satisfying: y ¢ %,
and X U {y} isacompatible family. Then,

1
KTy e =55 D D)

X:XEly
D e(D)P(y)

X:Xly

=
Y D[+ ()]

T xly

@(y). O
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7.5 Discontinuous phase transition for large g

Itisaprincipal theorem for Potts and random-cluster model sthat the phase trans-
ition is discontinuous when q is sufficiently large, see [68, 220, 251] for Potts
models and [224] for random-cluster models. Thisis proved for random-cluster
models by showing that the maximal contours of both wired and free models at
p = pc(q) have the same laws as those of certain convergent polymer models.
Such use of contour expansionsis normally termed a‘ Pirogov—Sinai’ approach?,
after the authors of [274, 275].

Here are the main results, expressed for a general number d of dimensions.

(7.33) Theorem (Discontinuous phase transition) [224]. Let d > 2. There
exists Q = Q(d) such that following hold when g > Q.

(8) The edge-densities
h°(p,q) = ¢l 4(eisopen),  b=0,1,

are discontinuous functions of p at the critical point pc(q).
(b) The percolation probabilities satisfy

0%(pe(@), q) =0, 61(pe(@), q) > 0.

(c) Thereis a unique random-cluster measure when p # pe(q), and at least
two random-cluster measureswhen p = pc(Q), in that

0 1
Ppe@.a 7 Proa.a-

(d) If p < pc(q), thereis exponential decay and a hon-vanishing mass gap, in
that the unique random-cluster measure satisfies

¢p,q(0 < x) < e o, x e 79,
for some o = a(p, q) satisfying « € (0, co) and

lim «(p,q) > 0.
Pt pe(a) (p q)

Thelarge-q behaviour of pc(q) isgiven asfollows. One may obtain an expan-
sion of pe(q) in powers of q~1/9 by pursuing the proof further.

(7.34) Theorem [224]. Ford > 3,
pe@=1-q 7*+0@ % asq— .

This may be compared to the exact value pc(q) = ,/q/(1 + ,/0) whend = 2
andqislarge, seeTheorem6.35. Ford > 3andlargeq, thereexist non-trandation-
invariant random-cluster measures at the critical point pe(q).

9An overview of contour methods may be found in [217].
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(7.35) Theorem (Non-trandation-invariant measure at pc(q)) [85, 254].
Let d > 3. There exists Q = Q(d) such that there exists a non-trandation-
invariant DLR-random-cluster measurewhen p = p¢(q) andq > Q.

It is not especially fruitful to seek numerical estimates on the Q(d) above.
Such estimates may be computed, but they turn out to be fairly distant from those
anticipated, namely0

(7.36) Q2 =4, Q) =2 ford>86.

No proof of Theorem 7.35 is included here, and the reader is referred for more
details to the given references.

Numerous facts for Potts models with large q follow from the above. Let
d > 2and p = 1— e, and consider the g-state Potts model on L9 with inverse-
temperature 8. Let g belarge. When 8 < Bc(q) (respectively, 8 > Bc(Q)),
the number of distinct trandation-invariant Gibbs states is 1 (respectively, q).
When 8 = Bc(q), there are g + 1 distinct extremal trandation-invariant Gibbs
states, corresponding to the free measure and the * b-boundary-condition’ measure
forb € {1,2,...,q}, and every trandation-invariant Gibbs state is a convex
combination of these q + 1 states. When d > 3, there exist in addition an
infinity of non-tranglation-invariant Gibbs statesat thecritical point Sc(q). Further
discussion may be found in [65, 66, 68, 136, 224, 251, 254].

In preparation for the proofs of Theorems 7.33 and 7.34, we introduce an
extension of the polymer model of thelast section, in the context of thewired and
free contours of Section 7.3. For afinite subset E of E3, let

(7.37) ZE;®) =Y [[em

YCEyeX

be the partition function of a polymer model on E. The admissible families © of
polymerswill be either families of wired contours (lying in E \ deE) or families
of free contours (lying in E); in either case they are required to be pairwise
compatible. By astandard iterative argument, the sumin (7.37) may be restricted
to families " of pairwise externally-compatible contours, and (7.37) becomes

(7.38) ZE®=) [[vw
FcEyel

where

(7.39) W(y) = ®(y)Z(inty; ).

1050me progress has been made towards bounds on the value of Q(d). It isproved in [45] that
the 3-state Potts model has a discontinuous transition for large d, and in [46] that discontinuity
occurs when d = 3 for along-range Potts model with exponentially decaying interactions. See
[240] for related work when d = 2.
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Theletter 3 (respectively, I') will always denote afamily of pairwise compatible
contours (respectively, pairwise externally-compatible contours).

Let 8 € R. In either of the cases above, we define

(7.40) Z(E; @8 =) [[Tvi
I'cEyel

= Z ]_[ o) z(inty; ),

I'cEyell

and we say that this new model has parameters (8, ).

We shall consider a pair of such models. The first has parameters (Bw, ®w),
and its polymer families comprise pai rwise compatible wired contours; the second
has parameters (8;, ®¢) and it involvesfree contours. They are defined asfollows.
Let pe (0,1),q9 € [1,00),r = p/(1— p), and Bw, Br € [0, 00). The weight
functions ®y(y) = CI>{,SVW(7/), ds(y) = Cfo(y) are defined inductively on the size
of ¥ by:

(7.42)
oG () Z(inty; o4 = Wi (y) = 1) T Z0), y € Cu,

o () Z(inty; &) = W' (y) = e PPlg=MmrIZinty), y e er.

Thesefunctionsgiveriseto polymer modelswhich arerelated to thefreeand wired
random-cluster models, as described in the first part of the next theorem. They
have related pressure functions f(d)ﬁ,w), f(d)ff) given asin (7.24). The theorem
is stated for general d > 2, but the reader is advised to concentrate on the case
d=3.

(7.42) Theorem [224]. Letd > 2, p € (0,1),9 € [1, 00), andr = p/(1 — p).
For Bw, Br € [0, o) and a co-connected set E,

ZYE) =r/Flqz(E; o8, u).

(7.43) ‘
Z0(E) = qVe\EIZ(E; off, ).
Let
1
(7.44) T = ad logg — 5.

There exists Q = Q(d) such that the following hold when g > Q.

(8) Thereexist realsby, bs € [0, co) such that cI>\j"\,W and @?‘ are t-functionals
with T > ¢, with ¢ as in the hypothesis of ‘ Theorem' 7.27, and that the
pressure F(p, q) of (7.12) satisfies

1
F(p.q) = f(®2) +bw +logr = f(d>fbf)+bf+alogq- (7.45)

(©Springer-Verlag 2006



[7.5] Discontinuous phase transition for large q 185

(b) Thereexistsauniquevalue p = P(q) such that the values by, bs in part (a)

satisfy:
if p< P, thenby >0, bf =0,

ifp=p, thenby =0, by =0, (7.46)
if p> P, thenby =0, bf > 0.

Proof of Theorem 7.42. We follow the scheme of [224] which in turn makes use
of [218, 326]. For any given B, Bf € [0, 00), equations (7.41) may be combined
with (7.19)—(7.22) to obtain (7.43).

For fuw, B € [0,00), let Dy, = L, &f = ®f' be given by (7.41). Let
T = 1(q) be asin (7.44), and choose Q' such that 7(Q’) > c where c is the
constant in the hypothesis of ‘ Theorem’ 7.27. We assume henceforth that

(7.47) q> Q.
We define the T-functionals

(7.48) () = minf@lr (). eI,y e
(7.49) () = minfof (). eV}, yeey,
and let
(7.50)

bu=sUpBy Where By ={Buw>0: f(@p") + fu+logr < F(p. )},
br=supB: where Br ={f>0: f(®") + g +d tlogg < F(p,q}.
We make three observations concerning the definition of byy; similar reasoning
appliesto by. Firstly, sinceE\(,)\, < ®f,
ZYE) = 1F1Z(E: 3, 0) = rFIZ(E: B,
by (7.43). Applying ‘ Theorem’ 7.27 to the t-functional 5\%,
F(p.q) > logr + (@),

whence 0 € By. Secondly, by ‘Theorem’ 7.27 again, f (5\?\,) < e %7, whence
B ¢ By for large 8. Thethird observation is contained in the next lemma which
is based on the corresponding step of [218]. The lemmawill be used later also,
and its proof is deferred until that of Theorem 7.42 is otherwise complete.

(7.51) Lemma. Let a € (0, 00). There exists Q" = Q”(«) > Q’ such that the
following holds. If g > Q”, the functionsh(8,r) = f@\/,sv), f@f) have the
Lipschitz property: for 8, 8’ € [0, c0) andr, 1’ € (0, 00),

rar’

lh(g.r) — h(g".1")] Sa{lﬂ—ﬂ’H r—r '}.
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Assume henceforth that
(7.52) q>Q" =Q"(3).

By Lemma7.51, the pressure f(E\’?VW) (respectively, f(E{? ")) iscontinuousin By
(respectively, Br), and it follows by the prior observations that the suprema in
(7.50) are attained, and hence

_ — 1
(753)  F(p.Q)= (@) +bu+logr = (@) +br + 5 10gq.

By Lemma7.51 and the continuity in p of F(p, q), Theorem 4.58,

(7.54) by = bw(p) and by = bs(p) are continuousfunctionsof p € (0, 1).

Having chosenthevaluesb,, and by, we shall henceforth suppresstheir reference
in the notation for the weight functions @, ®f, ®y, ®f, and we prove next that

Dy (y) < e Tl € Cy,
(7.55) wly 14 w
di(y)<e Ml yec.

Thisimpliesin particular that ®,, = &, and &s = @5, and then (7.45) follows
from (7.53). We shall prove (7.55) by induction on |7|.

It is not difficult to see that (7.55) holds for yw € Cw with |7y < 1, and for
yf € Cswith 35| < 2. Thisistrivia inthelatter case sincethefreecontour y; with
smallest ||| has||ys]| = 2(2d — 1), and it is proved in the former case asfollows.
Let yw € Cw be such that |34| = 1, which is to say that y comprises a single
edge. By (7.41), dw(py) = (re®)~1. By (7.12), F(p, q) > d~1logq, and the
claim follows by (7.53) and the fact that f (®y) < 1, see‘ Theorem’ 7.27(a).

Letk > 1 and assumethat (7.55) holdsfor all y € Cw satisfying [yw| < k and
al y; € Cs satisfying [35] < k+ 1. Let yy beawired contour with |34y = k + 1.

Any contour y,, € Cy contributingto Z(int y; @) satisfies |%| < k. By the
induction hypothesis,

(7.56)  Z(intyw: Pw) = Z(inty: Pw)

where
o(E, ®) = |E|f(®) — log Z(E; @)

asin (7.25). Any contour y; € G5 contributing to Z (Jay; ©f) isasubset of 3, and
therefore satisfies || < k + 1. By theinduction hypothesis as above,

(7.57) Z(vw; D1) = Z(aw; 1)
= exp{[ywl f (®1) — o (. P1)}.
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By (7.41),

Z°)

— (bl LW
Pulrw) = (T : Bw)

e o v 2 (Vs Pf, bF)
— oy — 7wl |V )\ 7| 23 7W> =1 B
rem) f Z(int yw; dw) by (7.43)

< (r &Py~ 1Tl IV 7\ o 72 (Vs @)
Z(Int yw; Pw)

= exp| — 7l (l0gr + b — by — (@)
+ IV ) \ 0%l logd — lintyul f @) |
x exp{o (intyw, Pw) — o (7w, P1)} by (7.56)—(7.57).

We use (7.13)—7.14) and (7.53) to obtain that
(7.58) Dw(yw) < g~ 1M CD expf |y f (Bw) + o (intyw, Pw) — o (Fw, P}
By ‘ Theorem’ 7.27, f (®y) <€ %7 < 1, and
lo(E, ®w)| < [0E|e™%?", |o(E, Pr)| < [0E|e”
for co-connected sets E. By (7.58), (7.16), and (7.44),
(7.59) Du(yw) < g1/ DSl < gl

asrequired in the induction step.

We consider now a free contour y; with 5] = k + 2. By an elementary
geometric argument,

(7.60) Il = 2(2d - 1).

Arguing asin thewired case above, we obtain subject to the induction hypothesis
that

(7.62) ®r(yr) < q-q M@ explo(intyr, Br) — o (intyr, Dw) ),
by (7.15). By (7.17),

®¢(y) < q . q M/ @SNl
By (7.60) and thefact thatd > 2,

Iyl —2d = il
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whence
Dr(yp) < e 7l

and the induction proof of (7.55) is complete.

We turn now to part (b) of the theorem, and we prove next that, for any given
pe 01,

(7.62) min{by, b} = 0.

Suppose conversely that p € (0, 1) issuchthat by, b > 0. By (7.53) and Lemma
751 with @ = 1, thereexist Bw € (0, bw), B € (0, br), and e > 0 such that

. _ 1
(763)  F(p.q)—e= f(@L) + B+ logr = f(®ff)+ﬂf+alogq-

We use thisin place of (7.53) in the argument above, to obtain that 5\’,5\,W = cI>§VW
and 65\} = cl>ff. Equation (7.63) implies that

1
(7.64) F(p,q) > F(O5") + Bu +logr = f(®F) + g + 7 loga.
However, by (7.43),
ZYE) =rIFlqz(E; ofY, pu) < reP)Elqz(E; of),

whence
F(p,q) < logr + Bw + f(®4")

in contradiction of (7.64). Therefore, (7.62) holds.

Next we show that there exists a unique p such that by (p) = bf(p) = 0. The
proof is deferred until later in the section.

(7.65) Lemma. There exists Q7 > Q” such that the following holds. For
g > Q”, thereisa unique p’ € (0, 1) such that by(p’) = bs(p’) = 0. The
ratior’ = p’/(1 — p’) satisfies

(7.66) r' = g% exp{ f (®P) — f(@9)].

Letq> Q= Q" and p = p,where Q” and p’ are as given in this lemma.
By (7.45) and the fact that F(p,q) — d~tlogq as p | 0, f(®P) — 0 and
bi(p) — Oasp | 0. Smilarly, by(p) — oo as p | 0. By asimilar argument for
p closeto 1, by(p) — Oand bs(p) — co as p 1 1. Statement (7.46) follows by
Lemma 7.65 and the continuity of by (p) and bs(p), (7.54). This completes the
proof of Theorem 7.42. O

Proof of Lemma 7.51. We give the proof in the wired case, the other case being
similar. Write ® = <I>5}V and let E be co-connected. For any contour y C E and
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any family ¥ of compatiblecontoursin E, wewriteX | yify ¢ X and Z U {y}
is a compatible family of contours. Since ®(y) is a smooth function of 8, @ is
piecewise-differentiablein 8 (see (7.48)).

Leta € (0, 00). We provefirst that the function

ZE(B.1) = l—;IogZ(E@’fv)

satisfies
(7.67) 1z 1) —2EB. D] <alp-B1, BB €l0,00),

for sufficiently largeq, uniformly inr and E. Wefixr € (0, oo) and shall suppress
referencetor for the moment. If zE is differentiableat g then, by (7.37),

— - D (
a5 = |E|Z(E Py YZE ()

where g’ denotes the derivative of a function g with respect to 8, and g(X) =
]_[yEZ g(y). Therefore, for any given edge e,

(7.69) ‘d E = Z| y ZHEN Y ®)
T | e Z(E; 0)
1 ()]
< 9
y%;y [y
where . . .
ZIE\y:®) = Y = B(T)<Z(E; D).
YCE:XLly
Lety € Cy. Weclaim that
(7.69) ' ()] < 27[®(y)

whenever the derivative exists. By (7.48), either the left side equals 0, or it equals
|®’(y)|, and we may assume that the latter holds. Write Y (y) = Z(inty; ®).
The function W = W) satisfies W (y) = ®(y)Y by (7.41), and also

(7.70) V'(y)=—7I¥(y) = =712 Y ().

Hence,

(7.71) d'(y) =

V(y) — <I>(J/)%(J/) ()<7 %(V))
Yy) Y /)
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By an argument similar to that above,

V) = — Z v =Y w(r)Z‘i((j))

chty r'cinty vel
=- Z Tlw (),
rcinty
whence
(7.72) 1Y I < 71% ().

Claim (7.69) followsfrom (7.71)—(7.72).
Returning to (7.68), by (7.69),

<y 2mq>( )< Y 2|7’| el

(7.73) ‘
yieey yieey

since ® isa r-functional. The Lipschitz inequality (7.67) follows by integration
for T = 7(q) sufficiently large.
More or less the same argument may be used as follows to obtain that
r'|

(7.74) zEB, 1) — 5B, 1| < a|: ;r/ . 11’ e(0,00),

for large g, uniformly in 8 and E. We now denote by g’ the derivative of a
function g(r) with respect tor . Equation (7.68) remainsvalid in this new setting.
Inequality (7.69) becomes

-, 2
@ (p)] < r—I7|<I>(y)

and (7.73) is replaced by

27— 271 _
< WFe) < sy
=3 ry PO = 2 ry|

y.ecy y.ecy

d e

(7.75) o

The right side may be made small by choosing q large, and (7.74) follows by
integration.

The claim of the lemma is a consequence of (7.67) and (7.74), on using the
triangle inequality and passing to the limit as E 4 E9. O

Proof of Lemma 7.65. Let p € (0,1) be such that by = bf = 0, and let
r =p/(1— p). By (7.45),r isaroot of the equation h1(r) = ha(r) where

hi(r) = f(®%) +logr, ha(r) = f(cl>?)+ logq,
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v A
y = logr

EIo
q gq

-

Figure7.3. Thefunctiony = logr is plotted against r, and it intersects the constant function
y =d1logq at the point r = . The functions hy and h, are small perturbations of the two
solid lines, and have Lipschitz constants which can be made as small as desired by a suitable
large choice of q. Therefore, when q is large, there exists a unique intersection of hy and hy,
and this lies within the region delineated by dashed lines.

and thus (7.66) holds. Let fy(r) = f(58v), fr(r) = f@?),?: q%/4, and note
the two following facts.
(I) Since fy and f; are the pressure functions of t-functionalswith ¢ > ¢, we
have by ‘ Theorem’ 7.27 that | fy |, | fi] < e ©17.
(1) By (7.52) and Lemma7.51with 8 = O, f,y and f; are Lipschitz-continuous
on a neighbourhood of T, with Lipschitz constants which may be made as
small as desired by a suitable large choice of q.
From these factsit will follow (for sufficiently large q) that any rootsof hy(r) =
ha(r) lie near T, and indeed there must be a unique such root. Some readers
will accept this conclusion after looking at Figure 7.3, those wishing to check the
details may read on.
Letrq, ro beroots of hi(r) = ho(r) with0 < r; < r2 < co. Withcg asin
(1), we choose Q1 > Q” such that e 17 < %forq > Q1. Letg > Q1. Then
ri,rz € [f —a,t + a] where

(7.76) a = [exp(2e"") — 1]f" < 4e T < I
Now, 8(r) = f¢(r) — fw(r) satisfies
(7.77) 8(r2) —8(r1) = logro — logry

o —1r1 2 ro—rp
>
r+a 3 r
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By Lemma7.51, there exists Q”” > Q1 such that, if g > Q"

r—r’ , r—r’
| | [ (r) — fr(r)] < | |

fw(@) — fw(r)] < 87 _a)’ 87 _a)’

forr,r’ > T — a. Hence, by (7.76),

o —rq 1 ro—ry
8(r2) —8(ry)| < <= .
[8(r2) (1)|_4(?—a)_2 =
This contradicts (7.77), whence such distinct r1, ro do not exist. O

Proof of Theorem 7.33. Let p € (0,1) andq > Q where Q, T = t(q), bw =
bw(p, q), bf = bs(p, q), and p = P(q) are given asin Theorem 7.42. Let A be
abox of LY, and let ¢} (respectively, $2) be the wired random-cluster measure
onE, generated by the partition function Z1(E ) of (7.10) (respectively, the free
measure generated by the partition function Z%(E ) of (7.11)).

Consider first the wired measure ¢11\. Asin (7.21), there exists a family of
maximal closed wired contoursT” of E, (maximal in the sense of the partial order
y1 < r2if ¥, € ¥») and, by (7.40)«7.41), T haslaw

K (D) = Tl g bw ()

Z(A; O, bw)

Let p > P, sothat by = 0. Then KRV:'W =« ,, isthelaw of thefamily of maximal
contoursin the wired contour model on A with weight function @J,.
Letx,y € A, and consider the event

FAX,Y) ={X <y, X< 0A}.

If FA (X, y) occurs, then X, y € Vint, for some maximal closed wired contour y .
This event hasthe same probability astheeventthat X, y € Vint,, for some contour
v of the wired contour model with weight function ®3,. Therefore,

(7.78) Px(FA(X, ¥)) < k3 w(X, Y € Vin, for some contour v)

< Y W

VX, Y€Vinty

< Y e,

VX, Y€Vinty
by Theorem 7.32 and the fact that ®9, isar-functional. The number of such wired
contours v with ||v|] = n grows at most exponentially in n. The leading term in
the above series arises from the contour v having smallest ||v||, and such v satisfies
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vl = b(1+ |x — y|) for some absolute constant b > 0. We may therefore find
absolute constants Q" > Q and a > 0 such that, forq > Q/,

(7.79) $a(Fa(x,y)) < e @yl
Takex = yin (7.79), and let A 1 Z9 to obtain by Proposition 5.11 that
$pq(X s> 00) <1
whence p > pe(q). It followsthat
(7.80) P> pc(@).
Consider nextthefreemeasureqﬁg. Let p < P, sothatb; = 0. By anadaptation

of the argument above, there exists Q” > Q" and k > 0 such that, for g > Q”,
x,y € Z9, and al large A,

(7.81) PR (x < y) < e kP,
By Proposition 5.12 applied to ¢ ,
(7.82) $pqx < y) = lim g2 (x < y)
Atzd
< e krix=yl, x,y e z%.

Hence p < pc(q), and so

(7.83) P < pc(@).

By (7.80) and (7.83), p = pc(q). By (7.82), there is exponential decay of con-
nectivity!® for p < pc(q), and a non-vanishing mass gap.

Parts (b) and (d) of the theorem have been proved for g > Q”. Part (b) implies
that d)?)c(q),q #+ d’rl)c(q),q’ and hence (@) via Theorem 4.63. The uniqueness of
random-cluster measures holds generally when p < pc(q), Theorem 5.33. The
proof of uniqueness when p > pc(q) has much in common with the proofs of
Proposition 5.30 and Theorem 11.40, and so we present a sketch only.

Letq > Q"and p € (pc(q), 1). Weshall showthath'(p, q) = ¢} 4(eis open)
satisfies

(7.84) h'(p—e. @ thi(pa)  aselO,
and the claim will follow by Proposition 4.28(b) and Theorem 4.63.

L The related issue of ‘restricted complete analyticity’ is considered in [110] for the case of
two dimensions.
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Lete besuchthat pe(q) < p—e < p,andlety € (0, 1). Writegh o = ¢3¢

where Ap = [—-n,n]9. Forn > %’m > 2, let Emn be the event that, for every
X € 0Am, if v = vy iIsamaximal closed wired contour of Ap with X € Vint,, then
v C X+ Epp,- ASin(7.78)7.79), thereexists y = y(q) > 0 such that

bhpc(Emn) = 1— [0Amle"™,
and we choose m = m(q) > 8 such that
(7.85) Prpc(Emn)>1—n,  n>3m

Let z denote the vertex (1, 0,0, ...,0). A cutset o of A isdefined to bea
subset of Am\ {0, z} suchthat: every pathfromeither O or zto d Am passesthrough
at least one vertex in o, and o isminimal with this property. For any cutset o, we
write int(o) for the set of vertices reachable from either 0 and z along paths not
intersecting o, and out(c) = zd \ int(o). Forn > %m and a cutset o, we write
‘c = dAninw’ if every vertex in o is connected to d An by an w-open path
of out(o). We shall see below that, for w € Em n, there exists a (random) cutset
¥ =3%(w) € Am\ Amz suchthat ¥ = dAp inw.

Lete = (0,2) andn > 3m. We couple the measures ¢ p_e and ¢p o in
such a way that the first lies beneath the second, and we do this by a sequential
examination of the (paired) states of edgesin An. We will follow the recipe of
the proof of Theorem 3.45 (see also Proposition 5.30), but subject to a special
ordering of the edges. The outcome will be a pair wo, w1 € Q}\n such that: wo
has law ¢} p_e» @1 has law ¢%’p, and wp < wi. First, we determine the states
wo(e), w1(e) of edgese with both endverticesin Ap \ Am—1, using some arbitrary
ordering of these edges. If 0Am = 9An in wp, weset ¥ = 9Ay, and we
complete the construction of wp and w; according to an arbitrary ordering of the
remaining edgesin Am.

Suppose that dAym == dAn in wp. Let A be the set of edgesin 9 A, that
areclosed in wp. If A = @, we sample the states of the remaining edges of Ay
in an arbitrary order as above. Suppose A # @. Pick f € A, and sample the
states of edgesin the (d — 2)-connected closed cluster F = Fi (wp) of f inthe
lower configuration wg. When this has been done for every f € A, we complete
the construction of wg and w1 according to an arbitrary ordering of the remaining
edgesin An.

In examining the statesof edgesin Fy wewill discover aset A (Fs) of edges, not
belongingto Fs but (d — 2)-connectedto Fs, such that wo(g) = 1forg € A(Fs).
Let Ay ¢ bethe set of all vertices v € Ap lying in the infinite component of
(29, B9\ F¢) and such that thereexists w € Ap with (v, w) € A(Ff) U Ft. Let
Ae ¢ bethe set of edges of AF¢ joining pairs of verticesin Ay, . By Theorem
7.6, thegraph (Ay. , Ae f) is connected.

Suppose wp € Em,n. By theabove, d Am U {{Usca Av, 1} containsa (random)
cutset ¥ = X (wg) suchthat: ¥ = 9dAn in wo and, conditional on ¥ and the
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states of edges of out(X), the coupled conditional measures of ¢ , . and ¢7
on the remaining edges of ~ U int(X) are the appropriate wired measures.

Therefore, hn(p) = ¢ ,(Je) Satisfies

ha(p) —hn(p—€) < n+ Y|t 1(Je) — ¢ 5 (o) | p_o (T =0)
oeC
}7

< n+max{|g] p(Je) = @ c(Je)
where € isthe set of all cutsetsof A and ¢>§, D denotesthe wired random-cluster
measure on o U int(o’). Since m isfixed, € is bounded, and (7.84) follows on
lettingn — oo, € | 0,and n | Oin that order. 0

Proof of Theorem7.34. Letq belarge. Then pc(q) =r’/(1+r’) wherer’isgiven
in Lemma 7.65 and satisfies (7.66). Let p = pc(q). By (7.44) and ‘ Theorem’
7.27, £(®P), (@) — 0asq — oo, and thereforer’ ~ g¥/9. We sketch a
derivation of theerror term O(q~%/9). Therateat which f () — 0(respectively,
f (@) — 0) is determined by the value ®2(yr) (respectively, @2, (1)) on the
smallest free contour y; (respectively, smallest wired contour j4,). The smallest
free contour is the external edge-boundary y; of asingle edge, and it iseasily seen
from (7.41) that ®9(y1) = r'q~t ~ g~1+1/9. The shortest wired contour y is
asingle edge, and ®%,(y) = 1/r’ ~ q~ 4. By (7.24), asq — o0,

f(@0) =0 YY), f(@f) =0 D,

and the claim follows by (7.66). O

7.6 Dobrushin interfaces

Until now in this chapter we have studied the critical random-cluster model for
large g. We turn now to the model with g € [1, co) and with large p, and we
prove the existence of so-called Dobrushin interfaces.

Consider for illustration the Ising model on Z2 with ‘inverse-temperature’
and zero external-field. Thereis a critical value B; marking the point at which
long-range correlations cease to decay to zero. As j increases to oo, pairs of
vertices have an increasing propensity to acquire the same state, either both +
or both —. Suppose we are working on a large cube A = [—L, L]3, to the
boundary of which we give a so-called ‘ Dobrushin boundary condition’; that is,
the upper boundary 3t A = {x € dA| : x3 > 0} is alocated the spin +, and
the lower boundary 0~ A = {X € dAL : x3 < O} receives spin —. Thereisa
competition between the + spins and the — spins. There is an ‘upper’ domain
of + spinscontaining 9t A, and a‘lower’ domain of — spinscontainingd~ Ay,
and these domains are separated by a (random) interface A = A| . Itisafamous
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result of Dobrushin, [103], that, for large g inthelimitas L — oo, A deviates
only locally from the horizontal plane through the centre of A.. Thisimpliesin
particular that there exist non-trand ation-invariant Gi bbs measures for the three-
dimensional Ising model with large 8. The argument is valid in all dimensions
of three or more, but not in two dimensions, for which case the interface may be
thought of as aline subject to Gaussian fluctuations (see [127, 137, 187]).

Dobrushin’s proof was the starting point for the study of interfacesin spin sys-
tems. His conclusions may be reformulated and generalized in the context of the
random-cluster model in three or more dimensionswith g € [1, co). Thisgener-
alization of Dobrushin’stheorem is achieved by defining afamily of conditioned
random-cluster measures, and by showing the stiffness of the ensuing interface.
It isastriking fact that the conclusions hold even for the percolation model.

When cast inthe more general setting of the random-cluster model onabox A,
the correct interpretation of the boundary conditionis asfollows. The verticeson
the upper (respectively, lower) hemisphere of A are wired together into a single
composite vertex labelled 9T A (respectively, 3~ A). Let D be the event that no
open path of A existsjoining 3~ A to d+ A, and let 51\’ p,q e the random-cluster
measure on A with the above boundary condition and conditioned on the event
D. Itisageometrical fact that, under 51\’ p,q» there exists an interface separating
an upper region of A containing 9™ A and a lower region containing 9~ A, and
each of these regionsis in the wired phase. Dobrushin’s theorem amounts to the
statement that, when g = 2 and p is sufficiently large, thisinterface deviates only
locally from the horizontal planethrough the equator of A. It wasprovedin [139]
that the same conclusion is valid for al q € [1, co) and al sufficiently large p,
and this result is presented in the remainder of this chapter. The geometry of the
interfaces for the random-cluster model is notably different from that of a spin
model since the configurations are indexed by edges rather than by vertices, and
this leads to difficulties not encountered in the Ising model.

Although such arguments are valid whenever d > 3, we shall assume for
simplicity that d = 3. It is striking that the results are valid for high-density
percolation on Z% with d > 3, being the random-cluster model with q = 1. A
corresponding question for supercritical percolation in two dimensions has been
studied in depth in [77], where it is shown effectively that the (one-dimensional)
interface convergeswhen re-scaled to a Brownian bridge.

We have spoken above of interfaceswhich ‘ deviate only locally’ from aplane,
an expression made more rigorous in Section 7.11 where the principal Theorem
7.142 is presented. We include at Theorem 7.87 a weaker version of the main
result which does not make use of the notation developed in later sections.

Theresultsareproved under theassumptionthat g € [1, co) and pissufficiently
large. Itisamajor open question to determinewhether or not such resultsarevalid
under theweaker assumption that pexceedsthecritical value pc(q) of therandom-
cluster model. The answer may be expected to depend on the value of g and the
number d of dimensions. Since the percolation measure ¢, . p,1 IS aconditioned
product measure, it may be possible to gain insight into the existence or not of
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such a‘rougheningtransition’ by concentrating on the special case of percolation.
The two core problems here are the following. Let p(q) be the infimum of all
values of p at which the aboveinterface islocalized (arigorous interpretation of
this definition is evident after reading Theorems 7.87 and 7.142).
I. Isit the casethat the interfaceislocalized for al p > P(q)?
Il. For what g and d does strict inequality of critical points hold in the sense
that pe(q) < P(a)?

In the case of the Ising model (q = 2), itisgenerally believed that pc(2) < P(2)
if andonly if d = 3.

A certain amount of notation and preliminary work isrequired beforethe main
theoremsmay be stated (in Section 7.11). Inorder to whet appetites, apreliminary
result isincluded towards the end of the current section. Sections 7.7—7.8 contain
some preliminary facts about random-cluster measures and i nterfaces. A detailed
geometrical analysis of interfaces is included in Section 7.9 along the lines of
Dobrushin’s classification of ‘walls’ and ‘ceilings’. This is followed in Section
7.10 by an exponential bound for the probability of finding local perturbations of
aflat interface.

The upper and lower boundaries of aset A of vertices are defined as

ITA={xeA:x3>0, x~zforsomeze A},

3 A={xeA:x3<0, x~zforsomeze A},

where A = 79\ A. For positive integers L, M, let A v denote the box
[—L, L]? x [-M, M], and write E|_\ for the set of edges having at least one
endvertex in AL m. We write AL = AL L, the cube of side-length 2L, and
¥ =[-L, L]2 x Z, aninfinitecylinder. Theequator of thebox Am, N isdefined
to bethecircuit of AL m \ AL—1,m comprising all vertices x with xz = % witha
similar definition for the cylinder ¥\ .

We shall be particularly concerned with aboundary condition D corresponding
to the mixed ‘ Dobrushin boundary’ of [103]. Let D € 2 be given by
(7.86)

D(e) = { 0 ife=(x,y)forsomex = (x1, X2, 0) and y = (X1, X2, 1),

1 otherwise.

See Figure 7.4. Let QE’M be the set of configurationsw € Q2 such that w(f) =
D(f)if f ¢ EL m, and let 4| v be the event that there exists no open path
connecting avertex of 3T A m toavertex of 3~ A m. The probability measure
of current interest is the random-cluster measure ¢RM,N,p,q conditioned on the

event 4w, which we denote by @D\L Mo

Many of the calculations concern the box A m and the measure ERLM pa
We choose however to express our conclusions in terms of the infinite cylinder

L = ALoc andtheweak liMit @ p.q = iMoo Bay . pa-
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Figure7.4. Thebox A m. Theheavy black edges are those given by the boundary condition
D, and thereis atwo-dimensional sketch of the interface A.

It is shown in Lemma 7.98 that, on the event 4| m N SZ'E v there exists an
interface spanning the equator of A m. Much of the work of the subsequent
sections is devoted to understanding the geometry of such an interface. We shall
seein Theorem 7.142 that, inthelimitas M — oo and for sufficiently large p, this
interface deviates, ¢ p.q-dmost-surely, only locally from the flat plane through
the equator of | . Indeed, the spatial density of such deviations approaches zero
as p approaches 1. The following theorem is an example of an application of the
forthcoming Theorem 7.142.

(7.87) Theorem [139]. Let g € [1, 00). For € > 0, thereexists p = P(e) < 1
such that, if p > P,

aL,p,q(X <0 X)) >1—c¢,

(7.88) _
(bL,p,q(X +(0,0,1) »3TZ) >1—c¢,
forall L > 1andevery x = (X1, x2, 0) € 2.

No proof is known of the weak convergence of EL, p.q 8 L — oo, but, by the
usual compactness argument!2, the sequence must possess weak limits. It is a

125ee the proof of Theorem 4.17(a).
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consequence of Theorems 7.87 and 7.142 that, for sufficiently large p, any such
wesk limit is non-translation-invariant.

(7.89) Theorem [139]. Let g € [1,00) and p > P(3), where P(3) is given
in Theorem 7.87. The family {EL,p,q L =1,2,...} possesses at least one
non-trang ation-invariant weak limit.

It is shown in addition at Theorem 7.144 that there exists a geometric bound,
uniformly in L, on thetail of the displacement of the interface from theflat plane.

By making use of the relationship between random-cluster models and Potts
models (see Sections 1.4 and 4.6), one obtains a generalization of the theorem of
Dobrushin [103] to include percolation and Potts models.

The measure ¢ . p.q 1S not arandom-cluster measure in the sense of Chapter
3, even though it corresponds to a Gibbs measurewhen q € {2,3,...}. It may
instead be termed a ‘conditioned’ random-cluster measure, and such measures
will be encountered again in Chapter 11.

The strategy of the proofsisto follow the milestones of the paper of Dobrushin
[103]. Although Dobrushin’s work is a helpful indicator of the overall route to
the results, a considerable amount of extrawork is necessary in the context of the
random-cluster model, much of which arises from the fact that the geometry of
interfaces is different for the random-cluster model from that for spin systems.
Heavy use is made in the remainder of this chapter of the material in [139].

7.7 Probabilistic and geometric preliminaries

We shall require two general facts about random-cluster measures, and we state
these next. Thefirst is a formulafor the partition function in terms of the edge
densities. For E C E3, let Vg denote the set of endvertices of membersof E. As
usual, Je denotes the event that the edge e is open, and Zé(p, q) isgiven asin
(4.12). Let {é be the configuration obtained from ¢ € Q by declaring every edge
in E to be open, and k(¢Z, E) the number of componentsof ¢Z that intersect Ve.

(7.90) Lemma. Let E beafinite subset of E3, and G = (Vg, E). Then
logZ& (p, a) = k(ZE, E)logq + Y g6 pq®, (€,

ecE
where
1r =% . .(Je)
; _ [ | =%
(7.91) ge,p,q(e>—/p [ ra—r ]dr'

Proof. Asin the proofs of Theorems 3.73 and 4.58,

d s _ ¢é’r’q(‘]e) —r
I logZ&(r, @) = Zir(l—r)

ecE
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Thiswe integrate from p to 1, noting that log Zé(l, q) = k({é, E)logq. O
Letg € [1, o0). By Theorem 3.1,

¢
Tadon - B rqJe) =T

By substitution into (7.91),

1
(19 0=g5,q@= [ @-Dar=a-pa-1. eck
p

uniformly in E and ¢. The aboveinequalities are reversed if g < 1.

Let An = Ann and write An(e) = e+ Ap for the set of trandates of the
endvertices of the edge e by vectorsin Ap.

(7.93) Lemma. Let q € [1, 00). There exists p* = p*(q) < 1 and a constant
« > 0 such that the following holds. Let E; and E; befinite edge-sets of 1.3 such
that e € E1 N Ep, and let n > 1 be such that E; N Apn(e) = E> N An(e). If

P> p

|9c1;1, p.q(® — 9(152, 0q(®] <€,
where Gj = (Vg, Ej).
Proof. Let Ke betheevent that the endverticesof the edge e arejoined by an open
path of E4 \ {e}. By (3.3),

=8, qJe)  (@—DA-¢§, ((Ke)
raa—ry r+q@-r)

’

whence
(7.94)  [95,0.4(® — 9G,.p.q(®)]

1
-1
= fp mw}?;l,r,q(Ke) - ¢(132,r,q(Ke)| dr.

Let n > 1. We pursue the method of proof of Theorem 5.33(b), and shall use the
notation therein. Let V be the set of vertices that are incident in 12 to edges of
both Ap(e) and its complement. We define B to be the union of V together with
al vertices xg € 73 for which there exists a path Xo, X1, . .., Xm Of £ such that
X0, X1, ..., Xm—1 ¢ V, Xm € V, and Xo, X1, ..., Xm—1 are black. Let W, be the
event that thereexistsno x € B suchthat ||x — z|| < 10, say, where z isthe centre
of e. By (5.36)—5.37) together with estimates at the beginning of the proof of
[211, Lemma (2.24)],

(7.95) P2 @r.gWn) = L—c'(1— )™,
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where ¢ and e are absolute positive constants, and p = r /[r 4+ q(1 —r)]. Since
W, isanincreasing event,

(7.96) $&1rqWh) = 1—c"(L— ).
Let H = E1 N Ap(e). Asinthe proof of Theorem 5.33, and by coupling,

0 < B 1 q(Ke) = 96,1 q(Ke) < 1— @8, q(Wh).
The claim follows by (7.94), (7.96), and the triangle inequality. O

As explained in Sections 7.1-7.2, the dual of the random-cluster model on L3
is a certain probability measure associated with the plaguettes of the dual lattice
]Lg. The straight line-segment joining the vertices of an edge e = (X, y) passes
through the middle of exactly one plaguette, denoted by h(e), which we call the
dual plaguette of e. We declare this plaguette open (respectively, closed) if e is
closed (respectively, open), see (7.9). The plaquette h(e) is called horizontal if
y =X+ (0, 0, £1), and vertical otherwise.

Theregular interface of L3 is the set 8o of plaguettes given by

80 ={h e H:h=h((x,y)) for somex = (x1, X2, 0) and y = (X1, X2, 1)}.

The interface A(w) of a configuration w € 4 m N QE’M is defined to be the
maximal 1-connected set of open plaguettes containing the plaquettes in the set
3o\ {h(e) : e e EL m}. Theset of al interfacesis

(7.97) Dm={AW:wednnal )

It is tempting to think of an interface as part of a deformed plane. Interfaces
may however have more complex geometry involving cavities and attachments,
see Figure 7.4. The following proposition confirms that the interfacesin Dy m
separate the top of A m fromits bottom.

(7.98) Lemma. The event .m N QE’M comprises those configurations w €
QE’M for which thereexists § € Dy, m satisfying: w(e) = 0 whenever h(e) € 3.

For § € D m, we define its extended interface (or closure) § to be the set
(7.99) 8§ =38U{h € H: his1-connected to some member of §}.

See (7.4). 1t will be useful to introduce the ‘maximal’ (denoted by @s) and ‘ min-
imal’ (denoted by w;) configurationsin Q'B’ v that are compatible with §:

D(e) ife¢ ELwm,
ws® =11 ifeec ELMNG\9),
0 otherwise.

0 ifees,

(7.100) ws(e) = { 1 otherwise,
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Proof of Lemma 7.98. If w € 4L m N QE’M, then w(e) = 0 whenever h(e) €
A(w). Suppose conversely that 8 € Dy v, and let w € QP , setisfy w(e) = 0
whenever h(e) € §. Since w < ws, it suffices to show that ws € 4| m. Since
8 € DLwm, thereexists £ € ILm N QP such that § = A(§). Note that
& < ws. Suppose for the sake of obtaining a contradiction that @s ¢ {1 wm,
and think of @s as being obtained from & by declaring, in turn, a certain sequence
e, e,...,gwthé(g)=0,i =1,2,...,r,tobeopen. Leték be obtained from
£ by n(€¥) = n(&) U{er, e, ..., &}. By assumption, there exists K such that
X e g mbutektt ¢ 4w, Fory e Q'B’M, let J(y) denote the set of edges
e having endverticesin A m, with ¥ (e) = 1, and both of whose endvertices are
attainable from d* A v by open paths of . We apply Theorem 7.3 to the finite
connected graph induced by J(£X) to find that there exists a splitting set Q of
plaguettes such that: 8t A v € ins([Q]), - AL.m C out([Q]), and £K (e) =0
whenever e € EL v and h(e) € Q. It must be the case that h(exk+1) € Q,
since £K*1 ¢ 4| u. By the 1-connectedness of Q, there exists a sequence
f1 = ex 41, fo, fs3, ..., fi of edgessuch that:

() h(fj) e Qfordli,

(i) fi e Egmfori =1,2,...,t =1, f = h({(x,x — (0,0, 1))) for some

X = (X1,X2,1) € 8+A|_,M, and

(i) h(fi) ~h(fip0) fori =1,2,...,t — 1.

It followsthat h(fij) € § fori = 1,2,...,t. Inparticular, h(ekx+1) € § and so
ws(ex+1) = 0, acontradiction. Thereforews € 4 m asclaimed. ]

7.8 Thelaw of the interface

. . . -D
For conciseness of notation, we abbreviate ¢RL,M,p,q to ¢.m, and PAL w.pq 1O

@ m- Lets € DL m. Thebetter to study ¢ m(8) = ¢, m(A = §), we develop
next an expression for this probability. Consider the connected components of the
graph (23, n(@s)), and denote these components by (S}, U}), i = 1,2, ..., ks,
where ks = k(@s). Notethat U} is empty whenever S, isasingleton. Let W(8)
be the edge-set E| w1 \ {e € E3: h(e) € §).

Letw € 1M NQP ), besuchthat A(w) = 8, so that

(7.101) w(e) = { 0 ith®es,

1 ifh(e)es\s.
Let D be the set of edges with both endverticesin A2 m+2 that either are dual
to plaquettesin § or join a vertex of A| 11, m+1 to avertex of dA|L 12 m4+2. We
apply Theorem 7.5 to the set D, and deduce that there are exactly ks components
of the graph (Z3, n(w)) having avertex in V (3).
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We have that

1 -
7.102 §) = —— pld\él(1 — p)lél
(7.102) oL m(S) Z(EL,M)p 1-p)

Z l_[ pw(e)(l )l w(e)} k(w)

weaP y: L eEWE)
A(w) 5
Z'®) 81 gks—1
Z(ELw) Pl —p) g™,
where Z(EL m) = ZALM(p q) and 21(8) = z1L (8)(p d). In this expression
and later, for H € H, |H| is the cardinality of theset H N {h(e) : e € EL m}.
The term gk~ arises since the application of ‘1’ boundary conditions to § has
the effect of uniting the boundaries of the cavities of §, whereby the number of
clusters diminishes by ks — 1.

For x € 73, wedenote by 7y : Z3 — Z2 thetrandate given by 74 (y) = X + V.
Thetranslate 7 acts on edgesand subgraphsof L2 in the natural way, see Section
4.3. For sets A, B of edges or vertices of L3, we write A ~ B if B = 1A for
some x € Z3. Notethat two edgese, f satisfy {e} ~ {f} if and only if they are
parallel, in which case we writee >~ f.

We shall exploit properties of the partition functions Z(-) in order to rewrite
(7.102). Fori =1,2,let Lj, Mj > 0,8 € D1, m,, andg € E(6i) N E; v, and

(7.103) G(ey, 81, ELqmy; €2, 82, EL,my)
_ sup{L CALE)NEL v > AL(e2) NEL, M, }
“and Ap(e1) NE(81) =~ AL(e2) N E(S2)
where A| (6) = e+ A asbefore. Let ZY(EL ) = AL 4 (P Q)

(7.104) Lemma. LetL,M > 1and§ € D m. We may write ¢ m(8) as
(7.105)

$L M) = %p'”'(l p)‘sqk“exp< > fp(e,a,L,M))
L.M ecE(5)NEL M

for functions fp(e, 8, L, M) with the following properties. For g < [1, o0), there
exist p* < 1and constantsCy, Cz, ¥ > Osuchthat, if p > p*,

(7.106) | fo(e. 8, L, M)| < Cy,

7.107
( ) €1 €41, & €, €1 ~ €,

where G = G(ey, 81, EL,my; €2, 82, EL,,Mm,). Inequalities (7.106) and (7.107)
are valid for all relevant values of their arguments.

(©Springer-Verlag 2006



204 Duality in Higher Dimensions [7.8]

Proof. By Lemma7.90,
(7.108)

yAIC)
|og(¢>= Z [9(f, W) —g(f, ELm)] — Z g(f, EL.m),

ZY(E
(ELm) feW(s) feE®)

where g(f, D) = g%,qpqq(f). The summations may be expressed as sums over

edges e € E(8) in the following way. The set E3 may be ordered according to
the lexicographic ordering of the centresof edges. Let f € E_ m andd € D m.
Amongst al edgesin E(8) N EL m that are closest to f (in the sense that their
centresareclosestinthe L°° norm), let v( f, §) betheearliest edgein thisordering.
By (7.108),

Z1()
(7.109) log (17> = Z fo(e, 8, L, M)
ZZEBLM/ e GmELm
where
(7.110)
foe 8, L,M) = Y [g(f, W) —g(f. ELm]— Y 9(f, ELm).
feW(s): feEQ):
v(f,5)=e v(f,8)=e

Thisimplies (7.105) via (7.102).
It remainsto show (7.106)—(7.107). Lete = v(f,8) and setr = |, f||. Then
Ar_»(f) doesnot intersect §, implying by Lemma 7.93 that

(7.111) lg(f, W(8)) — g(f, EL w)| < e7@llefli+2e p> p*,

where p* and « are given asin that lemma. Secondly, there exists an absolute
constant K such that, for all e and 8, the number of edges f € E(§) withe =
v(f, §) isno greater than K. Therefore, by (7.92),

Ifo(e, 8, L, M) < Y e elefit2 L Ka—p-1
fer3

asrequired for (7.106).

Finally, we show (7.107) for p > p* and appropriate Cp, y. Let e € 61,
& € §2, and let G be given by (7.103); we may suppose that G > 9. By
assumption, e; >~ ep, whence there exists atrandate ¢ of L3 such that re; = ev.
For f € W(81) N Ag,3(€1),

(7.112) t[AG/s(f) n EL1,M1] = AG/3(‘L'f) N EL, My,
(7.113) t[Ag/3(f)Né1] = Agya(rf) Ny,
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and
(7.114)  for|If, el < 3G, w(f,81) = e if andonlyif v(zf,82) = e

By the definition (7.110) of the functions fp,

(7.115)
| fper, 81, L1, M1) — fp(e2, 82, L2, M2)|
- )3 {lo(f. W(s1) — g(rf, W(82))|
+9(f, ELymy) — 9 f, ELmy)| )

feW(S1)NAG/3(e1):
v(f,81)=e1

+ > |t W) — g(f, Eymy)|

feW(S1)\Ag/3(€1):
v(f,81)=e1

+ > et W) — g(f, EL,mp)| + S,

feW(d2)\Ag/3(€2):
v(f,82)=e

where

S=| Y o(f.Eium)— Y 9(f,ELamy)l-

feE(5y): feE(5)):
v(f,81)=6 v(f,82)=€

By (7.112)—(7.113) and Lemma7.93, thefirst summationin (7.115) is bounded

above by ZG3e_%°‘G. By the definition of the v(f, §;), the second and third
summations are bounded above, respectively, by

Z e*OlH f.all+2a C/ef%aGJrZa

f¢AG/3(a)

for some C’ < oo, asin(7.111). By (7.114),

S= Z g(fs EL]_,M]_) - g(Tf, ELZyMZ) < Ke*%OtG,

feE(1):
v(f.8)=e

and (7.107) follows for an appropriate choice of y . O

In the second part of this section, we consider measures and interfaces for the
infinite cylinder £ = A| o = [—L, L]? x Z. Notefirst by stochastic ordering
that, if g € [1, 00), then ¢ m+1 <« ¢L.m, Whence the (decreasing) wesk limit
(7.116) oL = lim ¢ m

M—o0
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exists. Let QE be the set of al configurations w such that w(e) = D(e) for
e¢ EL =limym_ EL ,m,andlet 4| betheevent that no vertex of axf isjoined
by an open pathto avertex of 9 X, . Theset of interfaces on which we concentrate
isDL = Up DL.m = limm—oo DL M. Thus, Dy istheset of interfacesthat span
2|, and every member of D\ isbounded in the direction of the third coordinate.
Itiseasy to seethat 4| 2 limm— oo L. M, @nd it is a consequence of the next
lemmathat the difference between these two events has ¢|_-probability zero.

(7.117) Lemma. Letq € [1, 00). Theweak limit ¢ m(- | LL.m) = dL (- | L)
holdsas M — o0, and

¢L<1L\ M“_r)noo-lL,M) =0.
ForLj > 0,8 € D,,andg € E(S) N EL;, let

G(ela 817 EL]_; e27 825 EL2) = G(ela 817 EL]_,OO; e25 827 ELZ,OO)-

Ontheevent 4, A isdefined asbeforeto be the maximal 1-connected set of open
plaquettes that intersects 6o \ EL .

(7.118) Lemma.

(8 SupposeL > 0,8 € D, ande € E(§) N EL. Thefunctions f, givenin
(7.110) are such that the limit

fpe6.L) = lim fo(e.5.L. M) (7.119)

exists. Furthermore, if p > p*,
| fo(e, 8, L)| < C1, (7.120)
and, for Lj > 0,8i € Dy;,andg € E(Si) N E; satisfying e; >~ ey,

| fp(er, 81, L1) — fp(e2, 82, L2)| < Coe77C,

where G = G(ey, 81, EL,; e, 82, EL,) and p*, Cyq, Cp, y areasin Lemma
7.104.

(b) Forg €[1,00)ands € D, the probability g (5 | L) = dL(A =8| dL)
satisfies

BLG | 10) = — P - p)Pigh exp( Y. fees, L)),
ZL ecEG)NEL
(7.1212)
where Z|_ isthe appropriate normalizing constant.

Proof of Lemma 7.117. It sufficesfor the claim of weak convergencethat

(7.122) oLMm(FNIL M) — oL(FNALL) for al cylinder events F.
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Let ALm =[-L,L]? x {~M} and B m = [-L, L]? x {M}, and let T_ m be
the event that no open path exists between a vertex of BAJLF’M \ BL,m and avertex

of IAL m\ AL M. Notethat T. M — 4L asM — oo. Let F beacylinder event.
Then

(7123) oL m(FNIL M) <o m(FNTL M) forM" <M
— oL(FNTL M) asM —
— ¢L(FNIL) asM — oo.

In order to obtain a corresponding lower bound, we introduce the event K;
that all edges of EL, both of whose endvertices have third coordinate equal to
+r, are open. We may suppose without loss of generality that p > 0. By the
comparison inequality (Theorem 3.21), ¢ ,m dominates product measure with
density 7 = p/[p + q(1 — p)], whencethereexists 8 = B < 1 such that

R
¢L,M(UKr>21—,BR, R< M.
r=1

Now £1.m € Tim,and Tu v\ £L.m € N7 Kr, whence

(7124)  pLm(FNILM) = ¢ m(FNT m) — Mt

> ¢Lm(FNgy) — M1

— ¢L(FNJIL) asM — oo.
Equation (7.122) holds by (7.123)—7.124). The second claim of the lemma fol-
lows by taking F = ©, the entire sample space. O

Proof of Lemma 7.118. (a) The existence of the limit follows by the monotonic-
ity of g(f, Dj) for an increasing sequence {D; }, and the proof of (7.106). The
inequalities are implied by (7.106)—(7.107).
(b) Lets € D, sothat s € 4 m for al large M. By Lemma7.117,
dL@ L) = lim L Mm@ | I m)-
M— o0

Let M — oo in (7.105), and use part (a) to obtain the claim. O
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7.9 Geometry of interfaces

A taxonomy of interfaces is required, and this is the topic of this section. Let
§ € DL. Whileit was natural in Section 7.7 to introduce the extended interface
8, it turns out to be useful when studying the geometry of § to work with its
semi-extended interface

§* =8U {h e H: hisahorizontal plaguette that is 1-connected to 5 }.

Let x = (X1, X2, X3) € Z3. The projection 7 (h) of a horizontal plaquette h =
h({x, x + (0, 0, 1))) onto the regular interface &g is defined to be the plaquette

m(h) = h(((X1. X2, 0), (X1, X2, 1))).
The projection of the vertical plaguette h = h({x, x + (1, 0, 0))) istheinterva
m) =[(xa+3.%2—3.3). X1+ 3. X2+ 3. 3)],
and, similarly, h = h({x, x + (0, 1, 0))) has projection
mh) =[(x1— 3. %2+ 3.3). X1+ 3. X2+ 3. 3)].

A horizontal plaquette h of the semi-extendedinterface §* iscalled ac-plaquette
if h istheuniquemember of §* with projection (h). All other plaquettesof §* are
called w-plaquettes. A ceiling of § isamaximal 0-connected set of c-plaquettes.
The projection of a ceiling C isthe set 7(C) = {w(h) : h € C}. Similarly,
we define awall W of § as a maximal 0-connected set of w-plaguettes, and its
projection as

m(W) = {z(h) : hisahorizontal plaquette of W}.

(7.125) Lemma. Lets € D.
(i) Theset §*\ & containsno c-plaquette.

(if) All plaquettesof §* that are 1-connected to some c-plaquette are horizontal
plaquettes of §. All horizontal plaquettes that are O-connected to some
c-plaquette belong to §*.

(iii) Let C beaceiling. Thereisa uniqueplane parallel to theregular interface
that contains all the c-plaquettes of C.

(iv) LetC beaceling. ThenC = {h € §* : w(h) C [7(C)]}.

(V) Let Wbeawall. ThenW = {h € §* : =(h) C [x(W)]}.

(vi) For eachwall W, &g \ 7 (W) has exactly one maximal infinite O-connected
component (respectively, 1-connected component).

(vii) Let W be a wall, and suppose that §g \ (W) comprises n maximal
0-connected sets Hi, Ho, ..., Hy. The set of all plaquettesh € §* \ W
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that are O-connected to W comprises only c-plaquettes, which belong to the
union of exactly n distinct ceilings Cy, Co, . .., Cp such that

{m(h): hisac-plaquetteof Ci} < H;.

(viii) The projections (W) and 7 (W>) of two different walls Wy and W> of §*
are not O-connected.

(ix) The projection 7 (W) of any wall W contains at |east one plaquette of §o.

Thedisplacement of theplanein (iii) from theregular interface, counted positive
or negative, is called the height of the ceiling C.

Proof. (i) Let h beac-plaquette of §* with 7w (h) = hg. Sinces € D, § contains
at least one plaquette with projection hg. Yet, according to the definition of a
c-plaquette, thereis no such a plaquette besides h. Thereforeh € 6.

(i) Suppose h isa c-plaquette. Then h belongsto §, and any horizontal plaguette
that is 1-connected to h belongsto §*. 1t may be seen in addition that any vertical
plaguette that is 1-connected to h liesin § \ 8. Suppose, on the contrary, that
some such vertical plaquette h’ liesin §. Then the horizontal plaquettes that are
1-connected to h' liein §*. One of these latter plaguettes has projection  (h), in
contradiction of the assumption that h is a c-plaquette.

We may now see asfollowsthat any horizontal plaquette h” that is 1-connected
to h must liein 8. Suppose, on the contrary, that some such plaquette h” liesin
5\ 8. Wemay construct apath of open edgeson (Z2, n(wy)) connecting the vertex
X just above h to the vertex x — (0, 0, 1) just below h, using the open edges of
w; corresponding to the three relevant plaquettes of § \ §. This contradicts the
assumption that h is a c-plaquette of the interface §.

The second claim of (ii) followsimmediately, by the definition of 5*.

(iii) The first part follows by the definition of ceiling, since the only horizontal
plaquettesthat are 0-connected withagiven c-plaquette h lieintheplanecontaining
h.

(iv) Assume that h € §* and wr(h) < [#(C)]. If his horizontd, the conclu-
sion holds by the definition of c-plaguette. If h is vertical, then h € §, and all
1-connected horizontal plaguettesliein §*. At least two such horizontal plagquettes
project onto the same plaquette in 77 (C), in contradiction of the assumption that
Cisaceiling.

(v) Let C beaceiling and let y1, 2, ..., yn be the maximal O-connected sets of
plaguettes of 6o \ 7(C). Let 67 = {h € §* : w(h) €[]}, and let

. 0
g = {h € : hhorizontal, h ~ h' for someh’ € C}.

We note that3 g;* is a 0-connected subset of 8.
B3Thisis a consequence of [311, eqn (5.3)], see also [286, p. 40, footnote 2].
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By part (iv), 8* = C U {J{L, §}. We claim that each 5 is O-connected, and
we prove this as follows. Let hy, hy € 8. Since §* is 0-connected, it contains

asequence hy = fo, f1,..., fm = ha of plaguettes such that fi_1 2 f; for
i =1,2,...,m We need to show that such a sequence exists containing no
plaquettesin C. Suppose on the contrary that the sequence ( fj) has a non-empty
intersection with C. Letk = min{i : f; € C} andl = max{i : f; € C}, and note
thaa0 <k <l <n.

If fx_1 and fi;1 are horizontal, then fx_1, fi 1 € B, whence they are
0O-connected by a path of horizontal plagquettes of g*, and the claim follows. A
similar argumentisvalidif either or bothof fx_1 and f|;1 isvertical. Forexample,
if fx—1 isvertical, by (ii) it cannot be 1-connected to a plaguette of C. Hence, it
is 1-connected to some horizontal plaguettein §* \ C that isitself 1-connected to
a plaguette of C. The same conclusionisvalid for fi,1 if vertical. In any such
case, as above there exists a 0-connected sequence of w-plaguettes connecting
fk—1 with f|11, and the claim follows.

To prove (v), we hote by the above that the wall W is a subset of one of the
sets &, say 87. Next, welet Cy beaceiling contained in 67, if thisexists, and we
repeat the above procedure. Consider the 0-connected componentsof y; \ 7 (C1),
and use the fact that 67 is 0-connected, to deduce that the set of plaguettes that
project onto one of these components is itself 0-connected. This procedure is
repeated until all ceilings have been removed, the result being a 0-connected set
of w-plaquettes of which, by definition of awall, all members belongto W.

Claim (vi) isasimpleobservation sincewallsarefinite. Claim (vii) isimmediate
from claim (ii) and the definitions of wall and ceiling. Claim (viii) follows from
(v) and (vii), and (ix) is a consequence of the definition of the semi-extended
interface §*. O

The properties described in Lemma 7.125 allow us to describe awall W in
more detail. By (vi) and (vii), there exists a unique ceiling that is O-connected
to W and with projection in the infinite 0O-connected component of §g \ 7 (W).
We call this ceiling the base of W. The altitude of W is the height of the base
of W, see (iii). The height D(W) of W is the maximum absolute value of the
displacement in the third coordinate direction of [W] from the horizontal plane
{(X1, X2, S+ %) I X1, X2 € Z}, where sisthe dtitude of W. Theinterior int(W)
(of the projection 7 (W)) of W is the complement in §o of the unique maximal
infinite 0-connected component of 8o \ 7 (W), see (vi).

Let S= (A, B) where A, B are sets of plaquettes. We call S a standard wall
if thereexistsd € H suchthat A € §, B C §*\ §, and AU B isthe unique wall
of §. If S= (A, B) isastandard wall, we refer to plaquettes of either A or B as
plaquettes of S, and we write 7 (S) = m (AU B).

(7.126) Lemma. Let S = (A, B) be a standard wall. There exists a unique
8 € D suchthat: A C §, B C §*\ J,and AU B istheuniquewall of §.

Thiswill be proved soon. Let §s denotetheuniquesuch§ € O\ corresponding
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tothestandardwall S. We shall seethat standard wallsarethe basic building blocks
for a general interface. Notice that the base of a standard wall is a subset of the
regular interface. Suppose we are provided with an ordering of the plaguettes
of 8o, and let the origin of the standard wall S be the earliest plaguette in 7 (S)
that is 1-connected to some plaguette of 3o \ 7(S). Such an origin exists by
Lemma 7.125(ix), and the origin belongsto Shy (ii). For h € 8o, let 8n bethe set
of all standard wallswith origin h. To 4§, isattached theempty wall &, interpreted
asawall with origin h but containing no plaquettes.

A family {§ = (A, Bj) :i = 1,2, ..., m} of standard wallsis called admis-
sibleif:

(i) fori # j,thereexistsnopairhy € 7(S) andh; € 7(§) suchthat hy 2 ho,

(it) if, for some i, h(e) € S wheree ¢ EL, then h(e) € A if and only if
D(e) =0.
Themembersof any such family havedistinct origins. For our future convenience,
each § is labelled according to its origin h(i), and we write {S, : h € &g} for
the family, where S, isto be interpreted as &, when h is the origin of none of the
S . We adopt the convention that, when a standard wall is denoted as S, for some
h € 8o, then §, € 4h.

We introduce next the concept of a group of walls. Let h € 8o, § € D, and
denote by p(h, §) the number of (vertical or horizontal) plaquettes in § whose
projectionisasubset of h. Two standardwalls §;, S arecalled closeif there exist
h1 € 7(S) and hy € 7(S) such that

Ih1, ho|l < /p(h1, 8s) + /p(h2, 8s)).

A family G of non-empty standard walls is called a group of (standard) walls
if it isadmissible and if, for any pair S, & € G, there exists a sequence Top =
S, T1, To, ..., Th = S of members of G such that T; and T;1 are close for
i=01,...,.n—-1

The origin of agroup of wallsis defined to be the earliest of the origins of the
standard walls therein. Let g, denote the set of al possible groups of walls with
origin h € 8o. As before, we attach to ¢, the empty group &n with origin h but
containing no standard wall. A family {G; :i =1, 2, ..., m} of groups of walls
iscalled admissibleif, fori # j, thereexistsno pair S € Gij, $ € Gj such that
S and S areclose.

We adopt the convention that, when agroup of wallsis denoted as Gy, for some
h € 8o, then G, € §n. Thus, afamily of groups of walls may be written as a
collection G = {Gp, : h € 8o} where G, € Gn.

(7.127) Lemma. Theset D, isin one—one correspondence with both the collec-
tion of admissible families of standard walls, and with the collection of admissible
families of groups of walls.

Just as important as the existence of these one-one correspondences is their
nature, as described in the proof of the lemma. Let §g (respectively, §g) denote
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the interface corresponding thus to an admissible family G of standard walls
(respectively, an admissible family G of groups of walls).

Proof of Lemma 7.126. Letd € D haveuniquewal S = (A, B). By definition,
every plaquette of §* other than those in A U B is a c-plaguette, so that ¥ =
8* \ (AU B) is aunion of ceilings C1, Cyp,...,Cy. Each C; contains some
plaquette h; that is 1-connected to some h{ € A, whence, by Lemma 7.125(iii),
the height of C; isdetermined uniquely by knowledge of S. Hence§ isunique. [J

Proof of Lemma 7.127. Lets € D. Let Wy, Wo, . .., W, bethenon-empty walls
of 6*, andwrite W, = (A;, Bj) where Aj = W, N6, B = Wi N (§*\ ). Lets be
the altitude of W;. We claim that 7,0, —s)W; isastandard wall, and we provethis
asfollows. Let G, j =1,2,...,k, betheceilingsthat are 0-connected to W;, and
let H; j be the maximal 0-connected set of plaquettesin §p \ 7 (W) onto which C; i
projects. SeelLemma7.125(vii). It sufficesto construct aninterface § (W, ) having
7(0,0,—s )W asitsuniquewall. Tothisend, weadd to 7(g,0,—s) Ai the plaguettesin
70,0.-s)Cij» | = 1,2,..., K, together with, for each j, the horizontal plaquettes
in the maximal O-connected set of horizontal plaguettesthat contains z(o,0, ) Cj;
and elements of which project onto Hj; .

We now define the family {S, : h € 8o} of standard walls by

S — { 700,0,—s)W if histheoriginof 7 o,—s)W,
&n if histheorigin of no r(g,0,—s)W.

More precisely, in the first case, S = (An, Bn) where An = 7(0,0,—s)Ai and
Bh = 7(0,0,—s) Bi. That thisisanadmissiblefamily of standard wallsfollowsfrom
Lemma 7.125(viii) and from the observationthat 5 = 0 when E(W)) N E # 2.

Conversely, let {S, = (An, Bn) : h € 8o} be an admissible family of standard
walls. We shall show that there is a unique interface § corresponding in a certain
way to thisfamily. Let §, S..., S, be the non-empty walls of the family, and
let §; bethe uniqueinterfacein D having § asitsonly wall.

Consider thepartial orderingonthewallsgivenby § < § ifint(§) C int(§),
and re-order the non-empty wallsinsuchaway that § < § impliesi < j. When
it exists, we take the first index k > 1 suchthat § < S and we modify éx as
follows. First, we remove the c-plaquettes that project onto int(S;), and then we
add trangdlates of the plaquettesof A;. Thisis done by translating these plagquettes
so that the base of S is raised (or lowered) to the plane containing the ceiling
that is O-connected to S and that projects on the maximal O-connected set of
plaquettesin 8o \ 77 (Sc) containing 7 (S). See Lemma7.125(viii). Let 8 denote
the ensuing interface. We now repeat this procedure starting from the set of
sandardwalls &, g, .. ., §, and interfaces 8z, 83, . . . , k-1, 8y, Ski1, - - ., n. If
no such k exists, we continuethe procedure with the reduced sequence of interfaces
82,03, -+ Ok=1, Ok Ok+41, - - - On-

We continue this process until we are left with interfaces 8/, 1 = 1,2,...,r,
having indicesthat refer to standard walls that are smaller than no other wall. The
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final interface § is constructed asfollows. For each |, we remove from the regular
interface &g all horizontal plagquettes contained in int(S, ), and we replace them by
the plaquettes of &' that project onto int(S ).

Thefinal assertion concerning admissiblefamiliesof groupsof wallsisstraight-
forward. d

We derive next certain combinatorial properties of walls. For S = (A, B) a
standard wall, let N(S) = |A| and T1(S) = N(S) — |7 (S)|. For an admissible set
F={S,%,..., S} of standard walls, let

m m m
MF) =) T(S), NF) =Y NGS), =F)=JrS).
i=1 i=1 i=1

(7.128) Lemma. Let S= (A, B) bea standard wall, and D(S) its height.
(i) N(S) = B (). Consequently, TI(S) > |7 (S)| and I1(S) > L N(S).
(i) N(S) = |SI.

(i) TI(S) > D(9).

Proof. (i) For each hg € 8g, let U(hg) = {h € 80 : h = hgorh 5 ho}. We
call two plaquettes hy, ho € 8o separated if U(hy) NU(h2) = @. Denote by
Hsep = Hsep(S) € 7(S) aset of pairwise-separated plaguettes in 7 (S) having
maximum cardinality, and let H = UhleHsep[U(hl) N (S)]. Note that

(7.129) [Heepl > 17 ().

For every hg € 7(S), there exists a horizontal plaguette hy € §s such that
m(h1) = hg. Since A U B contains no c-plaguette of s, h1 is a w-plaguette,
whenceh; € A. Inparticular, N(S) > |7(9)].

For hg = m(h1) € Heep Wherehy e A, we claim that

(7.130) |{h € A: either w(h) C [ho] or w(h) € U(ho)}| > |U (ho)N (S)|+1.
By (7.129)—«(7.130),

N©S = Y {lUho)Na(S]+1}+Im(9\ HI

hoEHsep
= |H|+ [Hsepl + [7(S)| — [H| = |7 ().

In order to prove (7.130), we arguefirst that U (hg) N7 (S) containsat least one
(horizontal) plaquette besides hg. Suppose that thisis not true. Then U (hg) \ hg

these c-plaquettes belong to the same ceiling C and therefore lie in the same
plane. Since h1 is by assumption a w-plaquette, there must be at least one other
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horizontal plaguette of 55 projecting onto hg. Only one such plaquette, however,
is 1-connected with the c-plaguettes. Since g is 1-connected, the other plaguettes
projecting onto hg must be 1-connected with at least one other plaguette of §g.
Each of these further plaquettes projects into 7 (C), in contradiction of Lemma
7.125(iv).

We now prove (7.130) as follows. Since h; is a w-plaquette, there exists
ho € AU B, hy # h1, such that 7 (h2) = hg. If there exists such hy belonging
to A, then (7.130) holds. Suppose the contrary, and let hy be such a plaquette
with h, € B. Sincehy € A, for every n € U(hg) N (S), n # ho, there exists

n' € Asuchthat 7 (') C [n] and n’ A hs. [If this were false for some 7 then,
asin the proof of Lemma 7.125(ii), in any configuration with interface §s, there
would exist apath of open edgesjoining the vertex just above h1 to the vertex just
beneath h1. Since, by assumption, all plaquettes of A U B other than hy, having
projection hg, liein B, thiswould contradict the fact that §s isaninterface.] If any
such r’ is vertical, then (7.130) follows. Assume that all such »" are horizontal.

Since hy € B, thereexists hy € A such that hs 5 hz, and (7.130) holds in this
case also.

(i) The second part of the lemma follows from the observation that each of the
plaquettesin A is 1-connected to no more than four horizontal plaquettes of B.

(iii) Recall fromtheremark after (7.129) that A containsat least |7 (S)| horizontal
plaquettes. Furthermore, A must contain at least D(S) vertical plaquettes, and the
claim follows. d

Finally inthissection, wederivean exponentia bound for the number of groups
of walls satisfying certain constraints.

(7.131) Lemma. Let h € §p. There exists a constant K such that: for k > 1, the
number of groups of walls G € §, satisfying IT1(G) = k is no greater than KX.

Proof. Let G = {S, S, ..., S} € $h Wherethe § = (A, Bj) are non-empty
standard wallsand S, € 8. For j € 8o, let

R = [ € do: 11,0l = V(i 30) | \ 7(G),
n

G= {U(Ai U Bi)} U{ U Rj}-
i=1 jen(G)

There exist constants C’ and C” such that, by Lemma7.128,

IGI <IGI+C" ) p(j.6e) < C"|G| <5-14C"TI(G),
jen(G)
where |G| = | ; (A U B)|.
It may be seen that G isa0-connected set of plaquettescontainingh. Moreover,
the O-connected sets obtained by removing all the horizontal plaquettesh’ € G,
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for which there exists no other plaquette h” ¢ G with 7(h") = 7 (h), are the
standard walls of G. Hence, the number of such groups of walls with T1(G) = k
isno greater than the number of 0-connected sets of plaquettes containing no more
than 70C"k elementsincluding h. Itisprovedin[103, Lemma 2] that there exists
v < oo such that the number of 0-connected sets of size n containing h is no
larger than v". Given any such set, there are at most 2" ways of partitioning the
plaquettes between the A; and the B;. The claim of the lemmafollows. O

7.10 Exponential bounds for group probabilities

The probabilistic expressions of Section 7.8 may be combined with the classifica-
tion of Section 7.9 to obtain an estimate concerning the geometry of the interface.
Let G = {Gh : h € 4o} be afamily of groups of walls. If G is admissible,
there exists by Lemma 7.127 a unique corresponding interface . We may pick
arandom family ¢ = {¢n : h € 8o} of groups of walls according to the probability
measure P induced by ¢, thus:

dL(A =8c) if Gisadmissible,

]P = G =
L ) { 0 otherwise.

(7.132) Lemma. Letq € [1, 00), and let p* be asin Lemma 7.104. There exist
constants C3, C4 such that
PL (s = Gw

for p > p*, andfor all h' € 8o, Gy € G, L > 0, and for any admissible family
{Gh : h € 8o, h # h'} of groups of walls.

th=Gnforh e o, h#h') < Ca[Ca(l— p)] G

Proof. Theclaimistrivia if G = {Gy, : h € §p} isnot admissible, and therefore
we may assume it to be admissible. Let h' € §p, and let G’ agree with G except
at h’, where Gy is replaced by the empty group &. Then

¢th=Gnforhedo, h#h) < L)

7.133 PL(Zw = G [ION
(7.133) L(¢n = Gn <5

where§ = §g and §’ = §g.
In using (7.121) to bound the right side of this expression, we shall require
boundsfor |8 — |8'], [5 \ 8] — |5\ &|, ks — k', and

(7.134) Yo feesLy— Y fped. L)

ecE(§)NEL ecE(8)NEL

It is easy to see from the definition of § that

18] = 180l + Y [N(Gh) — I (Gn)I],

hedg
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and therefore,
(7.135) 18] = 18'] = N(Gw) — |7 (Gp)| = TI(Gp).
A little thought leads to the inequality
(7.136) B\l - 18"\ =0,

and the reader may be prepared to omit the explanation that follows. We claim
that (7.136) follows from the inequality

(7.137) IP@)| - |P@)| >0,

where P(3) (respectively, P(3)) is the set of plaquettesin § \ & (respectively,
5 \ §’) that project into [z (Gp)]. In order to see that (7.137) implies (7.136),
we argue as follows. The extended interface § may be constructed from 3 inthe
following manner. First, we remove al the plaquettes from § that project into
[ (Gn)], and we fill the gaps by introducing the walls of Gy, one by one along
the lines of the proof of Lemma 7.127. Then we add the plaguettes of § \ § that
project into [ (Gyy)]. During this operation on interfaces, we remove P@’) and
add P(3), and the claim follows.

By Lemma 7.125(viii), there exists no vertical plaguette of 5 \ &' that projects
into [ (G )] and is in addition 1-connected to some wall not belonging to Gy, .
Moreover, since al the horizontal plaquettes of 5 belong to the semi-extended
interface 8", those that project onto [ (G )] are c-plaguettes of §’*; hence, such
plaguettesliein §’. It followsthat PG comprisesthe vertical plaquettesthat are
1-connected with 7 (Gyy).

It istherefore sufficient to construct aninjectivemap T that maps each vertical
plaguette, 1-connected with 77 (Gy), to adifferent vertical plaguettein P(5). We
noted in the proof of Lemma 7.128(i) that, for every ho € 7(Gj), there exists
a horizontal plaguette hy € § with w(h1) = ho. For every vertica plaguette
hv 5 ho, thereexists atranslate hy S h1. Supposeh” liesabovedo. If hY € 5\ 8,
weset T(hY) = h. If h € §, we consider the (unique) vertical plaguette‘ above’
it, which we denote by h}. We repeat this procedureup to thefirst n for whichwe
meet aplaguette hY € § \ §, and we set T (h") = hY.. When h lies below 8o, we
act similarly to find a plaguette T (hV) of § \ § beneath hV. Theresulting T isas
required.

We turn now to the quantity ks — ks, and we shall use the notation around
(7.101). Note that exactly two of the components (S, U}) areinfinite, and these
may be taken as those with indices 1 and 2. Fori = 3,4,...,k;s, let H(S(;)
be the set of plaguettes that are dual to edges having exactly one endvertex in
S, The finite component (S}, U}) isin anatural way surrounded by a particular
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wall, namely that to which all the plaquettes of H (%) belong. Thisfollowsfrom
Lemma 7.125(v, viii) and the facts that

P = {7 (h(x, x+ (0.0, 1)) : x € §}

is a 1-connected subset of 8, and that [ (H (S)))] = [P].
Therefore,

(7.138) ks — ks = ks — 2,
where §” = §g,,. Itis elementary by Lemma7.128(i) that
(7.139) ks» < 2N(Gy) < 28I1(Gy).

Finally, we estimate (7.134). Let Hq, Ho, ..., H; bethe maximal O-connected
setsof plaguettesin §o\ 7 (Gy), andlet §; (respectively, §7) bethe set of plaquettes
of § (respectively, §’) that project into [H;]. Recalling the construction of an
interface from its standard walls in the proof of Lemma 7.127, there is a natural
one-one correspondence between the plaquettes of §; and those of 5/, and hence
between the plaguettesin U = ( Ji_, 8 andthoseinU’ = | J{_, §/. Wedenote by
T the corresponding bijection mapping an edge ewith h(e) Uir=1 Ji totheedge
T (e) with corresponding dual plaquettein | Ji_, 8. Note that T (e) is a vertical
trandate of e.

If eissuchthat h(e) e U,

G(e 8, EL; T(e), 8, EL) >[I’ (h(e), 7 (G|l — 1,
where 7/ (h) isthe earliest plaquette h” of §¢ such that = (h) < [h”], and
Ihy, Hll = min{[lhy, ha|| : hz € H}.
Let p > p*. Inthe notation of Lemmas 7.104 and 7.118,

(7.140)
Yo fpes - DY fed, L)‘
ecE(§)NEL ecE(8)NEL

< Y |fpes L)~ fp(T(e). 8, L)
ecE(U)NEL

+ Y s+ > fed. L)

ecE(S\U)NEL ecE(8"\U)NEL

<G Y exp(—yln'h®). 7(Gn)l) + Ci[N(Gr) + 7 (Gr)l]-
eeE(U)NEL
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By Lemma 7.128, the second term of thelast lineis no greater than C5I1(Gyy) for
some constant Cs. Using the same lemma and the definition of a group of walls,
the first term is no larger than

(7.141) Co¢ >~ p(h.8)exp(—yllh. 7(Gw)l)
hedo\7(Gy)

<G > Ih 7 (Gr)lI*exp(—yIlh, 7(Gw)l)
heso\7(Gyy)

<G ) >l P exp(—y ih, b))
h’ex(Gyy) heso\n(Gpy)
< Cg|m(Gp)| < 13C6I1(Gh),

for some constant Cg.
The required conditional probability is, by (7.121) and (7.133),

pIE\SHE \&'l (11— p)lﬁlf\é’lqka*ky

xexp< Yo feesby— Y fp(e,a/,L)),

ecE(S)NEL ecE(8)NEL

which, by (7.135)—(7.141), is bounded as required. O

7.11 Localization of interface

The principal theorem states in rough terms the following. Let g € [1, co) and
let p be sufficiently large. With ¢, -probability close to 1, the interface A (w)
deviates from the flat plane 8o only through local perturbations. An ant living on
A(w) is able, with large probability, to visit a positive density of the interfacevia
horizontal meanderings only.
Leth € §g. Forw € QE, we write h < oo if there exists a sequence

h = ho, h1, ..., hy of plaguettesin §op such that:

@ hi ~hijifori=01,....r—1,

(b) each h; isac-plaguette of A(w), and

() hy =h(e) forsomee ¢ E| .

(7.142) Theorem [139]. Let g € [1, 00). For € > 0, thereexists p = Ple) < 1
such that, if p > P,

(7.143) oL (h < 00)>1—e¢, hedg, L>1

Since, following Theorem 7.142, h € §¢ is ac-plaquette with high probability,
thevertex of Z3 immediately beneath (respectively, above) the centreof h isjoined

(©Springer-Verlag 2006



[7.11] Localization of interface 219

to 9~ X (respectively, T X ) with high probability. Theorem 7.87 follows.
Furthermore, since h <> oo with high probability, such connectionsmay be found
within the plane of Z3 comprising vertices x with x3 = 0 (respectively, x3 = 1).

The existence of non-trandation-invariant (conditioned) random-cluster mea-
sures follows from Theorem 7.142, as in the following sketch argument. For
ecE3 letet =e+(0,0,1),andlet w € Q. If h = h(e) € &g isac-plaguette
of A = A(w), then eis closed, and h(e*) ¢ A. The configurations in the two
regions above and below A are governed by wired random-cluster measures'®.
Therefore, under (7.143),

(1-ep

¢ (eisopen) <e, ¢ (e isopen) > pral—p)’

by stochastic ordering. Note that these inequalities concern the probabilities of
cylinder events. Thisimplies Theorem 7.89.

Our second main result concerns the vertical displacement of the interface,
and asserts the existence of a geometric bound on the tail of the displacement,
uniformly in L. Let§ € DL, (X1, X2) € Z2, and X = (X1, X2, 3). We define the
displacement of § at x by

D(x, 8) = sup{|z— 3| : (x1, X2, 2) € [8]}.

(7.144) Theorem [139]. Letq € [1, 00). Thereexists p < 1 and a(p) satisfying
a(p) > 0when p > P such that

SL(D(X, A)>2)<e P z7>1 (x1,%)eZ L>1

Proof of Theorem 7.142. Let h € §9. We have not so far specified the ordering of
plaquettesin §g used to identify the origin of astandard wall or of agroup of walls.
We assume henceforth that this ordering is such that: for h1, hy € g, hy > h
implies |[h, ha|| > [Ih, hz].

For any standard wall S there exists, by Lemma 7.125(vi), a unique maximal
infinite 1-connected component | (S) of 8o \ 7(S). Let w € Q'B. The interface
A(w) givesrise to afamily of standard walls, and h <> oo if and only if1°, for
each such wall S, h belongsto | (S). Suppose on the contrary that h ¢ | (§) for
some such standard wall §, for some j € 8o, belonging in turn to some maximal
admissible group Gy € G of wallsof A, for someh’ € §o. By Lemma7.128
and the above ordering of 3o,

13M(Gr) = (G| = 7 (§) = [Ih, jll +1 = [h, ]| + 1.

14\We have used Lemma 7.117 here.
B5Thisis a consequence of a standard property of Z2, see [210, Appendix].

(©Springer-Verlag 2006



220 Duality in Higher Dimensions [7.112]

Let K be asin Lemma 7.131, and p*, C4 asin Lemma 7.132. Let P be
sufficiently largethat p > p* and that

) =(p) = —f310g[K Ca(1 — p)]

satisfies A(P) > 0. By thelast lemma, when p > P,

1-g(h < o00) < Y PL(TI(gw) = [l || +1])
h’edg

<> > Y PLtw =G)

hedp n=(Ilh,h4+1)/13 Gegyy:
[1(G)=n

<> ) K'GlCd-p)]"
h’edg n>(||h,h’||+1)/13
<Cz ) exp(—i(Ih, || + 1)) < Cre?,
h’edo

for appropriate constants C;. The claim follows on choosing p sufficiently close
to 1. 0

Proof of Theorem7.144. If D(x, A) > z, thereexistsr satisfyingl <r < zsuch
that thefollowing statement holds. Thereexist distinct plaquetteshy, ho, ..., hy €
80, and maximal admissiblegroups Gy,,i = 1,2, ..., r, of wallsof A such that:
X = (X1, X2, %) liesin the interior of one or more standard wall of each Gy, , and

r
> M(Gn) =z

i=1

Recall Lemma 7.128(iii). Let m; = Ll—13(||x, hi || + 1) where ||, h|| = X — Y|
and y isthe centre of h. By Lemma7.132, and as in the previous proof,

¢ (D(X,A) > 2)

< > PL(ZH({hi)Zz, H(Ihi)zmiV1)
[

hi,ha,....hy
1<r<z

= Z Z Z PL(TI(¢n) =z fori =1,2,...,r)

]

hy,hy,....hy S=2Z 21,22,....% .

1<r<z 21420442 =S
- z>mjv1
<) Y CKCaA-pP® Y. 1
hi s>z 21,22,...,% -
21+2+ 4z =s

zi>mjv1
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for some constant Cg. The last summation is the number of ordered partitions
of theinteger s intor parts, theith of whichisat least m; v 1. By adapting the
classical solution to this enumeration problemwhen m; = 1 for al i, wefind that

Z 1< <5 —1-35(miv 1)) < 25-1-35(mivD) _ ps—1-3m,
r—1 - - '

21,22,.., 7!
21+22+-+2r =S
zi>mjv1

whence, for some Cg,
o0 z
éL(D(X,A) > 2) <Co ) [2KCy(1 - p)]s(z 2“"’“'/13J) . z>1
S=z hedg

Theright side decays exponentially asz — oo when 2K C4(1 — p) issufficiently
small. O
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Chapter 8

Dynamics of Random-Cluster Models

Summary. One may associ atetime-dynamicswith therandom-cluster model
in avariety of natural ways. Amongst Glauber-type processes, the Gibbs
sampler is especially useful and is well suited to the construction of a
‘coupling from the past’ algorithm resulting in a sample with the random-
cluster measure as its (exact) law. In the Swendsen—-Wang agorithm, one
interleaves transitions of the random-cluster model and the associated Potts
model. The random-cluster model for different values of p may be coupled
together via a certain Markov process on a more general state space. This
provides a mechanism for studying the ‘equilibrium’ model.

8.1 Time-evolution of the random-cluster model

The random-cluster model as studied so far is random in space but not in time.
Thereareavariety of waysof introducing time-dynamicsinto the model, and some
good reasons for so doing. The principal reason is that, in our 3 + 1 dimensional
universe, the time-evolution of processes is fundamental. It entails the concepts
of equilibrium and convergence, of metastability, and of chaos. A rigoroustheory
of time-evolution in statistical mechanics is one of the major achievements of
modern probability theory with which the names Dobrushin, Spitzer, and Liggett
are easily associated.

Thereis an interplay between the time-dynamics of an ergodic system and its
equilibrium measure. The equilibrium is determined by the dynamics, and thus,
in models where the equilibrium may itself be hard of access, the dynamics may
allow an entrance. Such difficulties arise commonly in applications of Bayesian
statistics, in situations where one wishes to sample from a posterior distribution
w having complex structure. One way of doing this is to construct a Markov
chain with invariant measure u, and to follow the evolution of this chain as it
approaches equilibrium. The consequent field of ‘ Monte Carlo Markov chains' is
now established asakey areaof modernstatistics. Similarly, thedynamical theory
of therandom-cluster model allows an insight into the equilibrium random-cluster
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measures. It providesin addition amechanism for studying the way in which the
system ‘relaxes’ toitsequilibrium. We note that the simulation of aMarkov chain
can, after sometime, result in samples whose distribution is close to the invariant
measure . Such samples will in general have laws which differ from ., and it
can be a difficult theoretical problem to obtain a useful estimate of the distance
between the actual sample and .

Consider first the random-cluster model on afinitegraph G with given valuesof
p and q. Perhapsthe most obvioustype of dynamicisaso-called Glauber process
in which single edges change their states at rates chosen in such a way that the
equilibrium measure is the random-cluster measure on G. These are the spin-flip
processes which, in the context of the Ising model and related systems, have been
studied in many works including Liggett’s book [235]. There is a difficulty in
constructing such a process on an infinite graph, since the natural speed functions
are not continuous in the product topol ogy.

Thereis a special Glauber process, termed the ‘ Gibbs sampler’ or ‘ heat-bath
algorithm’, which we describe in Section 8.3 in discretetime. Thisis particularly
suited to the exposition in Section 8.4 of the method of ‘ coupling from the past’.
This beautiful approach to simulation results in a sample having the exact target
distribution, unlike the approximate samples produced by Monte Carlo Markov
chains. The random-cluster model is a natural application for the method when
g € [1, 00), since ¢, p,q is monotonic: the model has ‘smallest’ and ‘largest’
configurations, and the target measureis attained at the moment of coal escence of
the two trajectories beginning respectively at these extremes.

The speed of convergence of Glauber processes has been studied in detail for
Ising and related models, and it turnsout that the rate of convergenceto the unique
invariant measure can bevery slow. Thisoccursfor exampleif thegraphisalarge
box of alattice with, say, + boundary conditions, the initial configuration has —
everywhere in the interior, and the temperature is low. The process remains for
along time close to the — state; then it senses the boundary, and converges duly
to the 4 state. Thereis an aternative dynamic for the Ising (and Potts) model,
termed Swendsen—\Wang dynamics, which converges rather faster to the unique
equilibrium so long as the temperature is different from its critical value. This
method proceeds by a progressive coupling of the Ising/Potts system with the
random-cluster model, and by interleaving a Markovian transition for these two
systemsinturn. It isdescribed in Section 8.5.

The remaining sections of this chapter are devoted to an exposition of Glauber
dynamics on finite and infinite graphs, implemented in such away asto highlight
the effect of varying the parameter p. We begin in Section 8.6 with the case of
afinite graph, and proceed in Sections 8.7-8.8 to a process on the infinite lattice
whichincorporatesin amonotonemanner atime-evolving random-cluster process
for every value of p € (0, 1). The unique invariant measure of this composite
Markov process may be viewed as a coupling of random-cluster measures on the
lattice for different values of p. One consequence of this approach is a proof of
the left-continuity of the percolation probability for random-cluster models with
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g € [1, 00), see Theorem 5.16. It leads in Section 8.9 to an open question of
‘simultaneous uniqueness’ of infinite open clusters.

8.2 Glauber dynamics

Let G = (V, E) be afinite graph, with @ = {0, 1}F asusual. Let p € (0, 1)
andq € (0, c0). We shall construct areversible Markov chainin continuoustime
having as unique invariant measure the random-cluster measure ¢p q on Q2. A
feature of the Glauber dynamicsof this section isthat the set of permissible jumps
comprisesexactly thosein which the state of asingle edge, e say, changes. To this
end, we recdll first the notation of (1.25). For w € Q and e € E, let w® and we be
the configurationsobtained by ‘ switching e on’ and ‘ switching e off’, respectively.

Let X = (X; : t > 0) be a continuous-time Markov chain, [164, Chapter 6],
on the state space 2 with generator Q = (Q.« : @, @’ € Q) satisfying

D(e,we)

(81) Ooe,0® = P, Jue,we = (1 - p)q weQ, ee E,

where D(e, &) isthe indicator function of the event that the endvertices of e are
joined by no open path of £. Equations (8.1) specify the rates at which single
edges are acquired or lost by the present configuration. We set g, ¢ = 0if w and
& differ on two or more edges, and we choose the diagona elementsq,, ., in such
away that Q, when viewed as a matrix, has row-sums zero, that is,

Jo,0 = — Z O,z w e Q.
§1é#w

Note that X proceeds by transitions in which single edges change their states, it
is not permissible for two or more edge-states to change simultaneoudly. We say
in thisregard that X proceeds by ‘local moves'.

It is elementary that the so-called ‘ detailed balance equations

(8.2 Dp.q(@)0u,r = ¢p,q(w/)qw',w, w, o € Q,

hold, whence X isreversiblewith respect to the random-cluster measure ¢p q. Itis
easily seen that the chainisirreducible, and therefore ¢p q is the uniqueinvariant
measure of thechainand, in particular, X; = ¢p q ast — oo, where*=>" denotes
weak convergence. There are of course many Markov chains with generators
satisfying the detailed balance equations (8.2). It isimportant only that the ratio
qa),w’/qw’,a) satisfies

Ouw, o’ _ ¢p,q(w/)

8.3 = ,
®3) O, Pp.q(w)

w, 0 €.

We call a Markov chain on @ a Glauber process if it proceeds by local moves
and has a generator Q satisfying (8.3), see [235, p. 191]. We have concentrated
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here on continuous-time processes, but Glauber processes may be constructed in
discrete time also.

Two extensions of this dynamical structure which have proved useful are as
follows. The evolution may be specified in terms of a so-called graphical repre-
sentation, constructed viaafamily of independent Poisson processes. Thisallows
anatural coupling of the measures ¢p,  for different p and q. Such couplingsare
monotonein p when g € [1, co). One may similarly couple the unconditional
measure ¢p q(-) and the conditioned measure ¢p (- | A). Such couplings permit
probabilistic interpretations of differences of the form ¢y (B | A) — ¢p,q(B)
when g € [1, 0), p < p/, and A and B are increasing, and this can be useful in
particular calculations, see [39, 151, 152].

One needs to be more careful when G is an infinite graph. In this case, one
may construct a Glauber process on afinite subgraph H of G, and then passto the
thermodynamic limitas H 1 G. Such alimit may be justified when g € [1, co)
using the positive association of random-cluster measures, [152]. We shall discuss
such limitsin Section 8.8 in the more general context of ‘ coupled dynamics'. For
a reason which will emerge later, we will give the details for the Gibbs sampler
of Section 8.3, rather than for the Glauber process of (8.1). The latter case may
however be treated in an essentially identical manner.

Note that the generator (8.1) of the Markov chain given above depends on the
randomvariable D (e, we), and that thisrandom variableis‘ non-local’ in the sense
that it is not everywhere continuousin w. It isthis feature of non-locality which
leadsto an interesting complication when the graphisinfinite, linked in part to the
0/1-infinite-cluster property introduced before Theorem 4.31. Further discussion
may befound in [152, 272].

8.3 Gibbs sampler

Once again we take G = (V, E) to be afinite graph, and we let p € (0,1) and
g € (0,00). We consider in this section a specia Glauber process termed the
Gibbs sampler (or heat-bath algorithm). Thisis a Markov chain X on the state
space 2 = {0, 1} which proceedsby local moves. Itsbasic ruleisasfollows. We
choose an edge e at random, and we set the state of e according to the conditional
measure of w(e) given the current states of the other edges. This may be done
in either discrete or continuoustime, we give the details for continuoustime here
and shall return to the case of discretetimein Section 8.4.

Let X = (X; : t > 0) bethe Markov chain on the state space 2 with generator
Q = (Qu.o; @, & € Q) givenby

Qo = $p,q(@°)
(8.4) T #pa(@®) + dpalwe)’
ot ®p,q(we)

" $p.q(@®) + pg(@e)’
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forw € Q and e € E. Thus, each edge is selected at rate 1, and the state of that
edge is changed according to the correct conditional measure. It is evident that
the detailed balance equations (8.2) hold as before, whence X is reversible with
respect to ¢p q. By irreducibility, ¢p q isthe uniqueinvariant measure of the chain
and thus, in particular, X; = ¢p q ast — oo.

Thereis auseful way of formulating the transition rules (8.4). With each edge
e is associated an ‘exponential alarm clock’ that rings at the times of a Poisson
processwith intensity 1. Supposethat thealarm clock at eringsattime T, and let
U be arandom variable with the uniform distribution on the interval [0, 1]. Let
XT1_ = w denotethe current state of the process. The state of e jumpsto the value
X7 (e) given asfollows:

. (bp,q(we)
whenw(e) =1, we T(8) ! = $p,q(@®) + dp.q(we)’

@p.q(we)
¢p,q(@®) + ¢p,q(we) .

(8.5
whenw(e) =0, wesat Xt(e)=1 if U >

The state of e is unchanged if the appropriate inequality is false. It is easily
checked that thisrule generatesa Markov chain which satisfies (8.4) and proceeds
by local moves. Thisversion of such a chain has two attractive properties. First,
it is a neat way of implementing the Gibbs sampler in practice since it requires
only two random mechanisms. one that samples edges at random, and a second
that produces uniformly distributed random variables.

A second benefitisthat it providesacoupling of avariety of such Markov chains
with different values of p and g, and with different initial states. We explain this
next. Supposethat 0 < p1 < p2 <landqgi > g2 > 1. Itiseasily checked, asin
Section 3.4, that

Ppy.a1 (@we) - ®p2.q0(6e)
¢p1,q1 (a)E) + ¢p1,q1(we) - ¢p2,q2($e) + ¢p2,(]2(€e) '

(8.6) w<E&.

LetU(e) = (Uj® : j =1,2,...), e € E, be independent families of inde-
pendent random variables each having the uniform distribution on [0, 1]. Let
X' = (X} :t=>0),i = 1,2, beMarkov processes on 2 constructed as follows.
The process X' evolves according to the above rules, with parameters pj, g, and
using the value Uj (e) at the jthring of the alarm clock at the edge e. By (8.5)—
(8.6), if X3 < X2, then Xt < X2 for al t > 0. We have therefore constructed
a coupling which preserves ordering between processes with different parameters
p, g, and with different initial configurations. The key to this ordering is the fact
that the coupled processes utilize the same variables Uj (e). This discussion will
be developed in the next section.
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8.4 Coupling from the past

When performing simulations of the random-cluster model, one is required to
sample from the probability measure ¢p q. The Glauber processes of the last
two sections certainly converge weakly to ¢pq ast — oo, but this is not as
good as having a sample with the exact distribution. The Propp—Wilson approach
to sampling termed ‘ coupling from the past’, [282], provides a mechanism for
obtaining samples with the correct distribution, and is in addition especially well
suited to the random-cluster model when q € [1, o). We describe this here.
Someiillustrations of the method in practice may be foundin [173, 195, 243].

Let G = (V, E) beafinitegraphandlet p € (0,1) and g € (0, o). We shall
later restrict ourselves to the case g € [1, oo), since thiswill be important in the
subsequent analysis of the algorithm. We provide ourselves first with a discrete-
timereversible Markovchan Z = (Z,:n=0,1, 2, ...) with state space Q2 and
having uniqueinvariant measure ¢p q. The discrete-time Gibbs sampler provides
a suitable example of such a chain, and proceeds as follows, see Section 8.3
and [175]. At each stage, we pick a random edge e, chosen uniformly from E
and independently of all earlier choices, and we make e open with the correct
conditional probability, given the configuration on the other edges. This Markov
chain proceedsby local moves, and hastransition matrix IT = (77,4 : @, @ € )
satisfying

N 1 ¢p,q(we)
Twe,w® = = * e ,
[E|  ¢p,q(@®) + ¢pqlwe)
1
Tty = @p.q(we)

1El ¢p.q(@® + dpqlwe)’

forw € Qande € E. A neat way to implement this is to follow the recipe of
the last section. Suppose that Z, = w. Let g, be arandom edge of E, and let
Uy be uniformly distributed on the interval [0, 1], these variables being chosen
independently of all earlier choices. We abtain Z,11 by retaining the states of all
edges except possibly that of e,, and by setting

U, < ¢p,q(waq) .
~ ¢p,q(@®) + ¢p.q(we,)

The evolution of the chain is determined by the sequences e, Uy, and the initial
state Zp. One may make this construction explicit by writing

Zny1 = V¥ (Zn, &n, Un)

for some deterministic function ¢ : Q@ x E x [0, 1] — Q.

We highlight a certain monotonicity of v, valid when g € [1, 00). Fixee E
andu € [0, 1]. Theconfiguration ¥, = v (w, €, u), viewed asafunction of w, is
constant on edges f # e, and takesvalues 0, 1 on e with

V,(e) =0 ifandonlyif u=< Pp.a(we) w € Q.

T $p.q(@®) + ¢pqlwe)’

(8.7) Zn+1(en) =0 if and only if
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Asin (8.6), whenq € [1, c0),

¢p,q(we) < ¢p,q (e
$p,q(@®) + dp.qlwe) ~ ¢p.qE®) + PpqEe)’

w =&,

implying that ¥, (e) < W (e), and hence

(8.8) V(w, e u) <y(, eu), w <E&.

Let Z¥ = (Z,:n=0,1,2,...) bethe Markov chain constructed via (8.7) with
initial state Zo = v. By (8.8),

(8.9) zZ® <75 fordln, if w<é&andqe [l 00),

which isto say that the coupling is monotonein theinitial state: if onesuch chain
starts below another, then it remains below for al time.

Instead of running the chain Z ‘forwards' in time in order to approximate the
invariant measure ¢p q, we shall run it *backwards' in time in a certain special
manner which results in a sample with the exact target distribution. Let W =
(W(w) : w € Q) beavector of random variables such that each W(w) hasthe law
of Z1 conditiona on Zg = w,

PW(w) =£&) =m,, w, & € Q.

Following the scheme described above, we may take W(w) = ¥ (w, €, U) where
e and U are chosen uniformly at random. Let W_,,, m = 1,2,..., bein-
dependent random vectors distributed as W, that is, W_n(-) = ¥ (-, €m, Um)
where the set {(em, Um) : m = 1,2,...} comprises independent pairs of inde-
pendent uniformly-distributed random variables. We construct a sequence Y_p,
n=12, ..., of random maps from  to Q by the following inductive proce-
dure. First, we define Yo : 2 —  to be the identity mapping. Having found
Yo.Y-1,Y_2,...,Y_mform=0,1,2,...,wedefine

Yom-1(0) = Yom(Wom-1()).
That is, Y_m-1(w) is obtained from » by passing in one step to W_p,—1(w), and
thenapplying Y_mtothisnew state. The exact dependence structure of thisscheme
is an important ingredient of its analysis.
We terminate the process Y at the earliest time M of coal escence,

(8.10) M = min{m: Y_m(-) isaconstant function}.

By the definition of M, thevalue Y_p = Y_um (w) does not depend on the choice
of w. The process of coalescenceisillustrated in Figure 8.1. We prove next that

YfM haslaN ¢p’q.
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O O

Figure 8.1. Anillustration of ‘coupling from the past’ in a situation where the intermediate
states are sandwiched by the extreme states. There arefive statesin thisillustration. Theheavy
lines map the evolution of the smallest (0) and largest (1) configurations, and the dotted lines
show the evolution of states that are sandwiched between these extremes.

(8.11) Theorem [282]. Therandomvariable M is almost-surely finite, and
P(Y_m = o) = ¢pq(w), w € Q.

The above procedure may seem unwieldy in practice, since Q will often be
large, and it appears necessary to keep track in (8.10) of the Y_p(w) for every
w € Q. Theredlity is simpler at least when g € [1, oo), which we henceforth
assume. By the monotonicity (8.9) of the coupling when g € [1, 00), it suffices
to follow the trgjectories of the ‘smallest’ and ‘largest’ configurations, namely
those beginning, respectively, with every edge closed and with every edge open.
The processes starting at intermediate configurati ons remain sandwiched between
these extremal processes at al future times. Thus one may define M instead by

(8.12) M =min{m: Y_n(0) = Y_m(D)},

where 0 and 1 denote the vectors of zeros and ones as before. This brings a
substantial computational advantage, since one is required to calculate only the
Y_m(b) for b =0, 1, and to find the earliest m at which they are equal.

We make two notes prior to the proof. In classical Monte Carlo experiments,
thetime-n measure convergesto thetarget measureasn — co. Anestimate of the
rate of convergenceis necessary in order to know when to cease the process. Such
estimates are not central to coupling-from-the-past, since thismethod results, after
afinite (random) time, in asample having the target measure asits exact law. That
said, the method of proof implies a geometric rate of convergence. Secondly, the
implementation of the method is greatly simplified by the monotonicity®.

Proof of Theorem 8.11. We follow [282]. Let g € (0, co). By elementary prop-
erties of the Gibbs sampler (8.7), we may choose L such that

P(Y__ isaconstant function) > O.

1The method may be implemented successfully in some situations where there is no such
monotonicity, see [243, Chapter 32] for example.
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We extend the notation prior to (8.10) asfollows. Let (Y_s_t : 0 <t <s) be
functions mapping 2 to Q2 given by:
(i) Y_t,_t istheidentity map,fort =0,1, 2, ...,
(i) Y_s—t(®) = Y_s+1,-t(W_s(w)),fort =0,1,...,s— 1
The map Y_s _t depends only on the set {(ém,Um, W_m) : t < m < s} of
random variables. Therefore, the maps Y_ix —k-nL, K = 1,2,..., are inde-
pendent and identically distributed. Since each is a constant function with some
fixed positive probability, there exists aimost surely a (random) integer K such
that Y_k L ,—k—1L is a constant function. It followsthat M < KL, whence
P(M < o0) = 1.
Let C be chosen randomly from Q with law ¢p g, and write Cmy = Y_m(C).
Sincethe law of C isthe uniqueinvariant measure ¢p q of the Gibbs sampler, Cn,
haslaw ¢p q foral m=0, 1, 2, .... By thedefinition of M,

Y_m =Cn ontheevent (M < m}.
Foroe Qandm=0,1,2,...,

PY-m=0)=PY_-m =0, M <M +PNY_m =0, M >m)
=PCn=0o, M<mM+PY_-m=w, M >m)
< ¢pq(®) +P(M > m),

and similarly,

¢p,q(@) =P(Cm =) <P(Y_m =) + P(M > m).
We combine these two inequalities to obtain that

[P(Y_-m = 0) = ¢pq(@)] <P(M >m), we,

and we let m — oo to obtain the result. O

8.5 Swendsen—Wang dynamics

It is amajor target of statistical physics to understand the time-evolution of dis-
ordered systems, and a prime example lies in the study of the Ising model. A
multiplicity of types of dynamics have been proposed. The majority of these
share a property of ‘locality’ in the sense that the evolution involves changes
to the states of vertices in close proximity to one another, perhaps single spin-
flips or spin-exchanges. The state space is generally large, of size 2N where N
is the number of vertices, and the Hamiltonian may have complicated structure.
When subjected to ‘local dynamics', the process may approach equilibrium quite

(©Springer-Verlag 2006



[8.5] Swendsen—\Wang dynamics 231

slowly?. Other formsof dynamicsare ‘non-local’ in that they permit large moves
around the state space rel atively unconstrained by neighbourly relations, and such
processes can approach equilibrium faster. The random-cluster model has played
arolein the development of asimple but attractive system of non-local dynamics
proposed by Swendsen and Wang [310] and described as follows for the Potts
model with q states.

Asusua, G = (V, E) isafinite graph, typically alarge box in Z9, and we
let q € {2,3,...}. Consider a g-state Potts model on G, with state space ¥ =
{1,2,..., q}V and parameter 8 € (0, c0). The corresponding random-cluster
model has state space 2 = {0, 1}F and parameter p = 1 — e #. The Swendsen—
Wang evolution for the Potts model is as follows.

Suppose that, at some time n, we have obtained a configuration o € X. We
construct o1 asfollows.

I. Let wn € Q begivenby: fordl e= (x,y) € E,

if on(X) # on(y), letwn(e) =0,
1 with probability p,

if on(X) = on(y), letwn(e) = { 0 otherwise
different edges receiving independent states. The edge-configuration wp, is
carried forward to the next stage.

Il. To each cluster C of the graph (V, n(wn)) we assign an integer chosen
uniformly at random fromthe set {1, 2, ..., q}, different clusters receiving
independent labels. Let on,+1(X) be the value thus assigned to the cluster
containing the vertex x.

(8.13) Theorem [310]. The Markov chaino = (o : N = 0,1,2,...) hasas
unique invariant measure the g-state Potts measure on X with parameter 8.

Proof. There is a strictly positive probability that wn(e) = O for al e € E.
Therefore, P(op1 = o | on = o’) > Oforal 0,0’ € X, so that the chain is
irreducible. Theinvariance of ¢p q isaconsegquence of Theorem 1.13. O

The Swendsen—Wang algorithm generatesaMarkovchain (o, : n=0,1,...).
It is generally the case that this chain convergesto the equilibrium Potts measure
faster than time-evolutions defined vialocal dynamics. Thisis especially evident
in the “high 8’ (or ‘low temperature’) phase, for the following reason. Consider
for example the simulation of an Ising model on a finite box with free boundary
conditions, and supposethat theinitial stateis+1 at all vertices. If g islarge, loca
dynamicsresult in samplesthat remain closeto the’ + phase’ for avery longtime.
Only after along delay will the process achieve an average magnetization close
to 0. Swendsen—Wang dynamics, on the other hand, can achieve large jumpsin
average magnetization eveninasinglestep, sincethespin allocated to agiven large

25ee [249, 292] for accounts of recent work of relevance.

(©Springer-Verlag 2006



232 Dynamics of Random-Cluster Models [8.6]

cluster of the corresponding random-cluster model is equally likely to be either
of the two possibilities. A rigorous analysis of rates of convergence is however
incomplete. It turns out that, at the critical point, Swendsen—Wang dynamics
approach equilibrium only slowly, [64]. A further discussion may be found in
[136].

Algorithms of Swendsen—Wang type have been described for other statistical
mechanical modelswith graphical representationsof random-cluster-type, see[93,
94]. Related work may be found in [322].

8.6 Coupled dynamics on afinite graph

Let G = (V, E) beagraph, possibleinfinite. Associated with G thereisafamily
¢G,p,q Of random-cluster measures indexed by the parameters p < [0, 1] and
g € (0, 00); we defer a discussion of boundary conditions to the next section.
It has proved fruitful to couple these measures, for fixed q, by finding a family
(Zq(e) : e € E) of random variables taking values in [0, 1] whose ‘level-sets
are governed by the ¢ p g. It might be the case for example that, for any given
p € (0, 1), the configuration (Zp 4(€) : e € E) given by

1 if Zgq(e) < p,

Zpa(®) = { 0 otherwise,

has law ¢G,p,q. Such a coupling has been valuable in the study of percolation
theory (that is, when q = 1), where one may simply take a family of independent
random variables Z(e) with the uniform distribution on the interval [0, 1], see
[154, 178]. The picture for random-cluster measures is more complex owing
to the dependence structure of the process. Such a coupling has been explored
in detail in [152] but we choose here to follow a minor variant which might be
termed a ‘ coupled Gibbs sampler’. We shall assume for the moment that G is
finite, returning in the next two sections to the case of an infinite graph G.

Let G = (V, E) befinite, and let g € [1, o0). Let X = [0, 1]F, and let B be
the Borel o-field of subsetsof X, that is, the o -field generated by the open subsets.
We shall construct a Markov process Z = (Z; : t > 0) on the state space X, and
we do this via a so-called graphical construction. We shall consider the states
of edges chosen at random as time passes, and to this end we provide ourselves
with afamily of independent Poisson processes termed ‘alarm clocks'. For each
arrival-time of these processes, we shall require a uniformly distributed random
variable.

(8) Foreachedgee € E,let A(e) = (An(e) :n=1,2,...) bethe(increasing)
sequence of arrival times of a Poisson process with intensity 1.

(b) Let (an(e) : e € E, n = 1,2,...) be afamily of independent random
variables each of which is uniformly distributed on theinterval [0, 1].

(©Springer-Verlag 2006



[8.6] Coupled dynamics on a finite graph 233

We write P for the appropriate probability measure®.

Lete = (x, y), and let P bethe set of pathsin G having endverticesx and y
but not using theedgee. Let F : E x X — [0, 1] be given by

(8.14) F(e,v) = inf maxv(f), ecE, ve X,

nePe fern
where the infimum of the empty set istaken to be 1. The maximum istaken over
all edges f inthe path 7, and the infimum is taken over thefinite set $; we shall
later consider situationsin which #% isinfinite.

The state of the edge e may jump only at the times An(e). When it jumps,
it takes a new value which depends on the states of the other edges, and also on
the value of the corresponding o (€). We describe next the value to which it will
jump.

Suppose that the Poisson alarm clock at edge eringsat time T = Ap (e), with
corresponding uniform random variable « = an(€). Let v € X, let the current
state of the processbe Z1_ = v, and write F = F (e, v). We define Z1 by

v(f) iff #e
8.15 Zt(f) =
(8.15) r(f) {p(e) ile
where the new value p (e) is given by
o if o« > F,
F T <F
_ <« R
(8.16) p(e) = F+ql-F) =
qo ) F

[—— if o < Frad-F’
Sinceq € [1, 00),
B
F+ql-F)
Here is a more formal definition of the process. Let C(X) be the space of

continuous real-valued functions on X. The generator S of the process is the
mapping S: C(X) — C(X) given by

F.

1
@17) 5909 =3 [ 1008 ~ g0 dHesw). g€ CO0, veX.

ecE
Here, the configuration vy € X isgiven by

v(f) if f #£e,
u if f=e,

vé’(f)={

3In order to avoid certain standard difficulties | ater, we shall assumethat the A (€) aredistinct,
and that, for each e € E, theset {An(e) : n =1, 2, ...} hasno accumulation points. We adjust
the probability space accordingly.
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and, by (8.16), the distribution function He ,,(-) : [0, 1] — [0, 1] satisfies

u if F<ucx<l,
(8.18) Heo(=1y Y o yu<r
u+ql—u
Equation (8.17) isto be interpreted asfollows. Supposethe alarm clock at e rings
at time T, and the current state of the processis v. Theloca state at e jumps to
anew value p(e) which (conditional on v) does not depend on its previous value
and has distribution function He , .
There follows the main theorem of this section. The proof is based on that to
be found in [152] and is deferred until later in the section.

(8.19) Theorem. The Markov process Z = (Z; : t > 0) hasa unique invariant
measure w and, in particular, Z; = u ast — oo.

The purpose of the above construction is to achieve a level-set representation
of evolving random-cluster processeson G. Let p € [0, 1], and recall that 2 =
{0, 1}E. We define two ‘ projection operators’ T1P, Mp: X — Qby

1 ifv(e)<p,
(8.20) MPu(e) = _ ecE, ve X,
0 ifv(e) > p,
1 ifv(e ,
(8.21) Mpu(e) = { T® <P e vex
0 ifve)=p,
and point out that
(8.22) v < Py, pel0,1], ve X,
(8.23) Mpv1 < Ip,va, TPty < TTP2yy, p1 < p2, v1 > vo.

Inwriting v1 > v2, weareusing the partial order > on X givenby: v1 > voif and
only if v1(e) > va(e) for all e € E. A source of possible confusion later is that
fact that ITPv and IT,v are decreasing functions of v.

We concentrate next on the projected processes I[T1PZ = (ITPZ; : t > 0) and
MMpZ = (IpZ; : t = 0). Animportant difference between these two processes
will become clear in the next section when we introduce boundary conditions.

(8.24) Theorem [152]. Let p € (O, 1).
(a) The processTIPZ = (I1PZ; : t > 0) isa Markov chain on the state space
Q with unique invariant distribution ¢p g, and it is reversible with respect
to ¢pp,q. Furthermore,

Pz, < 1P2z; for allt, if p1 < p2. (8.25)
(b) Statement (a) is valid with the operator ITP replaced throughout by ITp.

Thistheorem providesacoupling of therandom-cluster measures ¢, q for fixed
g € [1, co) and varying p. We maketwo notes concerning the parameter q. First,
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the above construction may beextended in order to coupletogether random-cluster
processeswith different valuesof p and different valuesof q € [1, co). Secondly,
some of the arguments of this section may bere-cast inthe ‘non-FKG’ case when
ge (0,1).

It is noted that the level-set processes are reversible, unlike the process Z.

Proof of Theorem 8.24. (a) We begin with a calculation involving the function F
definedin (8.14). Letec E, v € X, andlet y = ITPv € Q. Weclaim that

(8.26) F(e,v) > p ifandonlyif y =TIPv € De,

where De C 2 is the set of configurations in which the endvertices of e are
joined by no open path of E \ {e}. This may be seen from (8.14) by noting that:
F(e,v) > pif and only if, for every = € Pe, thereexistsan edge f € & such
that v(f) > p.

The projected process ITPZ changesits value only when Z changesits value.
Assumethat Z; = v and [TPZ; = NPy = y. Let ' € Q. By thediscussion
around (8.16)—(8.18), the rate at which TTPZ jumps subsequently to the new state
y’ depends only on:

(i) thearrival-times of the Poisson processes A(e) subsequenttot,

(i) the associated values of the random variables «, and

(iii) theset F, = {e€ E : F(e,v) > p} of edges.
By (8.26), F, = {e € E : y € De}, which dependson y only and not further on
v. It followsthat TIPZ = (ITPZ; : t > 0) is atime-homogeneous Markov chain
on Q. Thisargument is expanded in the following computation of the jJump rates.

Let Q = (Qy.0 : v, @ € ) denote the generator of the process ITPZ. Since Z
proceeds by local moves,

Oy0o=0 if H(y,o) =2,

where H denotes Hamming distance. It remainsto calculate the terms g, , e and
Oye,. fOry € Qand e € E. Consider first gy,,,¢. By (8.17),

P(MPZiyh = ¥®| IPZy = ye) = hHe(p) +0(h)  ash | 0,

whence, by (8.18) and (8.26),

p .
———— ify € De,
(8.27) Oye,ye = Hew(p) = : pP+0al—p) Y ¢
p if y ¢ De.
By a similar argument,
_ad=P o p,,
(8.28) Uyeye =1—Heuw(p) =1 P+a1—p)
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Therefore,
P .
——— if y € De,
Geye  Hew(m | oga—-p “°°°
(8.29) = =
AQeye 1= Heu(p) 1L if y ¢ De,
_ ¢p.a(¥®
¢p,q()’e) ’

It followsasin (8.3) that the detail ed bal ance equationshold, and the process TP Z
is reversible with respect to ¢p q. That ¢p q is the unique invariant measure is a
consequence of theirreducibility of the chain. Inequality (8.25) followsby (8.23).

(b) A similar argument is valid with ITP replaced by Iy, and (8.26) by
(8.30) F(e,v) > p ifandonlyif y =TIpv € De,
and on replacing He , (p) by

Hev(p—) = LiTn; He, v (U)

in the calculations (8.27)—8.29). O

We turn now to the proof of Theorem 8.19, which is preceeded by alemma.
The product space X = [0, 1]F is equipped with the Borel o-field 8. An event
A € Biscaledincreasingif it hasthe property that v’ € A whenever there exists
v € Asuchthatv < v/, anditiscalled decreasingif its complement isincreasing.
For¢ e X, let Z¢ = (Zf : t > 0) denote the above Markov process with initial
state Zp = ¢.

(8.31) Lemma.
(@ If¢ <vthenZ{ < Z} forallt.
(b) Let E be an increasing event in 8. The function g°(t) = P(ZP € E) is
non-decreasingint if b = 0, and isnon-increasing if b = 1.
Proof of Lemma 8.31. (a) This follows from the transition rules (8.15)—(8.16)

together with the fact that F (e, v) isnon-decreasingin v.
(b) Using conditional expectation,

°(s+1) =P{P(Zd,, € E| 2D}, b=0,1

By the time-homogeneity of the processes (A, «), the fact that 0 < ZQ <1,and
part (a),
>gPt) ifb=0,

. O
<gPt) ifb=1

g°(s+1) {
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Proof of Theorem 8.19. In order to prove the existence of a unique invariant
probability measure ., we shall prove that Z; convergesweakly ast — oo, and
we shall write u for the weak limit. By Lemma8.31(a),

(8.32) z2<zy<zt, t=0,veX

By Lemma8.31(b), th isstochastically increasingint if b = 0, and stochastically
decreasing if b = 1. It therefore suffices to show that

(8.33) zt-720=0 ast— .

Lete > 0, andwrite & = {k/N : k=1,2,..., N — 1} where N is a positive
integer satisfying N~1 < e. Then

P(1Z{(©) — ZP(e)| > e forsomee e E) < Y > "P(ZP(e) < p < Z{(e)).

ecE peé
Now,
P(Z2(e) < p < ZH(©) < P(MpZd(e) = 1) — P(MpZi(e) = 1)
-0 ast — oo
by the ergodicity of the Markov chain I, Z, see Theorem 8.24. O

8.7 Box dynamics with boundary conditions

In the last section, we constructed a Markov process Z on the state space X =
[0, 1]E for afinite edge-set E. In moving to an infinite graph, we shall require a
discussion of boundary conditions. Letd > 1and X = [0, 1]]Ed, acompact metric
space when equipped with the Borel o-field B8 generated by the open sets.

Since our target is to study processes on the lattice L9 = (z9, EY), we shall
assume for convenience that our finite graphs are boxes in this lattice. Let A be
such abox. For ¢ € X, let

(8.34) Xi:{vex:v(e)zg(e) fore¢ Ea}.
Asin (8.14), wedefine F : E9 x X — R by

(8.35) F(e, v) = inf maxv(f), e=(Xx,y) € ]Ed, v e X,
J

in
nePe fer

where £, isthe (infinite) set of all (finite) paths of E9 \ {e} that join x to y.
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Let g € [1, o0). We provide ourselves® with afamily of independent Poisson
processes A(e) = (An(e) : n = 1,2,...), e € EY, with intensity 1, and an
associated collection (an(e) : e € E9, n = 1,2,...) of independent random
variables with the uniform distribution on [0, 1]. Let ¢ € X. The above variables
may beused asinthelast section to construct afamily of coupled Markov processes
Z{ = (Z§,, : t = 0) taking valuesin X, and indexed by the pair A, ¢. The
process Zf\ has generator Sf\ given by (8.17)—(8.18) for v € Xf\ and with F =
F(e, v) givenin (8.35).

AsinLemma8.31(a),

(8.36) Zi,<Zhy  C<v, t=0

For v, ¢ € X andabox A, wedenoteby (v, ¢) [= (v, £)a € X] thecomposite
configurationthat agreeswith v onE andwith ¢ off E5. We sometimes suppress
the subscript A when using this notation. For example, the expression z(;;f )
denotes the value of the processonthe box A at timet, with initial value (v, £)a.
Finally, with TTP, ITp given as in (8.20)—(8.21), we write Tf\’ for the set of all
¢ € X with the property that TTP[(1, ¢) A] has at most oneinfinite cluster.

(8.37) Theorem. Let ¢ € X and let A be a box of 9. The Markov process
ZE\”’O = (ZX”’f) 't > 0), viewed as a process on (X, 8), has a unique invariant
.0
At

measure 1%, and, in particular, Z = ub ast — co.

Weturn asbeforeto the projected processes ITP Zf\ andIT, Zf\ . A complication
arises in the case of the first of these, depending on whether ornot ¢ € T X.

(8.38) Theorem. Let p € (0,1), ¢ € X, and let A bea box of LY.

() The process [pZ5 = (npzf\,t : t > 0) is a Markov chain on the state
p¢

B’ anditisreversiblewith

space I, X, with uniqueinvariant measurequr\[
respect to this measure. Furthermore,

Mp,Z4  <Tp, 25 fort >0, if py < pa. (8.39)
(b) Assumethat ¢ € Tf\’. Statement (&) is valid with the operator ITp, replaced

throughout by ITP.

We note two further facts for future use. Firt, there is a sample-path mono-
tonicity of the graphical representation which will enable usto passto thelimit of
the processes Zf\ asA 1 79. Secondly, if v and ¢ aremembersof X that areclose

to one another, then so are fo”tb) and ij”tb), for b € {0, 1}. These observations
are made formal as follows.

4We make the same assumption as in the footnote on page 233.
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(8.40) Lemma.
(8) Let A and A beboxessatisfying A € A. Then:
0P <z8Y.  rex t=0, (8.41)
z0P =280 rex tzo (8.42)

(b) Let A beabox,b e {0,1},and v, ¢ € X. Then:

280 © - 25 @] < mac{v(f) —o(f)l}.  t=0 ecEx.
A
(8.43)

Proof of Theorem 8.38. (a) The projected process (Ip Zf\’t :t > 0) takesvalues

in the state space QE"C = MpX. The proof now follows that of Theorem
8.24(b), the key observation being that (8.30) remains valid with De the set of all
configurationsin = {0, 1}IEd such that the endverticesof e arejoined by no open
path of E9 \ {e}.

(b) The claim will follow as in Theorem 8.24(a) once we have proved (8.26) for
v e T). We are thus required to show that:

(844) forveY), F(ev)>p ifandonlyif y =TIPve De.

Letec Epandv € X. If F(e,v) > p, thenTTPv € De. Suppose conversely
that v € Tf\’ and TTPv € De. By the definition (8.20) of ITPv, the function
u: Pe— [0, 1] givenhby

p(r) = maxv(f), T € Pe,
fer

satisfies
wu(m) > p, T € Pe.
By (8.35), F(e, v) > p. Suppose F (e, v) = p. There exists an infinite sequence
(mn:n=12,...) of digtinct paths in $e such that 1 (r) > p and u(my) — p
asn — oo. Let & bethe set of edges belonging to infinitely many of the paths
n. NO\N,
v(f) < lim u(mn) = p, fee,
n—o00

so that TTPv(f) = 1for f € 6.

Writee = (X, y), and let C(x) (respectively, C(y)) denotethe set of verticesof
1LY joined to x (respectively, y) by paths comprising edges f with TTPv(f) = 1.
By acounting argument, we have that x (respectively, y) liesin someinfinite path
of &, and therefore |C(xX)| = |C(y)| = co. Sincev € TX, TPy has at most one
infinite cluster. Therefore, C(x) = C(y), whence ITPv ¢ De, a contradiction.
Thisprovesthat F (e, v) > p, asrequired for (8.44). O
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Proof of Theorem 8.37. This follows the proof of Theorem 8.19, with Theorem
8.38 used in place of Theorem 8.24. O

Proof of Lemma 8.40. (a) We shall consider (8.41), inequality (8.42) being exactly
analogous. Certainly,

0=2{2@ <z$P@, ecEY\E4.

Let e € E, and note that Z@ Qe = z© 0)(e) snce A € A. It suffices to
check that, at each ring of the alarm clock on the edge e, the process Z@’O) (e

cannot jump above Z@ 0)(e) Asin Lemma8.31(a), thisis a consequence of the
transition rules (8. 15)—(8 16) on noting that F (e, v) isnon-decreasingin v.

(b) Letb € {0,1} and v, ¢ € X. It sufficesto show that

(8.45) Mtzlg‘n%xﬂz(”b)(f) 8P (h))
€EA

isanon-increasing function of t. Now, M; isconstant except when an alarm clock
rings. Supposethat An(e) = T forsome N > 1ande € E,. Itisenoughto
show that

(8.46) 1\ e — 8P @)] < My
By (8.35),

|F(e,§)—F(e,§/)|SP;%{IE(f)—E/(f)I}, £8eX

and (8.46) follows by (8.16). O

8.8 Coupled dynamics on theinfinite lattice

The reader is reminded of the assumption that g € [1, co). We have constructed
two Markov processes Z2 = (Z2 , : 't > 0) on the State space X = [0, 1]*",
indexed by the finite box A and the boundary condition b € {0, 1}. Similar pro-
cesses may be constructed on theinfinitelattice LY by passing to limits* pathwise',
and exploiting the monotonicity in A of the processes Z?\.

The following (monotone) limits exist by Lemma 8.40,

(8.47) z{4% = lim z{{?, Z{*Y = lim z{P,
Atz APz

and satisfy

(8.48) 780 < zED  rex t>o0.
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We writein particular
(8.49) 20 =209 zt=z"".

It is proved in this section that the processes Z° = (ZP : t > 0), b = 0,1,
are Markovian, and that their level-set invariant measures are the free and wired
random-cluster measures ¢g’q. The arguments of this section are those of [152],
where closely related results are obtained.

Thestatespace X = [0, 1]]Ed isacompact metric space equipped withthe Borel
o-field 8 generated by the open sets. Let B(X) denote the space of bounded
measurable functions from X to R, and C(X) the space of continuous functions.

We now introduce two transition functions and semigroups, as follows®. For
be {0, 1}andt > O, let

(8.50) PPz, A =PZEP e A,  eX Aes,

andlet § : B(X) — B(X) begiven by
(8.551) P9@) =P@ZE)),  reX, geBX).

(8.52) Theorem. Let b e {0,1}. The process Z° = (ZP : t > 0) isa Markov
process with Markov transition func’tions(Ptb 1> 0).

(8.53) Theorem. There exists a trandation-invariant probability measure . on
(X, 8B) that isthe uniqueinvariant measure of each of the two processes Z°, Z*.
Inparticular, 20, Zt = u ast — oo.

By thelast theorem and monotonicity (see (8.36) and (8.47)),
(8.54) z6P & ) ast—so00, teX b=0,1

The ‘level-set processes’ of Zt0 and Z{ are given as follows. Let p € (0, 1), and
write

(8.55) Lo =TpzZi, Ly, =1PZ),  t>0

where the projections TP and Iy, are defined in (8.20)—8.21). Note the apparent
reversal of boundary conditionsin (8.55).

5A possible alternative to the methodology of this section might be the ‘ martingale method'
described in [186, 235]. For general accounts of the theory of Markov processes, the reader may
consult the books [51, 113, 235, 299].
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(8.56) Theorem.
(8 Letb e {0,1} and p € (0, 1). The process Lg is a Markov process on the

state space 2 = {0, 1}]Ed, with as unique invariant measure the random-
cluster measure ¢f , on .9, The process L} is reversible with respect to

¢qu'
(b) The meawrmcpgsq, b =0, 1, are‘level-set’ measures of the invariant mea-
sure u of Theorem 8.53 in the sense that, for A € F,

bpq(A) =u({t : TIpt € A}), ¢ q(A) = u({¢ : TIP; € A)). (857)

We make several remarks before proving the above theorems. First, theinvari-
ant measures ¢8,q and qﬁéq of Theorem 8.56 are identical if and only if p ¢ Dq,
where Dq isthat of Theorem 4.63.

Secondly, with 1 asin Theorem 8.53, and e € EY, let J : [0, 1] — [0, 1] be
given by

(8.58) J) =u({g e Xt =x}), x € [0, 1].

Thus, J isthe atomic component of the marginal measure of u at the edge e and,
by trangdlation-invariance, it does not depend on the choice of e. We recall from
(4.61) the edge-densities

h°(p.q) = ¢p 4(eisopen),  b=0,1.
(8.59) Proposition. It isthe case that
J(p)=hl(p.a)—h°%p.a),  pe(1).

We deduce by Theorem 4.63 that p € Dq if and only if J(p) # O, thereby
providing arepresentation of D interms of atoms of the weak limit 1. This may
be used to prove the left-continuity of the percolation probability 6°(-, ). See
Theorem 5.16(a), the proof of which isincluded at the end of the current section.

As discussed after Theorem 4.63, it is believed that there exists Q = Q(d)

such that )
_ { %] if g < Q,
T Hpe@) ifa>Q,

and it is a first-rate challenge to prove this. The above results provide some
incomplete probabilistic justification for such aclaim, as follows. The set Dq is
the set of atoms of the one-dimensional marginal measure of 1. Such atomsarise
presumably through an accumul ation of edges ehaving the samevalue th(e). Two
edgeseand f acquirethe same statein the process Z by way of transitionsat some
time T for which, say, thealarm clock at eringsand F = F(e, Z1_) = Z7_(f).
Discounting events with probability zero, this can occur only when the new state

(©Springer-Verlag 2006



[8.8] Coupled dynamics on the infinite lattice 243

at eisat the (unique) atom of the function He,, in (8.18), wherev = Z71_. The
size of thisatomis E

e
F+9g(l1-F)

which isan increasing function of g. Thisis evidence that the number of pairs e,
f of edges having the same state increases with q.

Finally, wedescribethetransition rules of the projected processes Lg and LFl). It
turnsout that the transition mechanismsof thesetwo chains differ in aninteresting
but ultimately unimportant regard. It is convenient to summarize the following
discussion by writing down the two infinitesimal generators.

Lete= (x,y) € E9. Asin (8.35), let P bethe set of all pathsof E9 \ {e} that
joinxtoy. Let Qe betheset of al pairsa = (a1, a2,...), 8 = (B1, B2,...) of
vertex-disjoint semi-infinite paths (where o and g arethe vertices of these paths)
withay = x and 1 = y; werequire oj # B foral i, j. Thus Qe comprises
pairs («, 8) of paths and, for w € 2, we cal an element («, 8) of Qe open if al
the edges of both o and 8 are open.

Forb = 0, 1, let GP be the linear operator, with domain a suitable subset of
C(Q), given by

(8.60)

GPg(@) = ) [0 ,el9(@®) — g(@)} + ), {9(we) —g(@)}],  weQ,
ecEd

where

8.61 b = 1)+ — 1,

(8.61) Q.0 = P( DQ+p+qu_p)%

ad—-p

862 o, =1-0° .c=1—p(L—1pp) + ——"—1pp,
( ) qa),we qa),w ( p)( Dle)) p+q(1_p) Dg

with
(8.63) DY = {no pathin % is open},
(8.64) D = {no element in £ U Qe is open}.

Note that GPg is well defined for al cylinder functions g, since the infinite sum
in (8.60) may then be written as a finite sum. However, GPg is not generally
continuous when g € (1, co), even for cylinder functions g. For example, let
g € (1, 00), let g betheindicator function of the event that agiven edge eis open,
and let w be a configuration satisfying:

@ w(e) =1,

(b) nopathin $eisopenin w,

(c) somepair («, B) in Qe isopenin w.
Then GPg(w) = —qB .. However, gf . is discontinuous at w for b = 0, 1
since, for every finitebox A, there exists p € Q agreeing with w onE, such that
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92 . # A5.,.- However, the set of configurations satisfying (@), (b), (c) has zero
¢3’q—probabi lity since such configurationshave two or moreinfinite open clusters
(seetheremark following Theorem 4.34). One may seethat the Markov transition
functions of Lg and L%, are not Feller, see Proposition 8.90.

We shall make use of the following two lemmas in describing the transition
rules of the processes LY and L. Let G : E¢ x X — [0, 1] be given by

(8.65) G(e,v) = inf  supv(f), ecEl veX

7ePeUQe fer

Here, £ contains certain paths 7, and Qe contains certain pairs 7 = («, B) of
paths, for & = (o, B) € @e, theinfimum in (8.65) isover all edges f lying inthe
union of @ and 8.

(8.66) Lemma. Lete e E9,v € X,andlet (v : A € Z9) beafamily of elements
of X indexed by boxes A.

(@ Ifva L vasA 129, then
F(e,va) | F(e,v)  asA 1z (8.67)
(b) 1fvs € X andva 1+ vasA 1 Z9, then
F(e vp) 1 G(e v) asA 179 (8.68)
(8.69) Lemma. Lete e E9andv e X. Then:

(i) p<F(ev)ifandonlyif Mpv € DY,
(i) p < G(e v)ifandonlyif TPy € DZ.

Consider the process L§ = T Z{. Since Z{* isthe decreasing limit of Zf\%’tl),
8.70 LS, = lim mpz (Y.
(8.70) Pt = (W POAL

Fixt > 0, andwrite {5 = Z5” and ¢ = limy 54 ¢4, S0 that

8.71 LY. =Tpe = lim Tpey.
(8.71) p.t ps AT psA

Let e € EY, and assume first that ¢ is such that Ipz(e) = 0. At what rate does
the state of e change from 0 to 1 in the process Lg? Since ¢ (e) > p, we havethat

a(e) > pfordl A. Theproceﬁsnpzf\%’,l) acquires® theedgee at rate He ) (P—)
given by (8.18) with F = F(e, ¢5). Now,
p if p> F(e ¢a),

He,cA(p—) = ! # .
0T al—p) if p<F(e¢a),

SWe speak of a process ‘acquiring’ (respectively, ‘losing’) the edge e when the state of e
changes from closed to open (respectively, open to closed).
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which by Lemma 8.66(a) convergesas A 1 Z9 to

p if p> F(e ),

He (p-) = ! p o< E
prac-p | P=rEeo

Thus, by Lemma8.69(i), Lg acquiresthe edge e at rate

p if p¢ ¢ DY,
8.72) {

p . 0
P ifmyc e DY
p+ald— p) pé € De

Assume next that ¢ is such that Ty (e) = 1, and consider the rate at which
Lg losestheedgee. Sincez(e) < p, wehavethat ¢5(e) < pforall large A. As

above, I‘Ipzﬁ\lﬂl) loseseat rate 1 — He r, (p—), whence Lg losese at rate

[1—p if [p¢ ¢ DY,
(8.73) ql - p) ]

S AL AN T DO.
p+al—p pé € Pe

These calculations are in agreement with (8.60) with b = 0.
Weturnnexttotheprocess L , = IPZY. Thistime, Z{ istheincreasing limit
of 8 asA 1 29, and

1 _ G p-(0,0)
(8.74) Lot _IllTrlZ’ldH Zyy

The above argument is followed, noting that decreasing limits are replaced by
increasing limits, [T, by ITP, F(e, v) by G(e, v), and D by D. The conclusion
isin agreement with (8.60) withb = 1.

Proof of Lemma 8.66. (a) Lete e Ed and vy | vasA 1 Z9. Certainly F(e, vy)
isnon-increasingin A, whence the limit

A= lim F(e va)
A1zd

existsand satisfies A > F (e, v). We prove next that
(8.75) A < F(e,v).
Since F(e,vp) > A foral A, by (8.35),
V€ Pe, VA, 3f € m withvp(f) > A.
Since al pathsin $e arefinite, thisimplies
VYV € Pe, A € w withv(f) > A,
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which implies (8.75). We deduce asrequired that A = F (e, v).
(b) Lete = (x,y) € EY. Supposevs € X% andva t vasA 4 29 We prove
first that the increasing limit

(8.76) A= lim F(e va)
Atz

satisfies

(8.77) A > G(e ).

Let 5§ € (0,1), and suppose G(e,v) > §; we shall deduce that A > 4§, thus
obtaining (8.77).
A finite set Sof edges of L9 is called a cutset (for €) if:
(i)egs,
(i) every pathin £ contains at least one edge of S,
(iii) Sisminimal with the two properties above, in the sense that no strict subset
of Ssatisfies (i) and (ii).
We claim that:

(8.78) thereexistsacutset Swithv(f) > §foral f € S
and we provethis asfollows. First, we write G(e, v) = min{A, B} where

(8.79) A=F(ev) = inL maxv(f), B = inf supv(f).

nePe fer mee fery

Since G(e, v) > 8, wehavethat A, B > 8. For w € Z9, let C,,(v) denote the set
of vertices of L9 that are connected to w by paths = of L9 satisfying:

(a8) m doesnot contain the edge e, and

(b) every edge f of r satisfiesv(f) < 4.
If x € Cy(v), then there exists m € Pe with v(f) < § foral f e &, which
contradicts the fact that A > 8. Thereforex ¢ Cy(v). Furthermore, either Cy (v)
or Cy(v) (or both) is finite, since if both were infinite, then there would exist
T = (a, B) € Qe withv(f) < §foral f ina and 8, thereby contradicting the
fact that B > §. We may suppose without loss of generality that Cy(v) isfinite,
and we let R be the subset of E9 \ {e} containing all edges g with exactly one
endvertex in Cx (v). Certainly v(g) > § forall g € R, and additionally every path
in P contains some edge of R. However, R may fail to be minimal with the last
property, in which case we replace R by asubset S C R that is minimal. The set
Sistherequired cutset, and (8.78) is proved.

Since Sisfiniteand v(f) > s foral f € S
fordllarge A andadl f €S, vp(f) > 6,
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AN

A

Ba

w1 (/””_—_—__‘_“

w2 -

Figure8.2. A path from x to y may be constructed from two digjoint infinite paths.

and therefore (using the finiteness of S again)

for al large A,

implying that A > § asrequired for (8.77).

We prove secondly that
(8.80)

F(e,va) >4,

L < G(ev),

247

by provinginturnthat» < Aandi < B. Thati < Aisanimmediateconsequence
of the assumption vy < v, SO we concentrate on the inequality A < B. For = =
(a0, B) € Qe, Wwherea hasendvertex x, and 8 hasendvertex v, let a5 (respectively,
Ba) denotetheinitial segment of « (respectively, 8) joining x (respectively, y) to
theearliest vertex w1 of o (respectively, wo, of 8) lyingind A. Sincew1, wa € A
and w1 # wy, there exists a path y joining w1 to w2 and using no other vertex of
A. Wedenoteby r” the path comprising . , followed by y, followed by 8, taken
in reverse order; note that 7’/ € %, and denote by P 4 the set of al 7’ € Pe
obtainablein thisway fromany = = («, B) € Qe. See Figure 8.2. Now,

F(e,va) < inf maxvp(f)
n'ePen fen’

= inf

max va(f)

n'€Pen Fen'NEA

< inf

max v(f)

n'€Pen Fen'NEA

< inf max v(f)
T€Qe fETNEL

< inf supv(f)= B,

n€Qe fex

since Pep € Pe
sincevp(f) =0for f ¢ Ep

sincevy <v

wherewe have used the fact that every 7’ € $e 5 arisesin the above manner from
somen € Qe. Inequality (8.80) follows.
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Proof of Lemma 8.69. (i) By (8.35), p < F(e,v) if and only if every m € $e
contains some edge f with v(f) > p, whichisto say that TTpv € Dg.

(ii) Supposethat p < G(e, v). For 7 € PeU Qe, thereexistsanedge f € & such
that v(f) > p. Therefore, ITPv € D{.

Suppose conversely that TTPv € D}. Itis elementary that p < G(e, v). Sup-
pose in addition that p = G(e, v), and we shal derive a contradiction. Let
e = (X, y), and let Cx(v) (respectively, Cy(v)) be the set of vertices attainable
from x (respectively, y) aong open paths of ITPv not using e. Since IPv € D,
Cx(v) and Cy(v) aredigoint. We shall provethat Cx(v) (and similarly Cy(v)) is
infinite. Since p = G(e, v), there exists an infinite sequence (an :N=1,2,...)
of distinct (finite or infinite) paths of EX \ {e} with endvertex x such that
(8.81) supv(f) | p asn — oo.

fean
If |Cx(v)| < oo, there exists some edge g # e, having exactly one endvertex in
Cx(v), and belonging to infinitely many of the paths «,,. By (8.81), any such g
has v(g) < p, in contradiction of the definition of Cx(v). Therefore Cx(v) (and
similarly Cy(v)) isinfinite.

Since Cx (v) and Cy(v) are disoint and infinite, thereexists m = («, B) € Qe
suchthat v(f) < pfor f € « U, incontradiction of the assumption ITPv € D}.
The proof is complete. O

Proof of Theorem 8.52. Let b € {0, 1}. The transitions of the process (Z{3 :
t > 0) are given in terms of families of independent doubly-stochastic Poisson
processes. |n order that th beaMarkov process, it sufficesthereforeto provethat
the conditional distribution of (ZEth :t > 0), given (ZB :0 <u <s), depends
only on Z&.

Here is an informal proof. We havethat Z2,, = lim,za Z& ., where the
processes Z?\’S ¢ are given in terms of a graphical representation of compound
Poisson processes. It follows that, given (Z?\,u’ Zb:0<u<s ACZY,
(Z2,; : t = 0) haslaw depending only on the family (Z} ( : A < z9). Write
ta = Z% gand ¢ = limy,;0 ¢A = Z2. We need to show that the (conditional)
law of (ZEth 't > 0) does not depend on the family (¢5 : A C 79) further than
onitslimit ¢. Lemma8.40(b) is used for this.

Lets,t > Oand v € X. Denote by Y\"?, the state (in X&) at time's + t
obtained from the evolution rules given prior to (8.36), starting at time s in state
(v,b) = (v, b)a.

Supposethatb = 0, sothat £ 1 ¢ asA — Z9. Lete > Oandlet A beafinite
box. Thereexistsabox A’ suchthat A’ 2> A and

(@) —e<in(@ <¢(®, eeEx, ADA.
By Lemma8.40(b),
(¢.b) (¢asb) (asb) (¢.b)
Yasit =€ = Yasht = Yasit = Yasi AN
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(a0 _ b
Now, Yy'sit = ZA syt

obtain that

and we passto thelimitsas A 1 9, A 1 29,¢ | 0, to

m Y@’b) Zb

(8.82) /ymd Astt = Sstt

implying as required that ZEH depends on ¢ but not further on the family (¢, :
A € 79). The same argument is valid when b = 1, with the above inequalities
reversed and the sign of € changed.

The Markov transition function of Zf isthefamily (Q2, : 0 < s < t) givenby
QLU A=PZPeAlZE=¢), (eX Acs.
In the light of the remarks above and particularly (8.82),
Q2. A) = QB_s(t. A
=PzED e A= PP (2. A). 0
Proof of Theorem 8.53. Asin Lemma8.31, the limits
vP(A) = tiToP(th €N, b=0,1,

exist for any increasing event A € B. The space X iscompact, and theincreasing
events are convergence-determining, and therefore Zt0 and Z} converge weakly
ast — oo. It sufficesto show that

Ztl—Z?:>O ast — oo.

Since we are working with the product topology on X, it will be enough to show
that, fore > Oand f € EY,

(8.83) P(1ZH(f) — Z2(f)| >€) >0  ast— oo.

Let D = Dq beasin Theorem 4.63, and let ¢ > 0. Pick afinite subset & of
D = (0, 1)\ D suchthat every interval of theform (8, § + ¢) containssome point
of €, as§ rangesover [0, 1 — ¢). By Theorem 4.63,

(8.84) bpq=0pq PEE.
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For f € EY,

P(1ZE(F) — Z2(F)] > €)

<Y B(Z(f) < p < Z](1))
peé

<Y B(Z8 () < p=<Zh () for all boxes A
peé

= > P(PZY ((f) =1, MpZ} () =0)
peé

= Y [#h.p.q(3) = 82 pq(I)] ast — oo
peé

= D [¢p.q(3I) — 67 q(30)] asA 1 2°
peé
=0 by (8.84),

where J; isthe event that f isopen.

The trandlation-invariance of the limit measure p is a consequence of the fact
that the limitsin (8.47)—(8.48) do not depend on the way in which the increasing
limit A 1 Z9 istaken. O

Proof of Theorem 8.56. (a) That the projected processes (Lg’t t>0),b=0,1,
are Markovian follows from Theorem 8.52 and the discussion after Lemma 8.69.

Let A € F beincreasing. Asin Lemma8.31, the limits
Y2(A) = lim P(LR, € A)
p t—o00 p.t

existforb = 0, 1. Since L%,t < LFl),t,

(8.85) Yp(A) < Yp(A)  forincreasing Ae .
Let A € F beanincreasing cylinder event. Then

vo(A) = lim P(LY, € A)
p t—o0 p.t

i 1 - 0 1
> tl_|)rr01O]P>(IIpZAt S) sincely = IpZy ¢

= $3 pq(A by Theorem 8.38
— ¢ q(A) asA — 79,

and similarly

(8.86) Ya(A) < ¢ (A
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Let Dq begiven asin Theorem 4.63. Since ¢ , = ¢ o for p ¢ Dq, we have by
(8.85)(8.86) that

B9.q(A) = YA =Yg (A) = ¢ (A, p¢ Dy

Since ¥ isgenerated by theincreasing cylinder events, qﬁg’q istheuniqueinvariant
measure of LB whenever p ¢ Dq.
In order to show that

Pog(A) =Vp(A),  ¢pq(A) =Pp(A),

for all pandany increasing cylinder event A, it sufficesto show that wg(A) isleft-
continuousin p, and w%(A) is right-continuous (the conclusion will then follow

by Proposition 4.28). We confine ourselves to the case of wg(A), since the other
case is exactly similar.

Let pe (0,1), andlet A € F beanincreasing cylinder event. Let
Bop={¢eX:Mpt €A}, Cpo={¢eX:MIP; e A},
bethe corresponding eventsin 8, and note from the definitions of Iy and ITP that
By is decreasing and open, and that Cp, is decreasing and closed. Furthermore,
Cp-e € Bpfore > 0,and

(8.87) Bo\Cpc > @ ase 0.

By stochastic monotonicity, the limit lim;_ o IP’(Zt1 € Bp) exists and, by weak
convergence (see Theorem 8.53),

ti”QOP(Ztl € Bp) > u(Bp).
We claim further that P(Z} € Bp) < 11(Bp) for al t, whence
(8.89) P(Z} € Bp) — u(Bp)  ast — cc.
Suppose on the contrary that
P(Z} € Bp) > u(Bp) +7n  forsomeT and 5 > 0.
Now Z{ <4 Z1 fort > T, and hence
P(Z! € Cpe) > u(Cp_e) + 37 forsomee > Oandalt > T,
by (8.87). Since Cp_. is closed, this contradicts the fact that Zt = .
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Forh > 0,

Vo(A) =y h(A) = lim [B(Z{ € Bp) — P(Z{ € Bp—n)]
= w(Bp \ Bp-h) by (8.88).

Thesets Bp and Bp_, areopen, and Bp\ Bp_h — @ash | 0. Hencel/fgfh(A) —
¥J(A) ash | 0.

In the corresponding argument for wg(A), the set By is replaced by the de-
creasing closed event Cp, and the difference Bp \ Bp—n isreplaced by Cpih \ Cp.

We prove finally that LS, is reversible with respect to ¢3 ;; the argument
is similar for L%M. Let f and g be increasing non-negative cylinder functions
mapping Q to R, and let UY ; (respectively, UP) be the transition semigroup of
the process I Z; , (respectively, LS, = MpZ{). For A € A,

f(mMUS g < FmUQ g < FmUgm).,  ne,

by Lemmas 8.31 and 8.40. Therefore,

$R p.a(FMUR .gm) < ¢ pq(f(MUR ca0m)
<¢pq(fmMULAm). A CA,

since qﬁg’p’q <s ¢pq- Let A4+ Z% and A 1 79, and deduce by the monotone
convergence theorem that

(889 92 pq(fMUR9(m) = 634 (f(MULA(m)  asa tz-

Theleft sideof (8.89) isunchangedwhen f and g are exchanged, by thereversibil-
ity of szi’t, see Theorem 8.38. Therefore, the right side is unchanged by this
exchange, implying the required reversibility (see [235, p. 91]).

(b) 1t suffices to prove (8.57) for increasing cylinder events A, since such events
generate ¥. For such A, (8.57) follows from (8.88) in the case of ¢g’q, and

similarly for ¢ . a
Proof of Proposition 8.59. Thisis a consequence of Theorem 8.56(b). O

(8.90) Proposition. Let g € (1, 00) and p € (0, 1). The Markov processes Lg
and L% are not Feller processes.

Proof. For simplicity wetaked = 2 and b = 0; a similar argument is valid for
d > 2and/or b = 1. Let e be the edge with endvertices (0, 0) and (1, 0), and let
Je be the indicator function of the event that e is open. We shall show that the
function USJe :  — Risnot continuous for sufficiently small positive values
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A

Figure 8.3. In the inner square, edges other than e are open if and only if they are in the dark
shaded area. Inthe light grey area A \ A, all edges have the same state, namely 0 for »° and
1 for »!. The endvertices of e are joined by an open path of E» \ {€} in w! but not in «°.

of s, where (U : s > 0) isthe transition semigroup of LJ. Let V be the set of
vertices x = (xg, Xp) € Z? satisfying

gither X1 > |Xo|+1 or —X1> |Xo|,

and let Ey (> €) be the set of edges with both endverticesin V. See Figure 8.3.
Let n be a positive integer, and A the box [—n, n]2. Let o° o' € Q be the
configurations given by
1 if f e EANEy,
o®(f)=1 0 if f €Ex\Ey,
b otherwise.

Note that »® and w! depend on n, and aso that w! ¢ De but w° € De, where De
is the event that there exists no open path of E2 \ {e} joining the endvertices of e.
We shall couple together two processes, with respectiveinitial configurations «?,
w!, and we claim that there exists a non-zero time interval during which, with a
gtrictly positive probability, the lower of these two processes remainsin De and
the upper process remainsin its complement.

b
Forb = 0,1, let KR’t be the process szffqt’l) for some ¢P € X satis-
fying P = Mp¢P; the value of ¢ is otherwise immaterial. We write KP =
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limy 474 KR’t, alimit which exists by the usual monotonicity. We claim that there
exist €, n > 0, independent of the value of n, such that

(8.91) P(Kr©) =1, KO =0) > e.
Inequality (8.91) impliesthat
P(K}©) =1) —P(KJ(e) = 1) > e,

irrespective of the value of n, and therefore that the semigroup US isnot Feller.

In order to prove (8.91), we use a percolation argument. Let n > 0. Asin
Section 8.6, we consider afamily of rate-1 alarm clocksindexed by E2. For each
edge f,weset B = Oif thealarm clock at f doesnot ring during thetime-interval
[0, 7], and By = 1 otherwise. Thus, (Bf : f e E?) isafamily of independent
Bernoulli variableswith common parameter 1 — e~". Choose n sufficiently small
such that .

—_e 1
) < 7

noting that ;11 islessthan the critical probability of bond percolation on the square
lattice (see Chapter 6 and [154]). Routine percolation argumentsmay now be used
to obtain the existence of ¢’ > 0 such that, for all boxes A containing[—2n, 2n]?,

P(Kzlx,t ¢ De, K?\,t € De, foralt [0, n] | 9,,) > € P-as,

where G, is the o-field generated by the ringing times of the alarm clock at e up
totimet, together with the associated values of « (in the language of Section 8.6).

Supposethat the alarm clock at e ringsonceonly during thetime-interval [0, 7],
at therandomtime T, say. By (8.72)—(8.73), thereexistse” = €¢”(p, q) > 0 such
that: thereis (conditional) probability at least €” that, for all A D [—2n, 2n]?2, the
edgeeisdeclared closed at time T in the lower process KR,T but not in the upper
process K }\’T . The conditioning here is over all values of the doubly-stochastic
Poisson processesindexed by edges other than e. Therefore,

]P)(K[]{,n(e) =1, Kg’n(e) = 0) -~ 6/6//1767”,
foral A containing [—2n, 2n]2. Let A 1 29 to obtain (8.91) with an appropriate
valueof €. -

Proof of Theorem 5.16(a). This was deferred from Section 5.2. We follow the

argument of [36] as reported in [154]. For p € (0, 1] and ¢ € X, we say that an

edgeeis p-openif ITpz (e) = 1, whichistosay that £ (e) < p. LetCp = Cp(¢) be

the p-open cluster of L9 containing the origin, and note that Cp CCpif p' < p.
By Theorem 8.56(b),

0°(p, q) = u(ICpl = 00),
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where u isgiven in Theorem 8.53. Therefore,
(8.92)
0%(p, a) — 0°(p—, Q) = lim u(ICpl = o0, |Cp < o0)

= u(ICpl = 00, |Cy| < oo foral p' < p).

Assumethat p > pc(q), and suppose |Cp| = oo. If pe(q) < o < p, there exists
(almost surely) an e-openinfinitecluster |, and furthermore |, is(almost surely) a
subgraph of Cp, by the 0/ 1-infinite-cluster property of the 0-boundary-condition
random-cluster measures. Therefore, there exists a p-open path 7 joining the
origin to some vertex of l,. Such apath = hasfinite length and each edgeein =
satisfies ¢ (e) < p, whence 8 = max{z(e) : e € n} satisfies B < p. If p’ satisfies
P> aand B < p' < p then there exists a p’-open path joining the origin to
some vertex of |, so that |Cpy| = co. However, p’ < p, implying that the event
on the right side of (8.92) has probability zero. O

8.9 Simultaneous uniqueness

One of the key facts for supercritical percolation is the (al most-sure) uniqueness
of the infinite open cluster, which may be stated in the following form. Let ¢ be

the percolation (product) measure on Q2 = {0, 1}]Ed whered > 2. We have that:
(8.93) foral pe[0,1], ¢p hasthe0/1-infinite-cluster property.

It hasbeen asked whether or not thereexistsauniqueinfinite cluster simultaneously
for all values of p. This question may be formulated as follows. First, we couple
together the percolation processes for different values of p by defining

1 ifU(e) < p,

0 otherwise,

np(€) = {

wheretheU (e), e € EY, areindependent and uniformly distributed on theinterval
[0,1]. Let I (w) be the number of infinite open clusters in a configuration » €
Q. Itisprovedin[13] that there exists a deterministic non-decreasing function
i :[0,1] — {0, 1} such that
(8.94) P(l (np) =i(p) foral pe[0,1]) =1,
a statement to which we refer as ‘ simultaneous uniqueness . By (8.93) and the
definition of the critical probability pc,

, 0 if p< pc,

i(p) = { . ¢

1 if p> pc.

It is an open question to prove the conjecture that i (pc) = O irrespective of the
number d of dimensions. See the discussion in [154, Section 8.2].

Simultaneous uniqueness may be conjectured for the random-cluster model
also, using the coupling of the last section.
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(8.95) Conjecture (Simultaneous uniqueness). Let g € [1, oo), and consider
the coupling w of the random-cluster measures qﬁg’q on L9 with parameter q.
There exist non-decreasing functionsiq, i(’] : [0, 1] — {0, 1} such that

n(1 (TMp¢) =ig(p) and 1 (MTP¢) = ig(p), foral p e [0, 1]) = 1.

It must be the case that iq(p) = ia(p) for p # pc(Q).

Here is a sufficient condition for simultaneous uniqueness. Forr < (0, 1) and
abox A, let E5(r) be the subset of the configuration space X containing all v
withv(e) < r forall e e E5. Thus, Ex(r) isthe event that every edgein E, is
open in the configuration IT; v. By [13, Thm 1.8], it sufficesto show that « hasa
property termed ‘ positive finite energy’. Thisisin turnimplied by:

(8.96) w(EA(r) | 72) > 0, p-as.
foralr € (0, 1) and boxes A. Here as earlier, T, isthe o-field generated by the

states of edges not belonging to . 1t seems reasonable in the light of Theorem
4.17(b) to conjecture the stronger inequality

r “EAl
U(EA) | TA) = (m) , u-as.
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Chapter 9

Flows in Poisson Graphs

Summary. The random-cluster partition function with integer q on a graph
G may betransformed into the mean flow-polynomial of a‘Poissonian’ ran-
dom graph obtained from G by randomizing the numbers of edges between
neighbouring pairs. This leads to a flow representation for the two-point
Potts correlation function, and extends to general q the so-called ‘ random-
current expansion’ of the Ising model. In the last case, one may derive the
Simon-Lieb inequality together with largely complete solutionsto the prob-
lems of exponential decay and the continuity of the phase transition. It is
an open problem to adapt such methods to general Potts and random-cluster
models.

9.1 Potts models and flows

The Tutte polynomial isafunction of two variables (see Section 3.6). For suitable
values of these variables, one obtains counts of colourings, forests, and flows,
together with other combinatorial quantities, in addition to the random-cluster
and Potts partition functions. The algebra of the Tutte polynomial may be used
to obtain representations of the Potts correlation functions, which have in turn
the potential to explain the decay of correlationsin the two phases of an infinite-
volume Potts measure. It is thus that many beautiful results have been derived
for the Ising model (when q = 2), see [3, 5, 9]. Thecasesq € {3,4,...},
and more generaly g € (1, co), remain largely unexplained. We summarize this
methodology in this chapter, beginning with the definition of aflow on adirected

graph.

Let H = (W, F) be afinite graph with vertex-set W and edge-set F, and let
g e {2,3,...}. Wepermit H to have multiple edges and loops. To each edge
e € F we alocate a direction, turning H thus into a directed graph denoted by
H = (W, F). Whentheedgee = (u,v) € F isdirected from u to v, we write
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& = [u, v) for the corresponding directed edge, and we speak of u asthetail and
v asthe head of & It will turn out that the choices of directions are immaterial to
the principal conclusionsthat follow. A function f : F — {0,1,2,...,q—1}is
called amod-q flow on H if

(9.1) Y f®- ) f®=0 modg, foralweWw,
8eF: 8eF:
€ hashead w € hastail w

which isto say that flow is conserved (modulo q) at every vertex. A mod-q flow
f iscalled non-zero if f(€) # Oforall & F. We write Cy (q) for the number
of non-zero mod-q flows on H. Itis standard (and an easy exercise) that CH (Q)
does not depend on the directionsall ocated to the edgesof H, [313]. Thefunction
CH(q), viewed as afunction of g, is called the flow polynomial of H.

Theflow polynomial of H isan evaluation of its Tutte polynomial. Recall from
Section 3.6 the (Whitney) rank-generating function and the Tutte polynomial,

(9.2 Wy (U, v) = Z ur(H/)vC(H/), u,v e R,
F/CF
(93 Th(u, v) = (u— D™y (-1 v -1),

wherer (H”) = |W| — k(H’) istherank of thesubgraph H' = (W, F’), c(H’) =
|F'| — W] + k(H’) isits co-rank, and k(H") is the number of its connected
components (including isolated vertices). Note that

(9.4) Wi (U, v) = /)W 3 ol uyktH, u, v #0.
F/cF

The flow polynomial of H satisfies

(9.5) Ch(@) = (-1)/FIW (-1, —q)
= (-)*MTH0,1-q), ge{23...}.

See[40, 313]. Whentheneedfor adifferent notationarises, weshall write C(H; q)
for Cy (q), and similarly for other polynomials.

We return now to the random-cluster and Potts models on the finite graph
G = (V, E). Itisconvenient to allow a separate parameter for each edge of G,
andthusweletJ = (Je : e € E) beavector of non-negativenumbers, and we take
B € (0,00). Forqg € {2,3,...}, the g-state Potts measure on the configuration
spacex =1{1,2,..., q}V iswritten in this chapter as

1
96)  7pal0) = 7 exp{ZﬂJe(qse(a) - 1)}, cez,
ecE

IThisis not agood notation since H may have multiple edges.
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where, fore = (x, y) € E,

1 if Ox = O'y,

%e(0) = ooy = { 0 otherwise

and Zp isthe partition function

9.7) Zp=Y_ exp{ZﬁJe(qSe(o) - 1)}.

oceX ecE

This differs dightly from (1.5)—(1.6) in that different edges e may have different
interactions Je, and these interactions have been ‘re-parametrized’ by the factor
g. Thereason for defining 743 ¢ thus will emerge in the calculations that follow.

The corresponding two-point correlation function is given asin (1.14) by

1
(9.8 783,q(X, Y) = mgJ,q(0x = 0oy) — a, X,y eV.

We shall work often with the quantity qzsy.q(X, ¥) = 743,q(4d0,.0, — 1) and, for
ease of notation in the following, we write

(9.9) o(X,Y) =Qqrpaq(X, y), X,yeV,

thereby suppressing referenceto the parameters 8J and g. Note that, for the Ising
casewithq = 2, o (X, y) issimply the mean of the product ooy of the Ising spins
at x and at y, see (1.7).

Fromthegraph G = (V, E) we construct next acertain random graph. For any
vector m = (m(e) : e € E) of non-negative integers, let Gy, = (V, Em) be the
graph with vertex set V and, for each e € E, with exactly m(e) edgesin parallel
joining the endvertices of the edge e [the original edge e isitself removed]. Note
that

(9.10) |Eml =) _m(e).

ecE

Let A = (ke : e € E) be a family of non-negative reals, and let P =
(P(e) : e € E) be afamily of independent random variables such that P(e)
has the Poisson distribution with parameter Ae. We now consider the random
graph Gp = (V, Ep), which we call a Poisson graph with intensity A. Write Py
and EE,, for the corresponding probability measure and expectation operator.

For x,y € V, X # y, we denote by G}” the graph obtained from Gp by
adding an edge with endvertices x, y. If x and y are aready adjacent in Gp,
we add exactly one further edge between them. Potts-correlations and flows are
related by the following theorem?.

2The relationship between flows and correlation functions has been explored also in [112,
246, 247].
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(9.12) Theorem [146, 157]. Letq € {2,3,...} and Ae = BJe. Then

Ex(C(GpY; @)
9.12 Ly = 20 A
(912) X = F CGr)

X,y eV.

This formula takes an especially simple form when q = 2, since non-zero
mod-2 flows necessarily take the value 1 only. A finite graph H = (W, F) is
called even if the degree of every vertex w € W is even. It is elementary that
CH(2) = 1 (respectively, Ch (2) = 0) if H is even (respectively, not even), and
therefore

(9.13) Ea(CH(2)) = Py (H iseven).
By (9.12), for any graph G,

Py (GpY iseven)

(9.14) oY) = P, (Gp iseven) ’

when g = 2. Observations of this sort have led to the so-called ‘random-
current’ expansion for Ising models, thereby after some work [3, 5, 9] yielding
proofs amongst other things of the exponential decay of correlationsin the high-
temperature regime. We return to the case q = 2 in Sections 9.2-9.4.

Whereas Theorem 9.11 concerns Potts models only, there is a random-cluster
generalization. Werestrict ourselves here to the situation in which every edge has
the same parameter p, but we note that the result is easily generalized to allowing
different parameters for each edge. Recall that ¢, , denotes product measure on
Q = {0, 1} with density p.

(9.15) Theorem [146, 157]. Let p € [0,1) and q € (0, o0). Let Ae = A for all
ec E,wherep=1-e*9,
(& Forx,yeV,

Ey ((—DEPYIT(GRY; 0,1 - )
Ex((—DEPT(Gp; 0,1 - )

(—DoG,pgX < y) = , (9.16)

where c(F) isthe co-rank of the graph (V, F). In particular,

E.(C(GpY; q)

_ 2,3,...}. (9.17
E.CGpay €t b (917)

(d—DoG,pgX < y) =
(b) Forge{2,3,...},
¢G.p(@“”) = (1 - p)Fla-2/9gVIE, (C(Gp; q)). (9.18)
When q = 2, equation (9.18) reduces by (9.13) to
(9.19) ¢c.p2X @) = 2VIp, (Gp iseven).
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This may be simplified further. Let ¢(e) = P(e) modulo 2. It iseasily seen that
Gp isevenif and only if G, iseven, and that the 7 (e), e € E, are independent
Bernoulli variables with

B@ =1 =31-€%) =3p.
Equation (9.18) may therefore be written as
(9.20) ¢6,p(2<@)) = 2Vlpg /2 (the open subgraph of G is even).

Proof of Theorem9.11. Sincetheparameter 8 appearsawayswith themultiplica-
tive factor Je, we may without loss of generality take 8 = 1.

We begin with a calculation involving the Potts partition function Zp givenin
(9.7). Let Z; = {0,1,2,...} and consider vectorsm = (me : e € E) € ZE. By
a Taylor expansion in the variables Jg,

¥ 5\ am
(9.21) exp{—ZJe}sz Z <]‘[ e )a zp‘Jzo
ecE meZE ecE
=)
ame

=Ej (3PZP‘
IMZp = (]‘[ m)zp, me zE.
ecE e

By (9.7) with 8 = 1, and similarly to the proof of Theorem 1.10(a),
©022) 9"zp =Y [(@be(c) ~ )™

oeX ecE

=Y ] @) -1

oeX eeEm

SSTT Y (600 + 8ne1ase(o)]

oce¥ eeEm ne€{0,1}

) Z(_l)ue:ne=0}|q|{e:ne=1}|< I Se(o)ne>

where

ne{0,1}Em o€X ecEm
= Z (—1)le:ne=0ll g l{ene=1y| gkim.n)
ne{0,1}Em

where k(m, n) isthe number of connected componentsof the graph obtained from
Gy, after deletion of all edges e with ne = 0. Therefore, by (9.4)—9.5),

m — (—1)Eml —q) /e ne=1}| yk(m,n)
©29 "z == Y (-0 q
ne{0,1}Em
= (-1'"lg¥IWe,, (-1, ~q)

=q"VIC(Gm; ).
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Combining (9.21)—(9.23), we conclude that

(9.24) exp{— > Je}zp = q"E(C(Gp: Q).
ecE
Note in passing that equation (9.18) follows asin (1.12).
Let X,y € V. We define the unordered pair f = (X, y), and write 8¢ (o) =
dox.0y fOro € X. Then

(9.25)  o(X,y) =mgy,q(qdt (o) — 1)

1
=22 @) -1 exp{ZﬂJe(qsew) - 1)}.

P g€EX ecE

By an analysis parallel to (9.21)—(9.24),

(9.26) exp{ -3 Je} Y @ (o) — 1) exp{Z B Ie(qde(0) — 1)}

ecE oex ecE

= qVEL(C(GE”; q)),
and (9.12) follows by (9.24) and (9.25). O

Proof of Theorem9.15. Thistheorem may be proved directly, but we shall derive
it from Theorem 9.11.

(a) Equation (9.17) holds by Theorems 1.16 and 9.11. By (9.5), equation (9.16)
holdsfor q € {2, 3, ...}. Since both sides are the ratios of polynomialsin q and
e~ of finite order, (9.16) is an identity in q € (0, c0).

(b) Thiswas noted after (9.24) above. O

9.2 Flowsfor the Ising model

Henceforth in this chapter we assume that g = 2, and we begin with a reminder.
Let H = (W, F) beafinitegraph, andlet degr (w) denotethe degree of the vertex
w. Wecall H anevengraphif degr (w) isevenforevery w € W. Let H=(V,F)
be a directed graph obtained from H by assigning a direction to each edgein F.
Since anon-zero mod-2 flow on H may by definition take only the value 1,

1 if Hiseven,

(9:27) CH@ = { 0 otherwise.

Consider thelsingmodel onafinitegraph G = (V, E) with parametersie = 8 Je,
e e E. Asin(9.14),

Py (G} iseven)

(9.28) o(X,y) =2n2(X,y) = B, (Gp iseven)
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The value of such arepresentation will become clear in the following discussion,
which is based on material in[3, 234, 300]. In advance of this, we make aremark
concerning (9.28). In deciding whether Gp or G357 is an even graph, we need
only know the numbers P(e) when reduced modulo 2. That is, we can work with
¢ € Q = {0,1}E given by z(e) = P(e) mod 2. Since P(e) has the Poisson
distribution with parameter Ae, ¢ (€) hasthe Bernoulli distribution with parameter

pe = Pa(P(e) isodd) = 3(1 — g 2e),
We obtain thus from (9.28) that

Pp (38 = {X, ¥y}

9.29 y) =
(9.29) a(X,y) 6 (07 = 0)

3

wherep’ = (pg : € € E), ¢ denotes product measure on 2 with edge-densities
Pe, and

8§={veV: > ;(e)isodd}, [ eQ,
e e~v
wherethe sumis over al edges eincident to v.

Let M = (Me : e € E) be asequence of digoint finite sets indexed by E,
and let me = |Mg|. Asnoted in the last section, the vector M may be used to
construct a multigraph Gy, = (V, Em) in which each e € E isreplaced by me
edgesin parallel; we may take Me to be the set of such edges. For x,y € V, we
write ‘X <> yinm’ if x and y lie in the same component of G,. We define the
set 9M of sourcesof M by

(9.30) M = {v ev: Y meisodd}.
e e~v

For example, Ghisevenifandonly if dM = @. Fromthevector M weconstruct a
vector N = (Ne : e € E) by deleting each member of each Me with probability %
independently of all other elements. Thatis, welet Bj,i € |, Me, beindependent
Bernoulli random variables with parameter % and we set

Let PM denote the appropriate probability measure.
The following technical lemmais pivotal for the computations that follow.

(9.31) Theorem. Let M and m beasabove. If x, y € V aresuch that x # y and
X < yinmthen, for ACV,

PM(ON = {x,y}, dM\N) = A) =PM(BN =2, 3(M\ N) = A A {x,y}).
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Proof. Take Me to bethe set of edgesof Gy, parallel to e, and assumethat x <> y
inm. Let AC V. Let M betheset of al vectorsn = (ne : e € E) withne € Mg
for e € E. Let o be afixed path of G, with endvertices x, y, viewed as a set of
edges, and consider themap p : M — M given by

p(N)=n A a, newM.
The map p isone-one, and maps {n € M : an = {X,y}, a(M\ n) = A}
to{n e M :9n =2, a(M\n) = A A {x,y}}. Each member of M is
equiprobable under PM, and the claim follows. O

Let A = (Ae : € € E) beavector of non-negativereals, and recall the Poisson
graph with parameter A. The following is afairly immediate corollary of the last
theorem. Let M = (Me : e € E) and M’ = (M, : e € E) be vectors of digoint
finitesetssatisfying MeNM; = oforale, f € E,andletme = [Me|, m = Mg/,
e € E, beindependent random variablessuch that each meand m;, havethe Poisson
distribution with parameter Ae. Let M U M’ = (Mg U M} : e € E), and write
PP for the appropriate probability measure. The following lemmais based on the
so-called switching lemmaof [3].

(9.32) Corollary (Switchinglemma). Ifx,y € V aresuchthatx # yandx < y
inm+ m' then, for AC V,
P(OM = {x,y}, aM' = A|M U M’)
=P(OM =2, dM' = A A {X,y}|[MUM’), P-as.

Proof. Conditional on the sets Me U M, e € E, the sets M, are selected by the

independent removal of each element with probability % Theclaim followsfrom
Theorem 9.31. O

We present two applicationsof Corollary 9.32 to the Ising model, asin[3]. For
m=(me:ec E) e ZE, let

(9.33) om= {v eV: Z meisodd},

e e~v

asin (9.30). Inour study of the correlation functions ty 2(X, y), we shall asbefore
write

(X, Y) =21 2(X, Y) = mr,2(206,.0, — 1), X,y eV.
By (9.29),
Pr(0P = {X,y})
Py (0P = )
Let Qa denotethelaw of P conditional ontheevent (9P = A}, that is,
Qa(E)=Py(Pe E|0P=A).

We shall require two independent copies Py, P> of P with potentially different
conditionings, and thuswe write Qa.g = Qa x Qg.

(9.34) o(X,y) =
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(9.35) Theorem [3]. Let X, y, z € V bedistinct vertices. Then:

(X, y)? = Qg.p(X < yin P+ P2),
a(X,¥)o(y,2) = 0(X,2)Qx,z1.2(X <> yin P+ P2).

Proof. By (9.34) and Corollary 9.32,

(%, y)2 = Py x Pr(@PL = {X,y}, 9P2 = {X, ¥y}
P, (0P = 2)2
Py xPy@P1={X,y}, 3P2 = {X, y}, X < yin PL + Py)
- Py (0P = 2)2
P xPr(0Pr=0P =g, X < yinPy+ Po)
B PL(OP = )2
= Qg (X < yin P+ P2).

Similarly,

o(X,y)o(y,2)
_Px Py(dPL = {X,y}, aP2 = {y, z})

Py (3P = 2)2
_ Py xPr(0P1=2, 0P ={X,Z}, X < yin P1 + P»)
h Py (0P = )2

_Ph@P2={x,2})
T PP = o)
=0(X,2)Qx,z;;0(X < Yin P+ P2). a

Py xPr(x < yinPL4+ P2 |0PL =2, 0P = (X, Z})

Theorem 9.35 |eadsto animportant correlationinequality known asthe‘ Simon
inequality’. Let x, z € V bedistinct vertices. A subset W C V issaid to separate
x and z if x, z ¢ W and every path from x to z contains some vertex of W.

(9.36) Corollary (Simon inequality) [300]. Let x, z € V be distinct vertices,
and let W separate x and z. Then

o(%,2) < Y o(X, Y)Y, 2).
yeWw

Proof. By Theorem 9.35,

Z G(Xv Y)G(yv Z)

o(X, 2) = Z Qx,z,6(X <y in P+ Py)

yeW
= @{x,z};z(Hy eW: X< yinPL+ P2}|)-

yeW
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Assume that the event 0Py = {X, z} occurs. Onthisevent, X < zin Py + Po.
Since W separates x and z, the set {y € W : X <> yin Py 4+ Py} is non-empty
on this event. Therefore, its mean cardinality is at least one under the measure
Qix,2): », and the claim follows. O

The lsing model on G = (V, E) corresponds as described in Chapter 1 to a
random-cluster measure ¢, p,q Withq = 2. By Theorem 1.10, if 1 = A forall e,

G(X’ Y) = 27:)»,2()(7 y) = ¢G,p,q(x <> y)a

where p = 1—e 9 and q = 2. Therefore, the Simon inequality® may be written
in theform

(9.37) $G.p.aX < 2) < Y ¢6.paX < Y)éG.pgy < 2)
yeWw

whenever W separates x and z. It is a curious fact that this inequality holds also
when q = 1, as noticed by Hammerdey [177]; see [154, Chapter 6]. It may be
conjectured that it holdswhenever q € [1, 2].

The Simon inequality has an important consequence for the random-cluster
model with g = 2 on an infinite lattice, namely that the two-point correlation
function decays exponentially whenever it is summable. Let ¢ o be the random-
cluster measure on L9 whered > 2. We shall consider only the case p < pe(q),
and it is therefore unnecessary to mention boundary conditions.

(9.38) Corollary [300]. Letd > 2, q = 2, and let p be such that
(9.39) > p.q(0 < x) < oo.
xezd

Thereexistsy = y(p. q) € (0, co) such that

¢p’q(0 VAN Z) < e*HZH)/(DyQ)7 Ze Zd

By the corollary, condition (9.39) is both necessary and sufficient for exponen-
tial decay. Related results for exponential decay appear in Section 5.4-5.6.

Proof. We use the Simon inequality in the form (9.37) as in [177, 300]. Let
An=[—-n,n]%anddAn = An\ An_1, andtakeq = 2. By (9.37) withG = Ap,
and Proposition 5.12,

(9.40) Ppg(X < 2) < Z Pp.g(X < Y)ppqly < 2),
yeWw

3In association with related inequalities of Hammersley [177] and Lieb [234], see Theorem
9.44(b), thisis an example of what is sometimes called the Hammersley—Simon-Lieb inequality.
The Simon inequality is a specia case of the Boel-Kasteleyn inequdlities, [56, 57].
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for x, z € 9 and any finite separating set W.
By (9.39), thereexistsc € (0, 1) and N > 1 such that

Z ¢pq(0 < Xx) <cC.

XEIAN

For any integer k > 1 and any vertex z € 39 Akn, We have by progressive use of
(9.40) and the tranglation-invariance of ¢ q (see Theorem 4.19(b)) that

< Y ¢pq(0< Xx1)ppg(x1 < 2)
X1:
Ixali=N
< Y ) $pa(0 x0)ppg(x1 < X2dpg(x2 < 2)
X1: X2:
IX1I=N"[Ix2—x1[|=N
< Y D $pa0e X)) dpg(ke1 © X)Pp.g(k < 2)
XN e al=N
< ck,
Therefore, there exists g > 0 such that
¢p.q(0 < 2) <e 1?19 if |z isamultiple of N.
More generally, let z € Z9 and write || z]| = kN +| where0 < | < N. By (9.40),

$pq0 <2< > ¢pq(0 X)ppq(x < 2) < e N,
|\x\|§kN
Furthermore, ¢p q(0 <> z) < 1for z # 0, and the claim follows. O

We close this section with an improvement of the Simon inequality dueto Lieb
[234]. Thisimprovement may seem at first sight to be slender, but it leads to a
significant conclusion termed the ‘ vanishing of the mass gap’.

We first re-visit Theorem 9.31. Asusua, G = (V, E) isafinite graph, and we
partitionEasE = FUH,whereFNH = 2. LetM = (M¢ : e € E) beavector
of digoint finite setswith cardinalitiesme = |Mg|. WewriteMF = (Me: ee F)
and define the vector mF by

F { me ifeeF,
mg = )
0 otherwise,

and similarly for MM and mM. It iselementary that m = mF + m" | and that the
sets of sourcesof MF and MP arerelated by

(9.41) aMF A oMM =M.

As before Theorem 9.31, we select subsets Ne from the Me by deleting each
member independently at random with probability % For given M, the associated
probability measure is denoted by PM.
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(9.42) Theorem. Let F, H, M, and m be as above. If x,y € V are such that
X # yandx < yinmF then, for AC V,

PMONF = {x,y}, IN" =2, 4(M\ N) = A)
=PMONF =2, INH =2, a(M\ N) = A A {x,y}).

Proof. This follows that of Theorem 9.31. Let o be a fixed path of G+ with
endvertices x and y, and consider themap p(N) =n A «,n € M. Thismapisa
one—one correspondence between the two subsets of M corresponding to the two
eventsin question. O

We obtain as in the switching lemma, Corollary 9.32, the following corollary
involving the two independent random vectors M and M’, each being such that
me = |Me| and m; = |[M{| have the Poisson distribution with parameter A €
[0, 00). The proof follows that of Corollary 9.32.

(9.43) Corollary. Let E bepartitionedasE = F UH. If x, y € V aresuch that
x #yandx < yinmF +m'F then, for AC V,

P(AMF = {x,y}, aM" = 2, 9M’' = A|M U M)

=P(OMF =2, M" =2, M’ = A A {(x,y}[MUM’'),  P-as

Let P, and P, be independent copies of the Poisson field P, with inten-
sity A € [0, 00), and let E be partitioned as E = F U H. We write Qa B:c
for the probability measure governing the pair P1, P> conditional on the event
{aPF = Ayn{aP = B} N {3P, = C}. We recall from (9.28) that o (x, y)

denotes a certain correlation function associated with the graph G = (V, E), and
wewrite o F (x, y) for the quantity defined similarly on the smaller graph (V, F).

(9.44) Theorem. Let x,y,z € V bedistinct vertices, and let F C E.
(8 We havethat

oF (X, Yo (y,2) = 0(X, 2Qp o (x.5(X < zin Pf + P)).

(b) Liebinequality [234]. Let W separate x and z, and let F bethe set of edges
with at least one endvertex not separated by W from x. Then

o(x,2) < Y oF (X Yoy, 2.
yeWw

ThesetsW and F of part (b) areillustratedin Figure9.1. By therandom-cluster
representation of Theorem 1.16 and positive association,

oF (X, y) = ¢ pq(x < y | dl edgesin E \ F are closed)
< ¢, pgX < Y) =0(X,Y),
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Figure9.1. Every path from x to y passes through W. The edgesinside W comprise F.
whereq = 2and p = 1 — e 2 as before. Therefore, the Lieb inequality is a
strengthening of the Simon inequality.

Proof. (a) Since F and H are digoint, P{ and P! are independent random
vectors. Asin the proof of Theorem 9.35, by Corollary 9.43,
oF (X, y)o(y, 2)

_ PaxPa@P] =(x,y), 0P =2, aP, = {y, 2))

PP =2)P (0P = 2)Pu (0P = ©)

Py x P 0P =P =2, 9P, = {x, 2}, x & yin P + PJ)

N P(dPf = 2P, (0P} = 2)P, (0P, = 2)
Py x Pu(@PF =8Pl =2, P, = [x,2}, x & yin P} + P))
P,(dP] = 2)P, P! = 2)P, (aP2 = (X, 2})

=0 (X,2)Qp.0:(x2)(X < yin Pf + PJ),

=0(X,2)-

(b) Evidently,

oF(x, y)o(y, 2 :
Z e Z Qo.z:x,2 (X < yinPf +P))

yeW yeWw
= Qoo xz(Ily e W:x < yin Pf + Pf}))
Z 17

since, conditional on d P2 = {x, z}, P> contains (almost surely) a path from x to
z, and any such path necessarily intersects W. O

We return now to the question of exponential decay, which weformulatein the
context of the random-cluster model on Z9 with g = 2. By Theorem 9.44(b) with
W = 9 Ak asbefore, ¢p q(0 <> ) decays exponentialy as ||z|| — oo if and only
if
(9.45) Z darpg0ex) <1 for somek > 1,

X€d Ak
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where g = 2. Condition (9.45) is a ‘finite-volume condition’ in that it uses
probability measures on finite graphs only. We arrive thus at the following result,
sometimes termed the ‘vanishing of the massgap’. Let g = 2 and

. 1
Y(p,q) = nll)rgo {_ﬁ Iog¢8,q(0 < aAn)}

asin Theorem5.45. Itisclear that v (p, q) isnon-increasingin p,andvy(p, q) = 0
if p > pc(q). One of the characteristics of a first-order phase transition is the
(strict) exponential decay of free-boundary-condition connectivity probabilitiesat
the critical point, see Theorems 6.35(c) and 7.33.

(9.46) Theorem (Vanishing mass gap) [234]. Let g = 2. Then ¥ (p, Q)
decreasesto O as p 1 pe(q). Inparticular, ¥ (pc(q), q) = O.

Proof. We consider only values of p satisfyinge < p < 1 — ¢ wheree > 0is
fixedandsmall. Letk > 1, and let n(w) bethe set of open edgesof aconfiguration
. By Theorem 3.12 and the Cauchy—Schwarz inequality, with g = 2 throughout,

d
0< do Z DAy, p.q0 < X)

X€d Ak

1
< cov 1o
<> @5kl Lioox)

Xed Ak
1
< [ 2
< ;Ak ca—oV Paepalin®
< Clkdel’

for some constant C; = Cj(¢), where covik denotes covariance with respect to
®Aw.p.q- Therefore fore < p< p’ <1—c¢,

Y bapg0o x) <CKHP =P+ D apq0< X).
X€d Ak X€d Ak

Itfollowsthat, if (9.45) holdsfor some p € (¢, 1—¢), thenitholdsfor some p’ > p.
That is, if ¢p,q(0 < z) decays exponentialy as ||z — oo, then the same holds
for some p’ satisfying p’ > p. Theset {p € (0,1) : ¥(p,q) > 0} istherefore
open. Since ¥ (p, q) = 0for p > pc(q), wededucethat v (pc(q), q) = O.

By Theorem 4.28(c) and the second inequality of (5.46), ¥ (p, q) isthe limit
from above of upper-semicontinuousfunctions of p. Therefore, v (p, q) isitself
upper-semicontinuous, and hence left-continuous. O

Could some of the results of this section be valid for more general values of q
than smply g = 2? It is known that the mass gap vanisheswhen q = 1, [154,
Thm 6.14], and does not vanish for sufficiently large values of g (and any d > 2),
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see [224] and Section 7.5. Therefore, Theorem 9.44(b) is not generally true for
large q. It seems possible that the conclusions hold for sufficiently small g, but
thisisunproven.

One may ask whether the weaker Simon inequality, Corollary 9.36, might hold
for moregeneral valuesof . Thefollowing examplewould need to be assimilated
in any such result.

(9.47) Example®. Let G = (V, E) be acycle of length m, illustrated in Figure
9.2. We work with the partition function

p n(w)| K@)
(9.48) Y = Z (Tp) gk,

weR

where © = {0, 1}F asusual. Since

{ 1 if n(w) = E,
k(w) = _
m — |n(w)| otherwise,
we have that

m-—1 m _ .
(9.49) Y = (l-)‘qum_] +a"g=(a+q"-a"+a"q

j=0

=Q"+(q—1a™
where 0
=1-p Q=ate

Let x,y € V, let P1, P> be thetwo pathsjoining x and y, and let k and | be
their respective lengths. Configurationswhich contain Py but not P> contribute

-1

-1
Y1 = Z <;)ak”quj = oK Z (;)aquj =a*(Q —ah
i=0

j=0

to the summation of (9.48), with a similar contribution Y» from configurations
containing P> but not P;. The single configuration containing both P; and P,
contributes Y12 = qa™ to the summation. Therefore,

Y1+ Y2+ Y12

_ @+ @'+ @-2@/Q"
1+ (@ —D(@/Qm ‘

4Calculations by S. Janson, on 11 March 2003 at Melbourn.
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Figure 9.2. A cycle of length 8 with four marked vertices.

Consider now the specific exampleillustrated in Figure 9.2. Takem = 8, let
X, y be opposite one another, and let w1, w2 betheintermediate verticesindicated
in thefigure. For fixed q and small «, by (9.50),

4 8
(9.51) bp.q(X < y) =2 <%> +(@-2 <%> + 0™,

[A corresponding expressionisvalid for fixed « and large q.] Similarly,

2 6
¢pg(X < wj) = Ppq(wj < y) = (5) + (5) + O(@®), =12
Q Q
Hence,
(9.52)

2 o \2 o \6 2
Z¢p,q(x < wj)Pp,q(wj < y) = 2{ <6> + <6> + O((xg)}

j=1
SORORE

Comparing (9.51)—9.52), we see that

2
Ppg(X < y) > Z¢p,q(x < wj)Pp,q(wj < Y)
=1

if g > 6 and « issufficiently small. This may be compared with (9.37).
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9.3 Exponential decay for the Ising model

In the remaining two sections of this chapter, we review certain aspects of the
mathematics of the Ising model in two and more dimensions. Severa of the
outstanding problemsfor Pottsand random-cluster model shave rigoroussol utions
in the Ising case, when g = 2, and it is a challenge of substance to extend such
results (where valid) to the case of general g € [1,00). Our account of the
Ising model will be restricted to the work of Aizenman, Barsky, and Fernandez
as reported in two major papers [5, 9], of which we begin in this section with
thefirst. The principal technique of these papersisthe so-called ‘ random-current
representation’, that is, the representation of the Ising random field in terms of
non-zero mod-2 flows. See, for example, the representation (9.28) for the two-
point correlation function. Without more ado, we state the main theorem in the
language of the random-cluster model.

(9.53) Theorem (Finite susceptibility for q = 2 random-cluster model) [5].
Let pe[0,1],9=2,d> 2 andlet ¢%’q be the wired random-cluster measure
on LY. The open cluster C at the origin satisfies

bpq(ICD) <00, p< pe(@).

This implies exponential decay, by Theorem 9.38: if p < pc(q), the connec-
tivity function ¢g,q(o <> 7) decays exponentially to zero as ||z]] — oo. When

d =2, itimpliesthat pc(2) = v/2/(1 + +/2), see Theorem 6.18.

(9.54) Theorem (M ean-field bound) [5]. Under theconditionsstatedin Theorem
9.53, there exists a constant ¢ = ¢(d) > 0 such that the percolation probability
61(p. Q) = ¢ (0 < 00) satisfies

(9.55) oY (p.2) > c(p—po)?. P> pe= pe(.

Throughtheuseof scaling theory (see[154, Chapter 9]), oneisledto predictions
concerning theexistenceof critical exponentsfor quantitiesexhibiting singularities
at the critical point pc(q). It is believed in particular that the function 0(-, 2)
possesses a critical exponent® in that there exists b € (0, co) satisfying

(9.56) 01(p,2) = |p— pelPMoD) asp | pe= pe(2).

If thisistrue, thenb < % by Theorem 9.54. It turns out that the latter inequality
is sharp in the sense that, when d > 4, it is satisfied with equality; see Theorem

9.58. Thevalueb = % isinadditionthe‘mean-field’ valueof thecritical exponent,

SWe write b rather than the more usual 8 for the critical exponent associated with the perco-
lation probability, in order to avoid duplication with the inverse-temperature of the Ising model.
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as we shall see in Section 10.7 in the context of the random-cluster model on a
complete graph.

Proofs of the above theorems may be found in [5], and are omitted from the
current work since they are Ising-specific and have not (yet) been generalized to
therandom-cluster setting for general . Thekey ingredient isthe random-current
representation of the last section, utilized with ingenuity.

Nevertheless, included here is the briefest sketch of the approach; there is a
striking similarity to, but also striking differences from, that used to prove corre-
sponding results for percolation, see [4], [154, Section 5.3]. First, oneintroduces
an external field h into the ferromagnetic |sing model with inverse-temperature
B. Thisamountsin the context of the random-cluster model to the inclusion of a
special vertex called by some the ‘ghost’, to which every vertex is joined by an
edge with parameter y = 1 — e #". Oneworks on afinite box A with ‘toroidal’
boundary conditions. An important step in the proof is the following differential
inequality for the mean spin-value My (8, h) at the origin:

(9.57) My < tanh(gh) IMa + M3 (,3— + MA> .

a(Bh) B
The proof of this uses the random-current representation.
Equation (9.57) is complemented by two further differential inequalities:
oMy oMy oMy Ma
<JIMp——, < —.
o~ " "a(ph)’ a(gh) = ph

Using an analysis presented in [4] for percolation, the three inequalities above
imply Theorem 9.54.

9.4 Thelsing model in four and more dimensions

Just astwo-dimensional systems have special properties, so thereare special argu-
ments valid when the number d of dimensionsis sufficiently large. For example,
percolationin 19 and moredimensionsisrather well understood through the work
of Hara and Slade and others, [23], [154, Section 10.3], [179, 303], using the
so-called ‘lace expansion’. One expectsthat resultsfor percolationin high dimen-
sions will be extended in due coursetod > 6, and evenin parttod > 6. Key
to thiswork is the so-called ‘triangle condition’, namely that T (pc) < oo where

Pc = pc(1) and

TP = Y ¢p(0< X)gp(x < Y)gp(y < 0).

x,yezd

The situation for the Ising model, and therefore for the q = 2 random-cluster
model, isalsowell understood, but thistime under the considerably lessrestrictive
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assumption that d > 4. The counterpart of the triangle condition is the ‘bubble
condition’, namely that B(8c) < oo where, intheusual notation of thelsing model
without external field,

B(B) = ) _ (o00x)>.

xezd

In thelanguage of the random-cluster model with p = 1—e~#, the corresponding
quantity is
B(B) = ) _ 9520 < %)

xezd

Once again, one introduces an external field and then establishes a differential
inequality viathe random-current representation. We state the main result in the
language of the random-cluster model.

(9.58) Theorem (Critical exponent for q = 2 random-cluster model) [9].
Letqg =2andd > 4. We have that

01 (p, ) = (p— po) 2D asp | pe= pe(2).

Thus, the critical exponent b existswhen d > 4, and it takes its ‘ mean-field’
valueb = 3. Thisimpliesin particular that the percolation probability 61(p, 2) is
acontinuousfunction of p at the critical value pc(2). Continuity has been proved
by classical methods in two dimensions®, and there remains only the d = 3 case
for which the continuity of 61(-, 2) is as yet unproved. In summary, it is proved
when d # 3 that the phase transition is of second order, and thisis believed to be
sowhend = 3dso.

Similarly to the results of the last section, Theorem 9.58 is proved by an anal-
ysis of the model parametrized by the two variables 8, h. This yields several
further facts including an exact critical exponent for the behaviour of the Ising
magnetization M (8, h) with 8 = Bc and h | 0, namely

M (e, h) = h3@oD)  a5h | 0.

We refer the reader to [5, 9] for details of the random-current representation
in practice, for proofs of the above results and of more detailed asymptotics, and
for a more extensive bibliography. The random-current representation is a key
ingredient in the derivation of a lace expansion for the Ising model with either
nearest-neighbour or spread-out interactions, [288]. This has led to asymptotic
formulaefor thetwo-point correlationfunctionwhend > 4. A broader perspective
on phase transitions may be found in [118].

SNote added at reprinting: a probabilistic proof can be found in [329, 330].
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Chapter 10
On Other Graphs

Summary. Exact solutions are known for the random-cluster models on
complete graphs and on regular trees, and these provide theories of mean-
field-type. Thereisaspecial argument for the compl ete graph which utilizes
the theory of Erdés—Rényi random graphs, and leads to exact calculations
valid for al valuesof q € (0, o). Thetransitionisof first order if and only
if g € (2, 00). The (non-)uniqueness of random-cluster measures on atree,
when subject to a variety of boundary conditions, may be studied via an
iterative formula permitting exact calculations of the critical value and the
percolation probability. There is a discussion of the random-cluster model
on a general non-amenable graph.

10.1 Mean-field theory

The theory of phase transitions addresses primarily singul arities associated with
spaces of finite dimension. There are two reasons for considering a ‘ mean-field’
theory in which the number d of dimensions may be considered to take the value
oo. Firstly, the major problems confronting the mathematicsliein the geometrical
constraintsimposed by finite-dimensional Euclidean space; asolution for ‘infinite
dimension’ can cast light on the case of finite dimension. The second reason is
the desire to understand better the d-dimensional process in the limit of large d.
One is led thus to the problems of establishing the theory of a process viewed
as co-dimensional, and to proving that this is the limit in an appropriate sense
of the d-dimensional process. Progressis well advanced on these two problems
for percolation (see [154, Chapter 10]) but there remains much to be done for the
random-cluster model.

Being informed by progress for percolation, it is natural to consider as mean-
field model stherandom-cluster model son complete graphsand on an infinitetree.
In the former case, we consider the model on the completegraph Ky, on n vertices,
and we pass to the limit asnh — oo. The vertex-degreestend to co asn — oo,
and some re-scaling is done in order to establish a non-trivial limit. The correct
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way to do thisisto set p = A/n for fixed A > 0. The consequent theory may be
regarded as an extension of the usual Erd6s-Reényi theory of random graphs, [61,
194]. This model is expounded in Section 10.2. The main results are described
in Section 10.3, and are proved in Sections 10.4-10.6. The nature of the phase
transition is discussed in Section 10.7, and the consequences for large deviations
of cluster-counts are presented in Section 10.8. The principal reference! is[62],
of which heavy use is madein this chapter.

The random-cluster model on a finite tree is essentially trivial. Owing to the
absenceof circuits, arandom-cluster measurethereonissimply aproduct measure.
Thetreeisamoreinteresting setting when it isinfinite and subjected to boundary
conditions. There is a continuum of random-cluster measures indexed by the set
of possibleboundary conditions. The present state of knowledgeis summarizedin
Sections 10.9-10.11. The relevant references are [160, 167, 196] but the current
treatment is fundamentally different.

Treesare examples of graphswhose boxes have surface/volumeratios bounded
away from 0. Such graphs are termed ‘non-amenable’ and, subject to further
conditions, they may have three phases rather than the more usual two. A brief
account of this phenomenon may be found in Section 10.12.

10.2 On complete graphs

Letn > 1, andlet Ky = (V, V@) be the complete graph on the vertex set V =
Vo ={1.2, ..., n},withedge-settheset V@ of all (}) pairsof unordered elements
of V. We shall consider the random-cluster measure on K, with parameters
p € (0,1) andq € (0, 00). We define the ‘weight function’

(10.2) Prpg(F) = pFla— p@-Figkv.F) - Fcy®

where k(V, F) denotes the number of components of the graph (V, F). The
partition functionis

(102) Zn’p’q: Z lsn’p’q(F)
Fcv®

and the random-cluster measure on subsets of V @ isthen given by

5n, p,q(F)

.,  Fcv®
Zn.p.q

(10.3) ¢n.pq(F) =

Thus, for any givenn, p, g, themeasure ¢n, p,q isthelaw of arandomgraphwithn
verticeswhich wedenoteby Gn, p q. Wesometimeswrite ¢n, p q(F) as¢v, p,q(F).

1The random-cluster model on the complete graph is related to the ‘first-shell’ model of
Whittle, [317, 318].
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5
Ac(q)

2 4 6 8 10
q

Figure 10.1. Thecritical value A¢(q). Thereis adiscontinuity in the second derivative at the
vaueq = 2.

In order to facilitate the notation later, we have chosen to take as sampl e space the
set of subsets of V@ rather than the vector space {0, 1}V

The random-cluster measure of (10.3) has two parameters, p and q. When
q = 1, we recover the usual Erd6s-Rényi model usually denoted by Gp, p, see
[61, 194]. Whenq € {2, 3,...}, the random-cluster model correspondsin the
usual way to a Potts model on the complete graph K, with q states and with
inverse-temperature 8 = —log(1 — p).

The principal techniquefor analysing the mean-field Potts model relies heavily
upon the assumption that q is an integer, see [324]. Thistechniqueisinvalid for
genera real values of g, and one needs a new method in order to understand the
full model. The principal extratechnique, described in Section 10.3, is a method
whereby properties of Gp pq may be studied via corresponding properties of
the usua random graph Gp p. Unlike the case of lattice systems, this allows
an essentially complete analysis of the asymptotic properties of random-cluster
measureson K, for all valuesof p € (0, 1) andq € (0, oo). Resultsfor ¢n p q are
obtained using combinatorial estimates, and no useis made of the FK G inequality.

As in the Erdés-Reényi theory of the giant component when g = 1, we set
p = A/n where A is a positive constant, and we study the size of the largest
component of the ensuing graph Gn ;. /n.q inthelimitasn — oo. It turnsout that
thereisacritical value of 1, depending on the value of g, that marksthe arrival of
a‘giant component’ of the graph. Thiscritical valueis given by

q ifge (2,

qg-1 .
2 (q—2> log(q—1) ifqe (2 00),

(10.4) Ae(Q) = {

and is plotted in Figure 10.1
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It will turn out that the proportion of verticesin thelargest component isroughly
constant, namely 6 (A, q), for large n. It is convenient to introduce a definition of
0 immediately, namely

0 ifA <A ,
(10.5) 60.,q) = { 1< 2el@
Omax 1T A > Ac(Q),
where Omax 1S the largest root of the equation
1-0
10.6 R
(108) 1+ (-1

Theroots of (10.6) areillustrated in Figure 10.2.
We note some of the propertiesof 6(, q). Firstly, 6(x, q) > 0if and only if

either: A > Ac(Q),
or: A =x(q)andqg > 2,

see Lemma 10.12. Secondly, for al g € (0O, 00), 6(A, q) isnon-decreasing in A,
and it follows that 6(-, q) is continuous if g € (0, 2], and has a unique (jump)
discontinuity at A = Ac(Q) if q € (2, 00). Thisjump discontinuity correspondsto
a phase transition of first order.

We say that ‘almost every (ae) Gn pqg Satisfies property IT', for a given
sequence p = pn and afixed q, if

(l)n’ p’q(Gn’ p.q haS H) e d 1 asn— oo.

We summarize the main results of the following sections as follows.

(@ If0 < 1 < xc(q) and g € (0, 00), then almost every Gp 3 /n,q has largest
component of order log n.

(b) If A > Ac(g) and g € (0, o0), then almost every Gp ;/n,q consists of a
‘giant component’ of order 6(x, q)n, together with other components of
order logn or smaller.

(€) If A =xc(q)andq € (0, 2], then almost every Gn 3 /n,q haslargest compo-
nent of order n%/3,

Thebehaviour of Gp ;,/n,q Withq € (2, oo) and A = An — Ac(q) hasbeenstudied
further in the combinatorial analysis of [238].

Therearetwo main stepsin establishing the abovefacts. Thefirstisto establish
therelation (10.6) by studying the size of thelargest component of Gy, ;,/n,q. When
g € (2, 00), (10.6) has three solutions for large A, see Figure 10.2. In order to
decide which of theseis the density of the largest component, we shall study the
number of edgesin Gn ;/n,q. Thatisto say, we shall find the function v (1, q)
such that almost every Gp 5 /n,q has (order) ¥ (4, q)n edges. It will turn out that
the function v (-, q) is discontinuous at the critical point of a first-order phase
transition.

The material presented here for the random-cluster model on K, istaken from
[62]. See also [238].
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O, q) 1

0.5

-05 ¢

Or,q) 1
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o, q) 1
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~

qg=12

1 2 3 4 5 6 3
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1 3 4 5 6 7 Y
( a=4

[10.2]

Figure 10.2. The roots of equation (10.6) are plotted against A in the three casesq = 1.2,
q=2,q9=4 Thereisawaysaroot § = 0, and there is a further root which is drawn here.
Thelatter has been extended into the lower half-plane (of negative 0), although thisregion has
no apparent probabilistic significance.
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10.3 Main results for the complete graph

Letg € (0, 00) and p = A/n where A isapositive constant. For ease of notation,
we shall sometimes suppress explicit referenceto q. We shall make heavy use of
the critical value A¢(q) givenin (10.4), and the function 6 (1) = 6 (A, q) defined
in (10.5)—(10.6). The properties of roots of (10.6) will be used in some detail, but
thesearedeferred until Lemma10.12. For the momentwenoteonly that 6(A) = 0
if and only if: either A < Ac(Q),0r A = Ac(Q) andq < 2.

Therearethree principal theoremsdealing respectively with the subcritical case
A < Ac(Q), the supercritical case A > A¢(q), and the critical case . = A¢(Q). In
the matter of notation, for a sequence (X, : n = 1,2, ...) of random variables,
we write X, = Op(f(n)) if X,/f(n) isbounded in probability:

P(IXnl < f(Mw(M) -1  asn— oo

for any sequence w(n) satisfying w(n) — oo asnh — oo. Similarly, we write
Xn = 0p(f(n)) if Xp/f(n) — 0in probability asn — oo:

P(|Xn| < f(N)/o()) > 1 asn — oo

for some sequence w(n) satisfying w(n) — oco. Convergence in probability is
P
denoted by the symbol —.

(10.7) Theorem (Subcritical case) [62]. Let g € (0, c0) and A < Ac(Q).
(8 Almost every Gn,;/n,q comprises trees and unicyclic components only.
(b) ThereareOp(1) unicycliccomponentswith atotal number Op(1) of vertices.

(c) Thelargest component of almost every G ;. /n,q isatreewith order o logn+
Op(loglogn), where

}z—log(k/q)+&—1>o.
o q

(d) The number of edgesin Gn 3 /n,q iSAN/(20) + 0p(N).

(10.8) Theorem (Supercritical case) [62]. Let g € (0, c0) and A > Ac(Q).
(8 Almost every Gp ;./n,q consists of a giant component, trees, and unicyclic
components.

(b) The number of vertices in the giant component is 6 (1)n + op(n), and the
number of edgesis

AO(N) {E + (} — E) Q(A)} N + op(N).
q 2 q
(c) The largest tree in almost every Gp ;. /n,q has order «logn + op(logn),
where 1 N
- =—logp+p-1>0, B= a(1—9()\)).
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(d) ThereareOp(1) unicycliccomponentswith atotal number Op(1) of vertices.
(€) The number of edgesin Gp ;. /n,q is
A

2
% [14 (@ — DOM)?]n+ 0p(n).

(10.9) Theorem (Critical case) [62]. Letq € [1, 2] and A = A¢(Q).
(@) Almost every Gp ;. /n,q consists of trees, unicyclic components, and Op(1)
components with more than one cycle.
(b) Thelargest component has order op(n).
(c) Thetotal number of verticesin unicyclic componentsis Op(n?/3).
(d) Thelargest tree has order Op(n?/3).
More detailed asymptoticsareavailablefor Gp ;. /n,q by looking deeper into the

proofs. Thelast theorem hasbeen extendedtothecasesq € (0, 1) andq € (2, o0)
in [238], where a detailed combinatorial analysis has been performed.

The giant component, when it exists, has order approximately 6 (A)n, with 9 (1)
given by (10.5)—(10.6). We study next the roots of (10.6). Notefirst that & = 0
satisfies (10.6) for all A and g, and that all strictly positiverootssatisfy 0 < 6 < 1.
Let

(10.10) f(0) = gl[log{1~|— @-10)—logl—6)],  6€,1),

and note that 6 € (0, 1) satisfies (10.6) if and only if f(6) = A. Here are two
elementary lemmas concerning the function f.

(10.11) Lemma. Thefunction f isstrictly convexon (0, 1), and satisfies f (0+) =
gand f(1-) = oo.
(& If g € (0, 2], thefunction f isstrictly increasing.
(b) If g € (2, ), there exists Omin € (0, 1) such that f is strictly decreasing
on (0, 6min) and strictly increasing on (Omin, 1).

Proof. If t > —1 then (1 + t9)~ 1 is a strictly convex function of 6 on (0, 1).

Hence, the function
-1 dt
F(0) = f _at
1 1416

is strictly convex. Furthermore,

611 1-06 €l0 €

implyingthat f (1—) = oco. Applying Taylor’stheorem about the point & = 0, we
find that

1
UOE [CES 30— 1?02+ 0 + 36 + 0(63)]
=g+ 302 - )6 +0(6?),
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f(0)

8

6 -

q>2
4 |
2
1<q<?2
0.25 05 0.75 1
0

Figure 10.3. Sketches of the function f (9) inthethreecases1 <q < 2,g=2,andq > 2.
The respective values of g can be read off from the y-axis, since f (0+) = q. Notethat f is
strictly increasing if and only if g < 2, and f/(0) = 0 when g = 2. Recall that the positive
roots of (10.6) are obtained by intersecting the graph of f by the horizonta line f (6) = A.

whence f(0+) = g and f'(0+) = %q(z — (). These facts imply parts (a) and
(b) of the lemma. O

In Figure 10.3 is plotted f against 6 in thethreecasesq € [1, 2), g = 2, and
g € (2,00). Sinced € (0,1) isaroot of (10.6) if and only if f () = A, Lemma
10.11 has the following consequence.

(10.12) Lemma. The non-negative roots of equation (10.6) are given as follows,
in additionto theroot 6 = 0.

(& Letq e (0,2].
(i) If 0 < X < Ac(q) = q, thereexists a uniqueroot 6 = 0.
(ii) If g < A, there exists a unique positive root Omax (), which satisfies
Omax(q+) = 0.
(b) Letg € (2, 00), andlet Amin = f (Omin) WherefminisgiveninLemma10.11.
(i) If 0 < A < Amin, thereexistsa uniqueroot & = 0.
(@i) If A = Amin, then Omin is the unique positive root.

(iii) If Amin < A < Q, there exist exactly two positive roots, 61(A) and
Omax (1)
(iv) If A > q, there exists a unique positive root Omax (1).

We shall see later that Amin < Ac(Q) < q when g > 2, and that the function
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0()) of Theorems 10.7-10.9 satisfies

0 ifg <2,
10.13 e = -
(10.13) (he(@)) q-2 g2

-1

Furthermore, weshall obtainin Section 10.6 thefollowing result for the asymptotic
behaviour of the partition function Zn 5 /n,q an — oo. Thiswill find application
in Section 10.8 to large deviations for the cluster-count of the random-cluster
measure.

(10.14) Theorem (Existence of pressure) [62]. 1fq € (0, oo0) and A € (0, 00),
1
- 09 Zn,a/n,g = n(d) asn — oo,

where the ‘pressure’ n(1) = n(i, q) isgiven by

_90m) gq-1
=2 29 A+ logq

(10.15) 1)

and g(#) isgiven asin (10.46) by
9(0) =—-(@-D@2—-0)log(l —6) — [2+ (q — 1)#] log[1 + (q — 1)&].

The proofs of Theorems 10.7-10.9 and 10.14 are given in Section 10.6 for
g € (1, 00). For proofsinthe case q € (0, 1), thereader isreferred to [62].

10.4 The fundamental proposition

Thereisafundamental technique which allows the study of Gp, p q viathe prop-
erties of the usual random graph G p.1. Letr € [0, 1] befixed. Given arandom
graph Gp, p,q, we colour each component either red (with probability r) or green
(with probability 1 — r); different components are coloured independently of one
another. Theunion of thered componentsiscalled thered subgraph of Gp, p ¢, and
the green componentsform the green subgraph. Let R be the set of red vertices,
that is, the (random) vertex-set of the red subgraph. We seein the next lemmathat
the (conditional) distribution of the red subgraph is a random-cluster measure.

(10.16) Proposition. Let V; be a subset of V = {1, 2, ..., n} with cardinality
[Vi] = n1. Conditional on the event {R = V4}, the red subgraph of Gp p q is
distributed as Gy, p,rq, and the green subgraph is distributed as Gv\v,, p,(1-r)q-
Furthermore, thered subgraphisconditionally independent of the green subgraph.

Proof. SetVo =V \ Vi, n2 = |Vo| = n—ng,andlet Ej C Vi(z) fori =1, 2.
With k(U, F) the number of components of the graph (U, F),

k(V, E1U E2) = k(V1, E1) +k(V2, E2).
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Therefore, the probability that the red graph is (V1, E1) and the green graph is
(V2, E2) equals

E1UE ) —|E1UE2| yk(V,E1UE
!pl 1Bl (1 — p)(z) IE1VE2Igk(V, E1UE) rk(Vl,El)(l_r)k(Vz,Ez)

Znpg
= C¢v1, p,rq ( E1)¢V2, p.(1-r)q ( EZ),

for some positive constant ¢ = c¢(n, p, g, n1). Hence, conditional on R = V;
and the green subgraph being (V2, E>), the probability that the red subgraph is
(V1, Eq) isprecisely ¢v, p.rq(E1). O

In this context, we shall write N rather than n; for the (random) number of
red vertices. Thus N is a random variable, and G, p,rq is a random graph on a
random number of vertices.

If g € [1,00) andr = g, the red subgraph is distributed as G, p- Muchis
known about such arandom graph, see [61, 194]. By studying the distribution of
N and using known facts about Gy, p, one may deduce much about the structure
of G, p,q- Similarly, in order to study the random-cluster mode! with g € (0, 1),
one appliesProposition 10.16to G, p withr = g, obtaining that the red subgraph
is distributed as Gn,p,q. By using known facts about G, p, together with some
distributional propertiesof N, wemay deriveresultsfor Gm, p g withmlarge. The
details of the q € (0O, 1) case are omitted but may be foundin [62].

Hereisacorollary which will be of use later.

(10.17) Lemma. Letq € [1, co). For any sequence p = pn, almost every Gn p q
has at most one component with order at least n%/4.

Proof. Let L = L(G) bethe number of componentsof arandom graph G having
order at least %4, Suppose L > 2, and pick two of these in some arbitrary way.
With probability r2 both of these are coloured red. Settingr = q~1, we find by
[61, Thm V1.9] that

Pgnpal =2 < > ¢mpa(l =2 pq(RI=m)

n3/4<m<n

< _max ¢m,p,1(|-22)
n3/4<m<n

-0 asn — oo. O
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10.5 The size of the largest component

We assume henceforth that q € [1, 00). Let ®,n denote the number of vertices
in the largest component of Gp ;,/n,q, and notethat 0 < ©, < 1. If two or more
‘largest components’ exist, we pick one of these at random. All other components
are called ‘small’ and, by Lemma 10.17, all small components of almost every
Gn.»/n.q have orders less than n¥/4.

Consider the colouring schemeof Proposition 10.16 withr = g1, and suppose
that Gn /n,q has components of order ©nn, vz, v3, ..., vk where k is the total
number of componentsand we shall assumethat v; < n%4fori > 2. Thenumber
of red verticesin the small components has conditional expectation

k
Zvir =r(1l-0Opn

i=2
and variance )
D vArd—r) <> v <nmaxv <n’/4
i—2 i—2 122
Hence, thereisatotal of r (1— ®n)n+op(n) red verticesin the small components.
Since the largest component may or may not be coloured red, there are two
possibilities for the red graph:
(i) with probability r, it has

Onn+r1(1—Bp)n+0p(n) =[r + (L —r)On]n + op(n)

vertices, of which ®,n belong to the largest component,
(i) with probability 1 —r, it hasr (1 — ®n)n + 0p(n) vertices, and the largest
component has order less than n%/4.
Inthefirst case, the red graph is distributed as a supercritical Gy /v graph, and
in the second case as a subcritical Gy 7/ graph. Here, n” and n” are random
integers and, with probability tendingto 1, A’ = n'p > 1 > .” = n”p. This
leads to the next lemma.

(10.18) Lemma. If A > q > 1, thereexists 6y > 0 such that ®, > 6p for almost
e\/ery Gn’)\/n’q.

Proof. Theassertioniswell knownwhenq = 1, seeforexample[61, ThmV1.11].
Therefore, we may assume g > 1 and thusr < 1.

Let6p = (A —Q)/(21), Tn = ¢n,p,q(®n < 6p), and e > 0. By considering the
event that the largest component is not coloured red, we find that, with probability
atleast (1 —r)mn + o(1), the number N of red vertices satisfies

N >r(1l—6p)n—en,
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and there are no red components of order at least n%4. When this happens,

1 A
(10.19) szk[r(l—@o)—e]=§—|—£—e)\>l

for € sufficiently small, and we pick ¢ accordingly. Conditional on the value N,
amost every G, p has a component of order at least SN (> én/A by (10.19)) for
someé > 0. Therefore, (1 —r)m, — 0asn — oo. O

(10.20) Lemma. If g € [1, oo) then, for any sequence A = Ap,

—AnOn _ 1-0, P

e _ 0 asn .
1+@Q-1D0n -

Proof. For g = 1 and constant A = Ap, thisfollowsfrom thewell known fact that

On £ 6 wheree ¥ = 10, see[61, Thm V1.11] and the remark after [61, Thm
V.7]. The case of varying Ap is not hard to deduce by looking down convergent
subsequences. We may express this by writing

Onpn
efpn@nn_i_Tn—l—P) 0 Whenq =1,

for the random graph G, p, and any sequence (pn). Applying this to the red
subgraph, on the event that it contains the largest component of Gp ;/n.q, We
obtain for general q € [1, co) that

® Onpn
—10 n —pO®nn n
e o 1=¢g P®n — —1+4+0p(1
+r+(1—r)®n TN +0op(d)
P
-0 asn— oo,
where N is the number of red vertices. The claim follows. O

Combining these lemmas, we arrive at the following theorem.

(10.21) Theorem [62].
@ Ifge[l,2landr < q,orifq e (2, 00) and A < Amin Where Anmin iS given
in Lemma 10.12(b), then ®, i Oasn — oc.

(b) Ifg € [1, 00)and A > q,then ®p £ 0 (1) whered (1) istheunique (strictly)
positive solution of (10.6).

This goes some way towards proving Theorems 10.7-10.8. Overlooking for
the moment the more detailed asymptotical claimsof those theorems, we notethat
the major remaining gap iswhen q € (2, c0) and Amin < A < q. In this case,
by Lemma 10.20, ®,, is approximately equal to one of the three roots of (10.6)
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(including the trivial root 6 = 0). Only after the analysis of the next two sections
shall we see which root is the correct one for given A.

Proof. Thefunction
1-06

C1+(@q-18
is continuouson [0, 1], and the set Z of zeros of ¢ isdescribed in Lemma 10.12.
Since ¢ (Op) —P> 0, by Lemma 10.20, it follows that, for all € > 0,

¢0) =e

¢npq(GneZ+(—€,€)) >1 asn— oo.

Under the assumption of (@), Z contains the singleton 0, and the claim follows.
Under (b), Z containsauniquestrictly positivenumber 6 (1), and the claim follows
by Lemma10.18. O

We turn now to the number of edgesin the largest component. Let W,n denote
the number of edges of Gp, p,q. We pick one of itslargest components at random,
andwrite Enn for thenumber of itsedges. Let q € (1, 0o). Arguingasin Sections
10.4-10.5withr = g~1, amost every Gy, p o hasat most n®* edgesin each small
component (a ‘small’ component is any component except the largest, picked
above)2. Furthermore, the total number of red edgesin the small componentsis
r (¥n — En)n 4+ op(n). Hence, the red subgraph has either:

(i) with probabilityr, [®n 4+ r (1 — ®n)]n 4 op(n) verticesand

[En + 1 (¥n — En)]n+ op(n) edges, or
(i) otherwise, r (1 — ®n)n + op(n) verticesand r (¥ — En)N 4 0p(N) edges.
Assumethat p = O(n~1). Since almost every Gn,p has

N
(2) P+ Op(Np"/?) = 3N%p + 0p(N)
edges, the following two equations follow from the two cases above,

(10.22) [En 41 (Wn — En)]n = 3[On +1 (L — On)]’n?p + 0p(M),
(10.23) f (Wn — Enn = 3[r (1 - O)]’n*p + op(n),

yielding when p = A /n that

A[On 11— 0)]* + 0p(D),

(10.24) En+1(¥n— En) = 3
= 1r@ - en]% + op(D).

(10.25) r(WUn — En

We solvefor B, and W, and let n — oo to obtain the next theorem.
20ne needs here the corresponding result for q = 1, which follows easily from the corre-

sponding result for the number of vertices used above, together with results on the components
having more edges than vertices given in [61, 192, 193].
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(10.26) Theorem [62]. Ifq € (1, co) and A € (0, co) then, asn — oo,

(10.27) W, — ;—q[l +@-102] 50,
A
(10.28) £ On[1+ (30~ 1On] 5 0

Whereas we proved this theorem under the assumption that q > 1, its conclu-
sionsarevalid for g = 1 also, by [61, ThmsVI.11, VI.12].

10.6 Proofs of main results for complete graphs

Theresultsderived so far are combined next with anew argument in order to prove
Theorems 10.7-10.9 for q € [1, c0). The results are well known whenq = 1
(see [61, ChaptersV, VI] and [239]), and we assume henceforth that g € (1, 00).
The acyclic part of a graph is the union of all componentsthat are trees, and the
cyclic part is the union of the remaining components. A graphis called cyclic if
itsacyclic part is empty. We begin by showing that the cyclic part of almost every
Gn,/n,q consists principally of thelargest component only (when this component
iscyclic).

(10.29) Lemma. The numbers of vertices and edges in the small cyclic compo-
nents of Gn_x/n,q are op(n).

Proof. Let k be an integer satisfying k > . In the colouring scheme of Section
10.4withr = q~1, weintroduce the refinement that each component is coloured
dark red with probability k=1 and light red with probability r — k1. Let M be
the number of edgesin the small cyclic components of G, 5 /n,q-

By a symmetry argument, with probability at least k=1, at least M /k of these
edges are coloured dark red. To see this, let M; be the number of such edges
coloured x;j when each component is coloured by a random colour from the set
{x1, x2, - - ., xx}, €ach such colour having equal probability. If

én,p.g(Mi > M/K) < % i=12...,k

then
én,p.q(Mi > M/k for somei) < 1,

in contradiction of the equality Z!‘Zl M; = M.
Therefore, with probability at least r /k, the red subgraph contains the largest

component together with small cyclic componentshaving atleast M/ k edges. The
result now follows from the known case q = 1, see [60], [61, Thm VI.11]. O

Let 5,1, p,g(M, j, k, 1) be the sum of ISn, p,q(F) over edge-sets F that define a
graph with |F| = m edges and a cyclic part with j components, k vertices, and |
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edges. Since such graphshavean acyclic part with n — k verticesand m — | edges,
and thereforen — k — m 4 | components, we obtain
(10.30)

ﬁn, p’q(mv js kv |) = (E)C(Jv k, |) f (n - ks m— |)pm(1 - p)(g)_mqn_k_m+l+j

where c(j, k, ) is the number of cyclic graphs with j components, k labelled
vertices, and | edges, and f (n, m) isthe number of forestswith n labelled vertices
and m edges.

Assume now that n — oo, that A = np > 0and q € [1, oco) arefixed, and that
(10.31) m/n— v, k/n—6, l/n—§&, j/n—>0,

where 6 > 0 satisfies (10.6), and

(10.32) £ = ge[1+ (39 - 19,
e M o2

(10.33) V=&+ 2 (1-6)°

See (10.27) and (10.28). If A > q, we assume also that 6 > 0, see Lemma 10.18
and Theorem 10.21(b).

Since
()
f(n,m) < ( 2 )
m
the total number of graphswith m edges on n vertices,

(10.34)
Pn,p,q(m, i, k. D

n i (ngk) (B m n—k—m-+I+j
< (k)C(J’k’|)<m—l) "1-pl
n n— m—I|
S e

=<l k’|)< ) <(2n( E)Tf:) plqn_k_m+'e ZAn+o(n)

(1—6)%n
= k, |
=Pl )( 20 — &)

=pe’'c(j, k, I)(k)q”_k exp(m — $an + o(n)),

n

. ) q”‘k‘m+' exp(m—1 — 2an + o(m))

where we used (10.33) in the last step.
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We shall beinterested only in values of A and roots 6 of (10.6) satisfying
(10.35) either >0, or9 =0andx <gq.

We claim that, under these assumptions, (10.34) is an equality in that
(10.36) Pnpgq(m, j, k1) = p'e'c(j, k, I)(E)q”‘k exp(m — 3An + o(n)).

Toseethiswheneither6 > 0,0r6 = 0andi < q,setng = n—kandmg = m—1I,
and observe that

mp m-—| Y —&
—_ = _ —
No n—k 1-6

gl
g =2

where we have used the fact that, by (10.6),

0
)\9<e’\9—1=%, 6 € (0, o).

Hence in this case, the ‘fixed edge-number’ random graph Gn, m, has average
vertex-degree not exceeding 1 — ¢ for some positive constant € independent of
n, m, k, I. Therefore, there exists § > 0 such that

P(Gng,m, isaforest) > §,

n
f (ng, mp) > 5<(20))
Mo

Thisimplies (10.36), via (10.30) and (10.34). When# = O and A = g, we have
that mo/no — ¥ = 3, and hence

and hence

No
(10.37) f (N, mg) = <( 2 )> e
Mo

implying (10.36). To see (10.37) note that, with0 < € < ‘—11 and s < en,
f(no, mo) > (No — Ds—1f(No —s, Mo —s+1)
Np—S
> e—enns ( 2 )
- 0 mp—s+1

> e2Iog(1—e)n ((n20)> ,

Mo

for large n, by counting only forestswhere vertex 1 is an endvertex of an isolated
path of length s — 1.
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We estimate c(j, k, ) next. Suppose first that & = 0. Then c(j, k,I) isno
greater than the total number of graphswith k verticesand | edges, that is,

' |
|l _pl k_2 i A_n
ple C(J,k,l)f(e)<2>“S |
= exp[l{logx — log(l/n)}] = e™.
Equality holds here for some suitabletriple j, k,I: justset j = k =1 = 0, for

which p'e”'c(j, k, 1) = 1. Itiseasily checked that (i) = €™ when ¢ = 0, and
therefore,

1
(10.38) dele( k1) < (E) <o)

with equality for some suitable j, k, I.

Our estimateof ¢(j, k, 1) when® > Qusesthefact that ﬁ,, p,q(-) isaprobability
measure when q = 1. Suppose6 > 0, defineny = n1(@) = [On+r (1 — 06)n]
wherer = q~! asusual, and set

m=Il+r(m-1)+on) =[&+r{ —&]In+ o),
M=[0+r@-06)]xr.

Then,

my EHrw-H 1
(10.39) o — wl_iejtr(l—e) = le,

k 0
10.40 — = ——
( ) nl_) ! 0+r(d—20)

| 3 i
10.41 — - > L 50
( ) n1_>$1 O+rd—0) n1_>

It is easy to check the analogues of (10.6) and (10.32)—(10.33), namely,
(1042) e % =1-01, & =r601(1- 3201, v1==£+30(1— 602
Now, (10.36) isvalid withg = 1, since > 0. Hence,
(10.43) 1> Poypua(m, j, k1)

= pie7'e(j, k, I)<T(l> exp(my — 311n1 + o(n))

— p| efl C(J , k, I) <nk1) eO(n)
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by (10.39), where p; = A1/n1 = p(1+ O(n~1)). Therefore,

(10.44) pec(j.k 1) < (T) o

We claim that there exist suitable j, k, | such that equality holds in (10.44). To
see this, note that Gn, p, has () p1 + op(n1) edges, a giant component with
61n1 + op(ny) vertices and £1n1 + op(N1) edges, Op(1) unicyclic components
with atotal of Op(1) verticesand edges, and no other cyclic components, see [61,
Thm VI.11]. By considering the number of possible combinations of values of
my, |, k, | satisfying the above constraints, there exist my, j, k, | such that

Py pra(ma, j, K 1) > n—*

for al large n. Combining thiswith (10.43), equality followsin (10.44) for some
suitable j, k, 1.

In conclusion, whatever the root 6 of (10.6) (subject to (10.35)), inequality
(10.44) holds with equality for some suitable j, k, |, and where n; = n1(0) is
interpreted asn (that is, when 6 = 0). We substitute (10.44) into (10.34) to obtain

(10.45)
Pn, p,q(ma J ) ka |)

ng - N\ nhk 1
S(k) <k>q exp(m — 5An + o(n))

n _ n1—k
" (mok q”—kexp<;—q[1+<q—1>92]n—%An+0<”>)

T (n—k"k
B [r(1—6)]"@®
- (1- 9)1—9[9 +r(l-— 9)]0+r(1—9)

n
x ' exp (%m @-16% - 31+ o(l))}

_ g® 9q-1
= exp (n [% - W)» +logq + 0(1):|> ,

where
(10.46) g(®) = —(q—1(2—-0)log(l—06) —[2+ (g —1)O]log[1+ (g — 1)6].

We have used (10.32)—(10.33) in order to obtain the second line of (10.45). To
pass to the last line, we used the fact that 6 is aroot of (10.6), thus enabling the
substitution

1+ (q—1)0 @-16/(2q9)
e

exp (;—qm (a- 1)92]) = e/ {
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In addition, equality holdsin (10.45) for at least one suitable choice of |, k, I.
Let 6* = 6*(1) be the root3 of (10.6) that maximizes g(6) and satisfies (10.35).
By (10.45) and the equality observed above,

(1047)  Znpg= Y. Popqm. j.k1D)

m, j k.|
ge" q-1
zexp{n[ 2 2 A+Iogq+0(1)]},
whence
R & gy q-1
(10.48) “nnllogf {ﬁ log Zn,p,q} > 2 — Wx +logq.

On the other hand, by Lemmas 10.18 and 10.20, there exists aroot 6 of (10.6)
satisfying (10.35), and a function w(n) satisfying w(n) — oo, such that

(10.49) liminf én.p.a(1On — 6] < (™) > 0.

For such 6 there exist, by Lemma 10.29 and Theorem 10.26, sequencesm, j, k, |
satisfying (10.31)—(10.33) such that

1> Pn,p,q(m7 js kvl) - n_4

Zn,p,q

for al large n (thisisshown by considering the number of possible combinations of
m, j, k, | satisfying (10.31)—(10.33) and theabove-mentioned results). By (10.45),

. 1 g® gq-1
10.50 limsup{—logZ <=—=—-——i+logq,
( ) n%oop{n g n,p,q}_ 2q 2q gq
which, by (10.48), implies g(9) > g(6*), and therefore 6 = 6*. Theorem 10.14
followsby (10.48) and (10.50). Furthermore, 6* istheonly root of (10.6) satisfying
(10.35) such that (10.49) holds for some w(n). Therefore,

(10.51) On > 6%  asn— oo

Next we calculate 6*(A). Asin Theorem 10.21, when g € [1, 2], 6*()) isthe
largest non-negativeroot of (10.6). Assumethat q € (2, 00). By astraightforward
computation,

q- 2 /
0)=g(——1)=0 0)=0
9(0) =g <q — 1) . 90 ,
~aq(@—-D[g—2—-2(q - 1o]e

1/ 9 —
ge) A= 6)21+ G- D)2

SWe shall see that there is a unique such 6*, except possibly when A = A¢(q) and g > 2.
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Therefore, g”(6) hasaunique zeroin (0, 1), at the point 6 = %(q —2)/(q—1).
At this point, g’'(#) has a negative minimum. It followsthat g(#) < 0 on (0, 8g),
and g(0) > 0on (6g, 1) wherefg = (q — 2)/(q — 1).

Substituting g into (10.6), we find that 6 satisfies (10.6) if

q-1
A=A =2 —— I -1
c(@) (q — 2) 0g(q ),
and, for this value of A, the three roots of (10.6) are 0, 100, 60. Therefore,
Amin < Ac(Q) < ¢, and

| Bmax() i A > Ac(@).

This completes the proof of the assertions concerning the order of the largest
component. The claims concerning the numbers of edgesin G p g and in the
largest component follow by Theorem 10.26. Proofs of the remaining assertions
about the structure of Gn, p q are omitted, but may be obtained easily using the
colouring argument and known factsfor Gp, p, see[61, 239].

10.7 The nature of the singularity

It is an important problem of statistical physics to understand the nature of the
singularity at apoint of phasetransition. For the mean-field random-cluster model
on a complete graph, the necessary cal culations may be performed explicitly, and
the conclusions are as follows.

Let g € [1, oo) befixed, and consider the functions 6 (1), given in (10.5), and
v (X, £(0) defined by

A 2 A 1 2
V() = 5[1+ @-1o7], &) = a[G(A) + (39 — DO,

describing the order of the giant component, and the numbers of edgesin the graph
and in its giant component, respectively. All three functions are non-decreasing
on (0, o0). In addition, ¥ is strictly increasing, while () and £() equal O for
A < Ac and are strictly increasing on [A¢, 00).

A fourth function of interest is the pressure n(1) given in Theorem 10.14.
These four functions arereal-analytic on (0, co) \ {Ac}. At the singularity A, the
following may be verified with reasonable ease.

(& Letg €[1,2). Thend, v, &, and n are continuous at the point A¢(q) = g.
Thefunctions6 and & have discontinuousfirst derivativesat A, with

A=) =& c—) =0, 0 (Act) =& (het) = m
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In particular,
20 = X¢)

q2—aq)
Similarly, ¥ and " are continuous, but v" and n”" have discontinuities at
Ac, exceptwhenq = 1.

(b) Letg = 2. Onceagain, 9, vy, &, and n are continuous at the point A¢c. In
this case,

6(1) asA | Ac.

000 ~E0) ~ [30—20]2 &Sk | e

Thus, 8’ (Ac+) = &'(Ac+) = oo. Thefunction ¢’ hasajump at Ac in that
¥' (A=) = 3, ¥ (he+) = 1. Also, ' iscontinuous, but n” hasajump at Ac
inthat n” (Ac—) = 0, " (Ac+) = g. Thefunctionsy and 5, arereal-analytic
on (0, A¢] and on [A¢, 00).

(c) Letqg € (2, 0). Then 6, ¢, and & havejumpsat A¢, and it may be checked
that ¥ (Ac—) = Ac/(20) < % < ¥ (Ac+). The pressure 7 is continuous at
Ac, but its derivative n’ hasajump at A,

29-3
29(q—-1

ooy =371 e =
n C___W’ N (Act) =

10.8 Large deviations

The partition function Zy, g of (10.2) may be written* as the exponential expec-
tation

Zn, p.qg = Pn, p,l(qk(w))-

Thissuggestsalink, viaa L egendretransform, to the theory of large deviations of
the cluster-count k(w) in arandom-cluster model. We summarize the consequent
theory in this section, and we refer the reader to [62] for the proofs. Related
arguments concerning the random-cluster model on a lattice may be found in
[298].

Let® g € [1, ), A € (0, 00), and let C, be the number of components of
the graph G 5 /n,q- Our target isto show how the exact calculation of pressurein
Theorem 10.14 may be used to estimate probabilitiesof theform ¢n p,q(Ch < an)
and ¢n, p,q(Cn > Bn) for given constantser, 8. Whenq = 1, thisgivesinformation
about the probabilitiesof large deviationsof Cp, in an Erdés—Rényi random graph.

Asin the language of large-deviation theory, [99, 164], let

Anx,q(v) =10gén, p,q(evcn/n), v eR,

4See (3.59) a0.
5The conclusions of this section are valid when q € (0, 1) also, see[62].
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and note that
Zn’)‘/n’qev/n }

An,x,q(v)zl()g{ Znsy
n,a/n,q

whence
1 \
(10.52) ﬁAn,A,q(nV) — Ay g(v) =n(x,qe’) —n(A,q) asn — oo,

where n (i, q) denotes the pressure function of Theorem 10.14. The Legendre
transform Aj’q of Ay q isgiven by

(10.53) Af g0 = sup{vx — Ax.q)}, X € R.

veR

It may be proved directly, or see[99, Lemma2.3.9], that A, q and A’;’q areconvex
functions, and that

(10.54) A q(0) =8X — Asq®)  if Af 4(8) =x.

Sincewe have an exact formulafor A, q, see(10.15) and (10.52), we may compute
its derivative whenever it exists. Consequently,

<oo ifxe]0,1],
= oo otherwise.

g™ {

A large-deviation principle (LDP) may be established for n=1C,, intermsof the
‘ratefunction’ A;q. Thedetails of the LDP depend on the set of pointsx at which
A;q isstrictly convex, and weinvestigatethisnext. Thereisaslight complication
arising from the discontinuity of the phase transition when q € (2, 00). The
function

(10.55) kA, Q) = qﬁ,

aq

turns out to play acentral role. This derivative exists except when A = Ac(q) and
g € (2, 00), and satisfies

. 1
(10.56) €0 = lim {ﬁfﬁn,x/n,q(cn)}
A
— —_— — — 2—
=1-6) —[1-6(0)] 2
When L = A¢(q) and g € (2, o), thelimits

+ an
A, =q— (A, g%
Kk=(A, Q) q&q( q=+)
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exist with« = (X, q) < «+ (&, q). Also, k= (%, q) isgiven by (10.56), and

A
T, g =1— —.
k(A Q) 2q

Details of the above calculations may be found in [62].

We write F; q for the set of ‘exposed points’ of Aj’q, and one may see after
some work that
0,1 if A <2,

(1057) ?A,q = { (O, 1) \ [Ki()\-, Q)’ K+()\-, Q)] if A > 2,

where Q ischosen to satisfy & = A¢(Q). Thefollowing LDP is aconsequence of
the Gartner—Ellis theorem, [99, Thm 2.3.6].

(10.58) Theorem (Large deviations) [62]. Letq € [1, co) and A € (0, 00).
(a) For any closed subset F of R,

n—o00

. 1 - ; *
I|msup{ﬁ log¢n. p.q(N~*Cn € F)} = = Inf A7 500
(b) For any open subset G of R,

. . 1 71 . *
IlanLrgf {ﬁ l0g ¢n,p,q(N""Ch € G)} > —Xeépwfﬂvq AT g(X).

Of especial interest arethecaseswhen F takestheform|[0, o] or[8, 1], analysed
as follows using Theorem 10.58.

(i) Letg €[1, 2]. Then,asn — oo,

1
=109¢n,p.q(Cn < an) — —A7 4(@), (10.59)
1
0 log¢n, p,q(Ch = Bn) — _AK,q(,B), (10.60)

wheneverO <o <«(X,Qq) < B8 < L
(i) Letq € (2, 00) and L = Ac(q). Then (10.59)—10.60) hold for «, B setis-
fying
O<a<k (hq <ktT(rh,q) <p <1l
(iii) Let g € (2,00) and A # Ac(Q). Let Q be suchthat 2 = Ac(Q). Then
(10.59)—(10.60) hold for any «, B satisfying0 < o« < «k(1,Q) < B <1
except possibly when

K~ Q <a<kt(hQ o « (1, Q <B <kt Q).
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We notethat kT (A, Q) < kA, q) if Q < g, andx~ (A, Q) > k(A,q) if
Q > q, sothat only one of these two cases can occur for any given g.
We summarize the above facts as follows. Excepting the special case when
A= Ac(Q) and g € (2, 00), the limit

. 1
K = n'l[T;o {ﬁ¢n, p,q(Cn)}
exists, and the probabilities ¢n p.q(Cn < an), ¢n,p,q(Cnh > BN) decay at least
as fast as exponentially when ¢ < ¥ < B. The exact (exponential) rate of
decay can be determined except when the levelsan and gn lie within the interval
of discontinuity of a first-order phase transition. In the exceptional case with
L =xc(g)andq € (2, 0o0), asimilar conclusionholdswhena < x~and 8 > « .

Sincefirst-order transitions occur only when q € (2, oo), and since the critical
A-values of such g fill the interval (2, 00), there is a weak sense in which the
value A = 2 marksasingularity of the asymptotics of the random graph Gn ;,/n,q-
This holdsfor any value of g, including g = 1. That is, the Erd6s—Rényi random
graph senses the existence of afirst-order phase transition in the random-cluster
model, but only throughitslargedeviations. Itiswell knownthat the Erdés—Rényi
random graph undergoes a type of phase transition at » = 1, and it follows from
the abovethat it has a (weak) singularity at A = 2 also.

10.9 On atree

A random-cluster measure on a finite tree is simply a product measure — it is
the circuits of a graph which cause dependence between the states of different
edges and, when there are no circuits, there is no dependence. This may be seen
explicitly asfollows. Let p € [0, 1] andq € (0, o0), andlet T = (V, E) beafinite
tree. For w € Q = {0, 1}F, the number of open clustersisk(w) = |V| — ()],
o that the corresponding random-cluster measure ¢p q satisfies

[n(w)] [n(w)]
(10.61) ¢p,q(w)o<( P ) =(”> . weqQ,

ql-p 1-m
where
p
10.62 - Q)=
(10.62) m=n(p,q) T

Therefore, ¢p,q isthe product measureon 2 with density . Thesituation becomes
more interesting when we introduce boundary conditions.

Let T be an infinite labelled tree with root 0, and let R = R(T) be the set
of all infinite (self-avoiding) paths of T beginning at 0, termed O-rays. We may
think of aboundary conditionon T as being an equivalencerelation ~ on R, the
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Figure 10.4. Part of the infinite binary tree To.

‘physical’ meaning of whichisthat tworays p, p’ are considered to be ‘ connected
at infinity’ whenever p ~ p’. Such connections affect the counts of connected
components of subgraphs. The two extremal boundary conditions are usually
termed ‘free’ (meaning that there exist no connections at infinity) and ‘wired’
(meaning that al rays are equivalent). The wired boundary conditionon T has
been studied in [167, 196], and general boundary conditionsin [160]. There has
been a similar development for Ising models on trees with boundary conditions,
see for example [48, 49, 188] in the statistical-physics literature and [114, 248,
256] in the probability literature under the title ‘ broadcasting on trees'.

We restrict ourselves to the so-called binary tree T = T, the calculations are
easily extended to aregular m-ary tree T, withm € {2,3,...}. ThusT = (V, E)
istaken henceforth to be aregular l1abelled tree, with adistinguished root labelled
0, and such that every vertex has degree 3. See Figure 10.4.

We turn T into a directed tree by directing every edge away from 0. There
follows some notation concerning the paths of T. Let x be avertex. An x-ray is
defined to be an infinite directed path of T with (unique) endvertex x. We denote
by Ry the set of all x-rays of T, and we abbreviate Rg to R. We shall use the
term ray to mean a member of some Ry. Theedge of T joining verticesx and y
is denoted by (X, y) when undirected, and by [X, y) when directed from x to y.
For any vertex x, we write R} for the subset of R comprising all rays that pass
through x. Any ray px € Rx isasub-ray of auniqueray p; € R, and thusthere
isanatural one-one correspondence px <> py between Ry and R, .

Let & betheset of equivalencerelationsontheset R. Any equivalencerelation
~ on R may beextendedto anequivalencerelationon| J, .y Ry by: for py € Ry,
Py € Ry, wehave py ~ p, if and only if p, ~ p,.

One may define the random-cluster measure corresponding to any given mem-
ber ~ of afairly large sub-class of &, but for the sake of simplicity we shall
concentrate in the main on the two extremal equivalence relations, as follows.
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Thereisapartial order < on & given by:
(10.63) ~1 <~ if: foral p, p' € R, p ~2 p' whenever p ~1 p'.

Thereis aminimal (respectively, maximal) partial order which we denote by ~°
(respectively, ~1). The equivalence classes of ~0 are singletons, whereas ~1 has
the single equivalence class R. We refer to ~ (respectively, ~1) as the ‘free
(respectively, ‘wired’) boundary condition.

Let A beafinite subset of V, and let E5 bethe set of edges of T having both
endverticesin A. For £ € © = {0, 1}E, we write Qf\ for the (finite) subset of
Q2 containing all configurations w satisfying w(e) = &(e) fore € E \ E,; these
are the configurations that agree with & off A. For simplicity, we shall restrict
ourselvesto sets A of acertain form. A subset C of V iscalled acutset if every
infinite path from 0O intersects C, and C is minimal with this property. It may be
seen by an elementary argument that every cutset isfinite. Let C be a cutset, and
write out(C) for the set of all vertices x such that: x ¢ C and the (unique) path
from Oto x intersects C. A box A isaset of theform V \ out(C) for some cutset
C, and wewrite d A for the corresponding C.

Let A beabox,andlet~ € €,& € Q,andw € Qi The configuration w gives
riseto an ‘open graph’ on A, namely G(A, w) = (A, n(w) N Ep). We augment
this graph by adding certain new edges representing the action of the equivalence
relation ~ in the presence of the external configuration &. Specifically, for distinct
u,v € dA, we add a new edge between the pair u, v if there exist £-open rays
ou € Ru, pv € Ry satisfying py ~ p,. We write G5~ (A, w) for the resulting
augmented graph, and welet k&~ (A, w) bethe number of connected components
of G5~ (A, w). These definitions are motivated by theidea that each equivalence
class of raysleadsto a common ‘point at infinity’ through which vertices may be
connected by open paths.

We define next arandom-cluster measure corresponding to a given equival ence
relation ~. Leté € Q,andlet p € [0,1] and g € (0, c0). We defineqsi’fp’q as
the random-cluster measure on the box (A, E ) with boundary condition (¢, ~).
More precisely, ¢f\’fpﬂ is the probability measure on the pair (2, ) given by
(10.64)

1 ~
£ ) [ i {l"[ p‘”@’(l—p)l-w(e)}qkf M itw e 24,
Apq\®) =

A,p,q " ecEp
0 otherwise,
where Zf\’quq is the appropriate normalizing constant,
~ B e
(10.65) z5.= S [ e@a-pt w<e>}qk (8o
we,  ©€Ea

In the specia casewhen & = 1 and ~ = ~1, we write qb/l\’p’q for ¢i’fp’q. This
measure will be referred to as the random-cluster measure on A with ‘wired’
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boundary conditions, and it has been studied in a dightly disguised formin [167,
196].

For any finite subset A € V, let 75 denote the o-field generated by the set
{w(e) : e e E\ E,} of states of edges having at least one endvertex outside A.
For e € E, T denotes the o -field generated by the states of edges other than e.

Let p € [0, 1], g € (0, 00), and let ~ be an equivalence relation that satisfies
a certain measurability condition to be stated soon. A probability measure ¢ on
(2, ¥) iscaled a (~)DLR-random-cluster measure with parameters p and q if:
foral A e F and all boxes A,

(10.66) ¢(ATAE) = ¢A bq(A  forg-ae &,

The set of such measures is denoted by R ;. Theset R is convex whenever
it isnon-empty (asin Theorem 4.34).

We introduce next the relevant measurability assumption on the equivalence
relation ~. Sincetheleft sideof (10.66) isameasurablefunction of £, theright side
must be measurable also. For abox A and distinct verticesu, v € dA, let K",
denote the set of w € Q such that there exist w-open rays py € Ru, Py € Ry
satisfying py ~ py. Wecall the equivalencerelation ~ measurableif K* \ € #
for al such u, v, A. It isan easy exercise to deduce, if ~ is measurable that
¢f\’quq(A) is a measurable function of &, thus permitting condition (10.66). We
write &n, for the set of al measurable elements of €. It is easily seen that the
extremal equivalence relations ~0, ~1 are measurable.

For simplicity of notation we write .Rgf; = Rg,q and similarly .Rg; = .RFl),q.
Members of Rg,q (respectively, R%,q) are called ‘free’ random-cluster measures
(respectively, ‘wired’ random-cluster measures). There follows an existence the-
orem. Any probability measure u on (2, ¥) is called automorphism-invariant if

the vectors (w(e) : e € E) and (w(te) : e € E) have the same laws under ., for
any automorphism z of thetree T.

(10.67) Theorem [167]. Let p € [0, 1] and g € (0, c0).

() The set .Rg,q of free random-cluster measures comprises the singleton ¢,
only, where # = m(p, g) is given in (10.62). The product measure ¢,
belongsto R} ifand onlyif = < 3.

(b) The set R%’q of wired random-cluster measuresis non-empty.
(c) Ifgq € [1, 00), the weak limit

¢l = = lim ¢k o (10.68)

existsand belongsto Ry . Furthermore, ¢  isan extremal element of the
convex set .R%’q and is automor phismrinvariant.

Here are some comments on this theorem. Part (b) will be proved at Theorem
10.82(c). Parts(a) and (c) are proved later in the current section, and we anticipate
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thiswith abrief discussion of the conditionz < % Thiswill berecognized asthe

condition for the almost-sure extinction of abranching processwhosefamily-sizes
have the binomial bin(2, =) distribution. That is, 7 < % if and only if

(10.69) ¢ (0 <> 00) =0,

see [164, Thm 5.4.5]. It turns out that the product measure ¢, liesin JRFl),q if and
only if it does not ‘feel’ the wired boundary condition ~1, that is to say, if there
exist (¢, -almost-surely) no infinite clusters®.

We turn briefly to more general boundary conditions than merely the free and
wired, see[160] for further details. Theset R of raysmay beviewed asacompact
topologica space with the product topology. Let ~ be an equivalence relation
on R. We call ~ closed if the set {(p1, p2) € R?: p1 ~ po} isaclosed subset
of R2. It turns out that closed equivalence relations are necessarily measurable.
For q € [1, c0) and aclosed relation ~, the existence of the weak limit ¢>%ga =
limaqv ¢>11\”Np’q follows by stochastic ordering, and it may be shown that ‘f’%ia isa
(~)DLR-random-cluster measure.

Theorem 10.67 leaves open the questions of deciding when ¢, = qﬁ%’q, and
when R%’q comprises a singleton only. We return to these questions in Sections
10.10-10.11.

Proof of Theorem 10.67. (a) Consider the free boundary condition ~°, and let A
be acylinder event. By (10.61),

5 g (A = ¢ (A)

for al boxes A that are sufficiently largethat A isdefined ontheedge-set E. For

¢ € R} 4, by (10.66),

O (A| Tp) = dr (A, ¢-almost-surely,
for al sufficiently large A, and therefore

¢ (A) = d(P(A| Ta)) = ¢z (A)

asrequired. The second part of (@) is proved after the proof of (c).
(c) The existence of the weak limit in (10.68) follows by positive assocation asin
the proof of Theorem 4.19(a). In order to show that thelimit measureliesin R%’q,
we shall make use of the characterization of random-cluster measures provided
by Proposition 4.37; this was proved with the lattice L9 in mind but is valid also
in the present setting with the same proof.

Forv € V, let I, bethe set of infinite undirected paths of T with endvertex v.
Lete= (x,y), and let Ke1 be the event that there exist open vertex-digoint paths

6See also [168].
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vy € My and vy € Iy. Forany box A andw € €, letw?, denotethe configuration
that agreeswith @ on E, and equals 1 elsewhere, which isto say that

w(e) ifee Ey,
1 otherwise.

wh(e) = {

We define the event
Koa = {we Qo) € Kgh

Note that KéA isacylinder event, andisdecreasingin A. Itiseasily checked that
(10.70) Kaa L K& asAtV.

We may now state the relevant conclusion of Proposition 4.37 in the current
context, namely that ¢ € R, , if and only if, for all e € E,

(10.71) #(Je | Te) =7+ (P—m)lks ¢-almost-surely,

where Je = {eisopen}.

For& € Qand W C V, write [§]w for the set of all configurationsthat agree
with £ on Ew. For e € Ey, let [£]w\e be an abbreviation for [£] g\ (e). We shall
omit explicit reference to the values of p and q in the rest of this proof. Thus, for
example, ¢! = ¢ .

By themartingal econvergencetheorem (see[164, Ex. 12.3.9]),fore= (X, y) €
E and ¢l-amost-every &,

(e [Elave)
10.72 Y3 | To)(E) = lim ———= >0\
(10.72) ¢ (Je | Te) (&) i P Elme

1
AV ATV g ([E]ave)

/l\ITnQ/ le ox (92 (Je | [Elare) | [E]are)

= lim lim dx(0a | [E]are).
by Theorem 3.1, where
ga§) = +(p— ﬂ)lKéA(é)-

By (10.70),ga { gasA ¢t V,whereg=7m + (p — 7)1ks
We claim that

(10.73) $3(0a | [E]lave) — #1(Q 1 [E]lae) @A 1YV,
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and we provethisasfollows. Let A’, A” beboxessatisfyingA € A’ C A C A”.
Since YA () = ¢i(- | []a\e) is arandom-cluster measure on an altered graph
(see Theorem 3.1(a)) and since g isincreasing on 2 and non-increasingin A,
we have by positive association that

Yar(9a) < ¥a(da) < ¥a(gar).

Let A” 1+ V,A 1 V,and A’ 4V, inthat order, to conclude (10.73) by monotone
convergence.

By the martingal e convergence theorem again,

X9 [Elae) — 9(E)  asA 1V, forglae s,

and (10.71) follows by (10.72)—(10.73).
Theextremality of q%’q isaconsequence of positive association, on noting that

¢pq =s ¢ foral ¢ € RT . Let t be an automorphism of the graph T. In the
notation of Section 4.3, for any increasing cylinder event A and all boxes A,

Dr p.qg(A) = d1a pq(T A,
and, by positive association,
Din pqT A = 9p pq(tTTA) ifADTA.
Letting A 1 V, we obtain that
Ph.p.q(A) = dp o(x1A),

so that ¢p 4(A) > ¢n q(z 1A). Equality must hold here, and the claim of
automorphism-invariancefollows.

Turning to the final statement of part (&), by the discussion around (10.71),
O € R%’q if and only if ¢,(K}) = Oforal e e E. Since ¢, is a product
measure, this condition is equivalent to (10.69). O

10.10 Thecritical point for atree

We concentrate henceforth on the binary tree T = To = (V, E) and the wired
equivalence relation ~1. It is shown in this section how the series/parallel laws
may be used to study random-cluster measures on T. Corresponding results are
valid for the m-ary tree with m > 2.

Theresultsof thissection arevalidfor all q € (0, co), and we begin by proving
the existence of the wired weak-limit for all p and g, thereby extending part of
Theorem 10.67(c). The limit as A 1 V is taken along an arbitrary increasing
sequence of boxes.
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p=075 =085
01 01 0.1 p=0.85
05 1 05 1 0.5 1
p=0.75
p=0.25 p=04
-0.2 -0.2 -0.2
1 3

Figure 10.5. Thefunction fp q(X) — X isplotted inthethreecasesq < 1,1 <q <2,q > 2.
The maximal solution p of fp q(X) = x satisfies p > 0if and only if p > «q (respectively,
p > kq) when 0 < g < 2 (respectively, g > 2). The intermediate curve in the third graph
corresponds to the critical casewith p = kg andq > 2. Notein thiscasethat p = p(p, Q) is
adiscontinuous function of p.

(10.74) Theorem. The weak limit

1 _ 1
(10.75) $hq=1lim ek oq

existsfor all p € [0, 1] andg € (O, c0).
Consider now the existence (or not) of infinite open clusters under the weak
limit ¢3 ;. Let
(10.76) (P, q) = ¢p,q(0 < 00),
and define the critical value of p by

(10.77) Pe(@) = sup{p: 6(p. q) = 0}.

The calculation of 8(p, g) and pc(q) makes use of certain quantities which we
introduce next.

Let kq be defined by
q

— if0<qg<2,
(10.78) L
. Kag =
! _2y9-1 ifq>2
1+2y/qg-1

Let Fpq : [0, 1] — [0, 1] be given by

p[l-A-—x)(1-y)]
1+@-DA-pA-—x1-y)

Fpg(X,y) =

’
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andlet fy g, gq : [0, 1] — [O, 1] be given by

(10.79) fp.q(X) = Fp,q(X, X),
1-1-y)?®

10.80 = .
(10.80) 9q(y) T @-Da_y7°

An important quantity is the maximal root p = p(p, q) in [0, 1] of the equation
fp,q(X) = x. In particular, we will need to know under what conditions o (p, q)
is strictly positive.

(10.81) Proposition. Let p € [0,1] andq € (0, 00). Let p = p(p,q) bethe
maximal solution in the interval [0, 1] of the equation fp q(x) = x. Then:

>kg when0<q<2,

0 ifandonlyif
P Y p{z/cq whenq > 2.

The proof of this propositionis elementary and is omitted. |llustrations of the
threecasesq € (0, 1), q € [1, 2], g € (2, c0) appear in Figure 10.5. We now
state the main theorem of this section.

(10.82) Theorem. Let p € [0, 1] and g € (0, co). Then:
(@ 0(p,d) = gq(p) Where p is the maximal root in [0, 1] of the equation
fp,q(x) =X,
(b) pc(q) = kg Wherekq isgivenin (10.78),
(©) bpq € Rpq»
(d) Rf o= (¢} whenever 6(p. q) = 0.

This theorem may be found in essence in [167] but with different proofs. In
contrast to the direct calculations’ of this section, the proofsin [167] proceed via
a representation of random-cluster measureson T in terms of a certain class of
multi-type branching processes.

Proof of Theorem 10.74. We use the series/paralléel laws of Theorem 3.89. The
basic fact is that three edges in the configuration on the left side of Figure 10.6,
with parameter-values as given there, may be replaced as indicated by a single
edge with parameter Fp q(X, y). Thisis easy to check: the two lower edgesin
parallel may be replaced by a single edge with parameter 1 — (1 — x)(1—y), and
the latter may then be combined with the upper edgein series.

Let Ap = {X € V : |X| < n}, where |x| denotes the number of edgesin the
path from 0 to x. We consider first the measures ¢ p.q INthelimitasn — oo.

Let H; be the graph obtained from the finite tree (A, E,,) by adding two
new edges[x, X', [x, X”) to each terminal vertex x € dAr. We colour these new

"The current method was mentioned in passing in [160].
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H FpqX,y)

Figure 10.6. The paralel and series laws are used to replace the |eft graph by a single edge.
The parameter values are as marked.

edges green, together with all new endvertices x’, x”. We write H?! for the graph
obtained from H; by anidentification of all green vertices. See Figure 10.7.

Let p€[0,1],9 € (0,00)and 1l <r < s— 2. The wired measure on As
may be viewed as the random-cluster measure on the graph obtained from As by
identifying the set dAs. We write AL for the graph obtained thus, and we will
not dwell on the changes of notation required in order to do this properly. We
propose to use the series/parallel lawsin order to replace edges belonging to A
but not Al. Edgesin A} incident to the composite vertex 3 As come in pairs,
and each such pair e, e has an immediate ancestor edge e3. Thetrio e1, e, €3
may be replaced by a single edge with parameter fp q(p). When all such trios
have been replaced, the resulting graphis AL ;. This processisiterated until A2
has been reduced to H}. The green edges of H,! have acquired parameter-value
fé:sq’r’l)(p), where féf‘a denotes the kth iterate of fp . Note that fpq(1) = p,
and hence fé,sq*rfl)(p) = féi{”(l).

The function f, g isincreasing on [0, 1] with fp q(0) = Oand fp (1) = p.
Therefore,

(10.83) fig() —p  asn— oo,

where p isthe maximal root in [0, 1] of the equation fp q(x) = x.

Let E € Fa,. Let ¢} be the random-cluster measure on H/} with edge-
parameter f S~ (1) (respectively, p) for thegreen (respectively, non-green) edges.
By the above,

(10.84) Brepq(E) = s (E).

A (random-cluster) probability ¢ pq(E) is a continuous function of the edge-
parameters p. Therefore, by (10.83),

(10.85) Prepq(E) = droo(E) @SS — 00,
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Figure 10.7. To each boundary vertex x of the box A» is attached two new (green) edges
[x, X"y, [Xx, X”"y. Theresulting graph is denoted by Ha.

where ¢}m is the wired random-cluster measure on H, in which the green edges
have parameter p.

When g € [1, c0), the random-cluster measure is positively associated, and
(10.85) implies (10.75) for general A. When q € (0, 1), a separate argument is
needed in order to extend the limit in (10.85) to a general increasing sequence of
boxes. Let A beabox with A D A;41, and let

a=a(A)=max{n: An € A}, b=b(A)=min{n: A C An}.

The measure ¢ , . may be viewed as the random-cluster measure on Ay in
which edges of E,, \ Ea have parameter 1. We may reduce A} to H! viathe
series/parallel laws as above. Since Fp (X, y) isincreasingin p, X, y, the green
edges of H.! acquire parameter values lying between f3% " (1) and 5% " (1).
Nowa,b — coasA — V,and

féf)q_r)(l) - p, fp(i]_r)(l) — p.
It follows as above that

(10.86) $r.pq(E) > d () aSALV.

There remains a detail. Each qb[l\’ 0.4 is a probability measure on the compact

state space Q2. Therefore, the family of such ¢}\’p’q, as A ranges over boxes,
istight. By Prohorov’s theorem, [42], every subsequence contains a convergent
sub(sub)sequence. Thelimiting probability of any cylinder event E is, by (10.86),
independent of the choice of subsequence. Therefore, the weak limit in (10.75)
exists, and the theorem is proved. O
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Proof of Theorem 10.82. (@) Let p be as given. We claim that
(10.87) Ghnpq0< dAn) —> dg(p)  asn — oo.

By serieg/parallel replacement as in the proof of Theorem 10.74,

On(P. Q) = Py, p.q(0 < dAn)
satisfies
fn(p, @) = 61(f IR (D), Q).

By (10.83), 6h(p,q) — 01(p,q) aan — oo. It isan easy caculation that
01(z, q) = gq(2), and (10.87) follows.
The proof of Proposition 5.11 is valid in the current setting, whence

0(p,q) = lim 6n(p,q) = gq(0), whenever q € [1, c0).

This proves(a) for g € [1, c0).

Supposethat g € (0, 1). The situation is now harder since we may not appeal
to positive association. Instead, we use the weaker inequalities (5.117)—«5.118)
which we summarize as:

(10.88) #G,p,1 <t #G,p,q <st 9G,x,1.

for any finite graph G, wherer = p/[p + q(1 — p)]. By Proposition 4.10(a),
corresponding inequalities hold for the weak limits of random-cluster measures.
Let p < kq, SOthat p = 0. Then = p/[p+ (1l — p)] < 3, and therefore
#1(0 < 00) = 0. By (10.88),0(p, q) = p = 0 asclaimed.
Let p > kq, sothat p > 0. By Theorem 10.74,
(10.89) 6(p. ) = lim ¢ (0 <> 9Ar)

= lim lim ¢3_, 40 < 0A/).

r—-00 S—>00

Now,
$repq0 < dAN) = 93, pq(0 < dAs), T <5,

and therefore, by (10.87),
(10.90) 6(p,q) = gq(p).
By (10.87) and (10.89),
; ; 1
(1091) 6(p.@) —gq(p) = lim lim ¢y (0« dAr, 05 IAs)

= lim Pt (0 dAr, 0<b dAr41),
— 00 ’
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where ¢! is defined after (10.85).

Forw € Qandr > 0, let G, betheset of verticesx € d A, suchthat Oisjoined
to x by an open path of the tree, and write N, = |G,|. We claim that

(1092) fork=1,2,..., Ppqg1<N <k)—>0  asr— oo,

and we provethisasfollows. Letk € {1, 2, ...}, and define the random sequence
R(0), R(1), R(2), ... by R(0) = 0and

R(i +1) =min{s > R(i): 1< Ns <k}, i >0.

The length of the sequenceis| + 1wherel = I (w) = |{r > 1:1 < Ny <k}|,
and we prove next that

(10.93) ppq(l <o00) =1

Leti > 0, and suppose we are given that | (w) > i. Conditiona on R(0), R(1),
R(2), ..., R(i), and on the states of all edgesin Exg, , thereisa certain (condi-
tional) probability that, for all x € GRr(, X isincident to no vertex in d A rgy+1-
By Theorem 3.1(a), the appropriate (conditional ) probabil ity measureisarandom-
cluster measure on acertain graph obtained from T by the deletion and contraction
of edgesin E g, - Since|Gr)| < k, thereareno morethan 2k edgesof T joining
GR() t0 dARg)+1 and, by the second inequality of (10.88),

pra( =il =i)>a-m*
Therefore,
Phal =i+111=2D)<1-A-m* i=0
whence .
ol = <[1-a-m*], i=0

and, in particular, (10.93) holds. Hence, M = sup{r : 1 < N, < k} sdtisfies
¢p.q(M < 00) = 1, implying as required that

(10.94) bpqL <N <k <¢g(M>r)—>0 asr— oo.
By asimilar argument,

o0
B0 IAr, 0<b 9Ar11) =D ¢ oo(Ne =1, 045 3Ar11)
=1

<> @=p¢pq(Ne =1) by (1088)

<ppgl <N <k + (21— p)*
- (1-p* asr —> oo, by(10.92)
-0 ask — oo.
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By (10.90) and (10.91), 6(p, 9) = gq(p)-
(b) This is an immediate consegquence of part (a), Proposition 10.81, and the
definition of pc(q).

(c) Letq € (0, 00). We shall show that ¢>%,q satisfies (10.71) for e € E. Asin
(10.72),fore= (X, y) € E,

(10.95)  ¢pq(de] T)) = lim lim ¢3 pq(Je| [Elae).  dpqas

If & ¢ KL, then[£]a\e N KL = & for large A, and thus

P

1 _ ]
D, p.q(Je | [Elave) = ETE— forlarge A, A,
by Theorem 3.1. By (10.95),
1 -y _ p 1 1
(10.96) $p.q(Je | Te) = 7p+ TR $pq-as.onQ\ Kg.

Suppose that ¢ (K2) > 0, let & € K3, andtake A = A in the notation of
the previous proof. Asin that proof, for e € E,,,

lim ¢X p.q(Je | 1610) = ¢i.oc (e | [€]0),

where[£]r = [£]a,\e- Let N (U) be the number of verticesin d A, joined to u by
an open path. Asin the previous proof,

Nr (X), Nr () = oo asr — oo, p.q-as N Kg,
whence, for ¢ ,-almost-every £ € Kg,
O oo(Je | [E]) — #f oo (Je | X,y <> dAr410ff @) > 0 asr — oo.
By Theorem 3.1,

Bt oo(Je | X,y < dAr41 Off € = p,

and therefore,

Ppqde| T =p.  ¢pq-as onkKy.
When combined with (10.96), thisimplies (10.71), and the claim follows.
(d)Letg € R%’q, where p and q are such that 6(p, q) = 0. By the argumentin
the proof of part (a), ¢ (0 <> oo) = 0, and therefore ¢(K}) = Ofore € E. By
(10.71), ¢ (Je | Te) = 7, ¢p-almost-surely, whence ¢ = ¢, as claimed. d
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10.11 (Non-)unigueness of measures on trees

For which p, g isthere a unique wired random-cluster measure on the binary tree
T? We assume for simplicity that g € [1, co). By Theorem 10.82, .R%’q = {¢r}
whenever p is sufficiently small that ¢g,q(o < 00) = 0. Thelast holdsif and
only if
<kq forgell, 2],
{ < kg forge (2, 00),

where «q is givenin (10.78). Larger values of p are considered in the following
conjecture.

(10.97) Conjecture [167]. We have that |,R% = 1lif: either g € [1,2], or

ge(2,00)and p>q/(q+1).

al

Wheng e (2,00) and kg < p < g/(q+ 1), there exists a continuum of wired
random-cluster measures, see [167]. These may be cooked up on the basis of the
following two facts:

(i) ¢z (0« o0) =0whenp <q/(q+1),

(i) ¢pq # ¢x Wheng € (2, 00) and p > kg,
wherer = p/[p+ q(1 — p)]. Therecipeis asfollows. Let x be a vertex of
T other than its root. The set Ry of X-rays constitutes an infinite binary tree
denoted by Ty = (Vx, Ex) with root x (the vertex x has degree 2 in Ty). Let e
denote the unique edge of T with endvertex x and not belonging to Ty, and let
E; = Ex U {ex}. Let ux bethe measureon (2, ) given by:
(a) the states of edgesin E; are independent of those of edgesin E \ Ej, and
have as law the product measure on {0, 1}Ex with density 7,
(b) the states of edgesin E \ Ej have aslaw the conditional measure of ¢%ﬁq
given that ey is closed.

That ux € R%’q may be seen in very much the same way as in the proof
of Theorem 10.67(c), under the condition that there exist, ¢, -amost-surely, no
infinite open clusters. Thus, ux € R%’q if p <aqg/(g+ 2. If,in addition,
g € (2,00) and p > kq, then ¢ 4(0 <> 00) > 0. Thisimpliesthat

p.q(x <> 00 inTx | & isclosed) > 0,

whence ux # ¢>%,q. Itisnot hard to seethat ux # py Whenever x # y, subject to
the above conditionson p, g. SinceV is countably infinite, there exist (at least)
countably infinitely many members of eﬂrlj’q.

This conclusion may be strengthened by choosing an infinite sequence x =

(xi 11 =1,2,...) of vertices such that: for every i, x; isincidenttonoe € E;},
with j < i. One performs a construction similar to the above, but with product
measure on each of the sets Ey,, i = 1,2,.... This results in a probability

measure uy belonging to .RFl),q and labelled uniquely by the sequence x. There
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are uncountably many choices for x, and therefore uncountably many distinct
members of .RFl),q . For the sake of clarity, we point out that one way to choose a
large class of possible x isto take an infinite directed path IT of T, and to consider
the power set of the set of all neighboursof IT that do not belong to IT.

Partial progress towards a verification of Conjecture 10.97 may be found in
[196]. A broader class of equivalence relations has been considered in [160].

(10.98) Theorem [160, 196]. Let g € [1, c0) and let p > 2q/(2q + 1). The set
R q comprises the singleton ¢ , only.

The condition of this theorem is not best possible in the case g = 1, and
thereforeis unlikely to be best possiblefor g € (1, 00).

There has been extensive study of the Ising model on atree. It turns out that
therearetwo critical pointsonthebinary tree T. Thefirst critical point corresponds
to the random-cluster transition at the point p = x2 = % and the second arises as
follows. Consider the Ising model on T with free boundary conditions. Thereis
acritical value of the inverse-temperature at which the corresponding Gibbs state
ceases to be extremal. In the parametrization of this chapter, this critical pointis
given by psy = 2/(1 + +/2), see [49, 188, 189, 250]. This value arises also in
the study of arelated * Edwards-Anderson’ spin-glassproblemon T, see[89] and
Section 11.5. It may be seen by aprocess of spin-flipping that the spin-glassmodel
with 1 interactions can be mapped to aferromagneticsing model with boundary
conditions taken uniformly and independently from the spin space {—1, +1}. It
turns out that this model has critical value pgy also, and for this reason pg is

commonly referred to as the ‘ spin-glass critical point’.

Insummary, forp=1—e# < % the Ising model has a unique Gibbs state.

For p e (%, Psy), the + Gibbs state differs from the free state, whereas *typical’
boundary conditions (in the sense of boundary conditions chosen randomly ac-
cordingtothefreestate) result inthefreemeasure. When p > pg, thefreestateis
no longer an extremal Gibbsstate. Thisdoubletransitionis not evident in the anal-
ysis of this chapter sinceit isrestricted to boundary conditions of ‘ unconditioned’
random-cluster-type.

Sketch proof of Theorem 10.98. Note first that p > 2q/(2q + 1) if and only if
7w = p/[p+ql— p)] satisfiesT > % Under this condition we may obtain, by
a branching-process argument, the ¢, -almost-sure existence in T of a (random)
set W of vertices such that: (i) every O-ray passes through some vertex of W, and
(i) every w € W isthe root of an infinite open sub-tree of T. The argument then
continuesrather as in the proof of Theorem 5.33(b). The details may be found in
[160, 196]. O
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10.12 On non-amenable graphs

Thepropertiesof interacting systemsontreesare often qui te different fromthose of
lattice systems, for two reasons. Firstly, treeshaveamultiplicity of ‘infiniteends’,
and secondly, the surface/volume ratios of boxes are bounded away from 0. The
latter property is especialy interesting and leads to an important categorization of
graphs. Let G = (V, E) be an infinite connected locally finite graph. We call G
amenableif its ‘isoperimetric constant’

(10.99) x(G) =inf {w WCV, 0<|W| < oo}

W

satisfies x (G) = 0. The graph is called non-amenableif x (G) > 0. Itiseasily
seen that the lattices LY and the regular m-ary tree Ty, satisfy

x@LH =0 x(Tm) >0 for m=>2,

so that | attices are amenabl e, and regular trees of degree 3 or more are not.

It is convenient to make certain assumptions of homogeneity on the graph
G = (V, E). An automorphism® of G is a bijection y : V — V such that
(x,y) € E if and only if (yx, yy) € E. A subgroup I" of the automorphism
group Aut(G) is said to act transitively on G if, for every pair X,y € V, there
existsy € I' suchthat yx = y. We say that I" acts quasi-transitively if V may be
partitioned as the finite union V = (J, Vi such that, for every i = 1,2,...,m
and every pair X,y € Vi, there exists y € I" such that yx = y. The graph
G is called transitive (respectively, quasi-transitive) if Aut(G) acts transitively
(respectively, quasi-transitively). Resultsfor transitivegraphsareusually provable
for quasi-transitive graphs also and, for smplicity, we shall usually assume G to
be transitive.

For any graph G, the stabilizer S(x) of the vertex x is defined to be the set of
automorphismsof G that do not move x,

S(X) = {y € Aut(G) : yx = x}.
We write S(x)y for the set of images of y € V under members of S(x),
Sy ={ry:y € S},

andwecal G unimodular? if |S(x)y| = |S(y)x| whenever x and y belong to the
same orbit of Aut(G).

8See Section 4.3 for the basic definitions associated with the automorphism group Aut(G).

9The terms ‘amenable’ and ‘unimodular’ come from group theory, see [265, 290, 312]. The
assumption of unimodularity is equivalent to requiring that the left and right Haar measures on
Aut(G) bethe same.
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Thereisauseful class of graphs arising from group theory. Let I be afinitely
generated group and let S be a symmetric generating set. The associated (right)
Cayley graphisthegraph G = (V, E) withV =T and

E={(x,y):x,yeT, xg=yforsomeg e S}.

There are many Cayley graphs of interest to probabilists, including the lattices 19
and the trees Ty All Cayley graphs are unimodular, see [241, Chapter 7]. One
may take Cartesian products of Cayley graphsto obtain further graphs of interest,
including thewell-known exampleLd x Ty, which has been studied in some depth
in the context of percolation, [162].

The graph-property of (non-)amenability first becameimportant in probability
through thework of Kesten onrandomwalks, [205, 206]. In[162] it wasshownthat
percolation on the non-amenablegraph L9 x T, possessesthree phases. Pemantle
[267] developed arelated theory for the contact model on atree, while Benjamini
and Schramm [32] laid down further challenges for non-amenable graphs. There
has been a healthy interest since in stochastic models on non-amenable graphs,
and a systematic theory has developed. More recent references include [29, 30,
174, 176, 196, 197, 240, 241, 293].

LetG = (V, E) beaninfinite, connected, locally finite, transitivegraph, and let
Q = {0, 1}E. Asusual, for F € E, we write ¢ for the o-field generated by the
states of edgesin F, 7 = Fg\r, and ¥ for the o -field generated by the finite-
dimensional cylinders. The tail o-field is 7 = (g ¢ where the intersection
is over al finite subsets F of E. A probability measure i on (2, ¥) is called
tail-trivial if w(A) € {0, 1} foral Ae 7.

The trandations of L9 play a special role in considerations of mixing and
ergodicity. For graphs G of the above type, thisroleis played by automorphism
subgroupswith infinite orbits. Let I be asubgroup of Aut(G). We say that " has
an infinite orbit if there exists x € V such that the set {yx : y € I'} hasinfinite
cardinality. It iseasy to seethat agroup I' of automorphisms has an infinite orbit
if and only if every orbit of I" isinfinite.

We turn now to random-cluster measures on the graph G = (V, E). Let p €
(0, 1), and assume for simplicity that q € [1,00). L&t A = (Ap:n=1,2,...)
be an increasing sequence of finite sets of verticessuch that Ay + V asn — oo.
We concentrate as usual on two extremal random-cluster measures given very
much as in Section 10.9, and we specify these informally as follows. Let A be
afinite subset of V, and let ¢4 p g be the random-cluster measure on £ with
parameters p, g, asin (4.11) with & = 0. By stochastic monotonicity, the limit

0 .
Pp.q = nlLrQo Pan.p.a
exists, and it is called the ‘ free’ random-cluster measure on G. We note as before
that the limit measure ¢ , does not depend on the choice of A, and that ¢  is

automorphism-invariant.
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In defining the wired measure, we veer towardstherecipe of Section 10.9rather
than the lattice-theoretic (4.11). This amounts in rough terms to the following.
Let A be afinite subset of V, and identify the set 9 A as a single vertex. Write
¢}\’p’q for the random-cluster measure with parameters p, g on this new graph,
and view qb[l\’ p.q 8 ameasure on the infinite measurable pair (2, ). Asabove,
the limit

1 _ q; 1
bpq=1IM &3, pq

n—oo

exists and does not depend on the choice of A. We call ¢%ﬁq the ‘wired’ random-
cluster measure on G, and we note that ¢%ﬁq is automorphism-invariant.

As pointed out in [240], the method of proof of Theorem 4.19(d) is valid
for general graphs, and implies that the measures ¢b pq e tail-trivial. Let I" be
a subgroup of Aut(G) with an infinite orbit. By an adaptation of the proof of
Theorem 4.19, the ¢} , are T-ergodic. Indeed, the ¢} , satisfy thefollowing form
of the mixing property. Since I' has an infinite orbit, aII its orbits areinfinite. For
x € V and y lying in the orbit of x under ", let yx y € ' be an automorphism
mappingxtoy. Forx e Vand A, B € F,

; b b b
(10100) B(X,lilglooqsp’q(Am J/x,yB) = ¢p,q(A)¢p,q(B)s b= Os 17

inthat, for ¢ > 0, there exists N such that
|6p (AN ¥xyB) — ¢p q(A)gp 4(B)| <€ if 8(x.y) =N,

where § (X, y) denotes the length of the shortest path from x to y.
The measures ¢>B,q satisfy different ‘ one-point specifications', namely:

$0qde| T =7+ (p—mlk,  ¢5qas
$pqe| T =7+ (pP— M)z ¢pg-as,

fore = (X, y). Here, asin (10.71), Je isthe event that e is open, 7¢ isthe o -field
generated by states of edgesotherthane, andz = p/[p+q(1— p)]. Inaddition,

Ke = {X <> y off €},
={X < yoff e U{x <> 0o, Yy < oo}
Many questions may be asked about the free and wired measures on a general

graph G. Werestrict ourselves hereto the existence and number | of infinite open
clusters. The critical points are defined by

2@ =sup{p: bl =0)=1}, b=0.1.
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By the tail-triviality of the 4§

1 if p< pd(a),

b
Ppall =0 { 0 if p> p2(@.
We notethe elementary inequality pi(q) < pg(q). Itisan open questionto decide
when strict inequality holds here. Asin (5.4), we have that pi(q) = pg(q) for
lattices, and the proof of this may be extended to all amenable graphs, [196]. On
the other hand, by Theorem 10.82, pl(q) < p2(q) for the regular binary tree T,
when g € (2, 00).

If there exists an infinite open cluster with positive probability, under what
further conditionsis this cluster almost-surely unique? The property of having a
uniqueinfinite cluster isnot monotoneinthe configuration: thereexist wy, wp € Q
such that w1 < wp and | (w1) = 1, | (w2) > 2. Nevertheless, it turns out that,
for transitive unimodular graphs, the set of values of p for which | = 1isindeed
(almost surely) an interval.

The *uniqueness critical point’ is given by
i@ =inf{p: ¢l =1 =1}, b=0.1

and satisfies
p(@) < p2(@. b=01

Since G istransitive, Aut(G) has an infinite orbit. Theevent {I = 1} isAut(G)-
invariant whence, by the Aut(G)-ergodicity of the qﬁg’q,

ppq(l=D=0  p<pl
(10.101) Theorem [240]. Let G be aninfinite connected locally finite graph that

is transitive and unimodular, and let b € {0,1}. 1f 5 4(I = 1) = 1 then
¢B’,q(| =1)=1for p’ > p. Inparticular,

P =D=1  p>p
The proof isbased upon the following proposition whose proof is omitted from
the current work. A probability measure . on (€2, ) is called insertion-tolerant
if,foralec Eand Ae ¥,
w(A® >0 whenever u(A) > 0,
where A® isthe set of configurations obtained from members of A by declaring e
to be an open edge. Insertion-toleranceis aweak form of finite-energy, see (3.4).

The symbol 0 denotes an arbitary vertex of G called its*origin’.
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(10.102) Proposition [242]. Let G be an infinite connected locally finite graph
that is transitive and unimodular, and let i« be an Aut(G)-ergodic probability
measure on (2, ) that is positively associated and insertion-tolerant. Then
w(l =1) = lifandonly if

inf £(0<« x) > 0.
xeV

Theorem 10.101 is an immediate consequence, since the qsg’q(o < X) are
non-decreasingin p.

Supposethat G isunimodular. By Theorem 10.101 and awell known argument
from[261], the free and wired random-cluster measures have (each) three phases:
forb=0,1,

0 if p< p2a),
| =1 oo if pR(a) < p < pR(a). $pq-as
1 ifp> pl@.

It is an open problem to obtain necessary and sufficient criteria for the strict
inequalities

(10.103) pi@) < pi@), pl@ < pl(@),

and the reader is referred to [174] for a discussion of this. The Burton—-Keane
argument, [72, 129], may be adapted to show that equalities hold in (10.103)
when G is amenable. On the other hand, the inequalities may be strict, see [174,
240].

It is natural to ask for the value of | when p equals one of the critical values
p*g, pS. The pictureisfar from complete, and the reader isreferred to [29, 30, 33,
167, 174] and Section 10.11 for the current state of knowledge.
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Chapter 11

Graphical Methods for Spin Systems

Summary. Five applications are presented of the random-cluster model
to lattice spin-systems, namely the Potts and Ashkin-Teller models, the
disordered Pottsferromagnet, the Edwards-Anderson spin-glassmodel, and
the Widom—Rowlinson lattice gas model.

11.1 Random-cluster representations

Theinteracting systemsof |attice statistical mechanicsare mostly ‘ vertex-models
in the sense that the configurations are spin-vectorsindexed by the vertices. Such
spins may take values in a general state-space, and the nature of the interaction
between different verticesis specified within the Hamiltonian. A substantial tech-
nology has been developed for such systems. One of the techniquesisto seek a
transformation to an ‘ edge-model’ that enables the use of geometric argumentsin
the study of correlations. The standard example of thisis the mapping of Section
1.4 linking the Potts model and the random-cluster model. Such arguments are
sometimes known as ‘ graphical methods', and some examples are summarized
briefly in this chapter.

No attempt is made in this chapter to be encyclopaedic. Instead, we describe
five cases of specia interest, namely the Potts and Ashkin-Teller models for
a ferromagnet, the disordered Potts model, the Edwards—-Anderson model for a
spin glass, and the Widom—Rowlinson model for a two-type lattice gas. There
is a common theme to these examples. The first step in each case is to find a
corresponding model of random-cluster type, with the property that the origina
spin system may be obtained by assigning spins to its clusters. It turns out that
there existsaunique Gibbs state for the original spin systemif and only if the new
model has (almost surely) only finite clusters. The existence or not of an infinite
cluster may be studied either directly, or by comparisonwith aknown system such
as apercolation model.

Accounts of the use of graphical methods for these and other classical models
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may befound, for example, inthework of Alexander [15], Chayesand Machta[93,
94], Graham and Grimmett [142], and in thereviews of Georgii, Haggstrom, Maes
[136], and Haggstrom [169], aswell asin the literature listed |ater in this chapter.
Theuse of random-cluster methodsin quantum spin systemsis exemplifiedin[11,
12, 258].

11.2 The Potts model

The random-cluster model was introduced in part as a means to study the Potts
model. No attempt is made here to compress the ensuing theory into afew pages.
Instead, we state and prove one theorem concerning a random-cluster analysis of
the (non-)uniqueness of Gibbs states for the Potts model.

The Potts model on a finite graph G = (V, E) has an integer number q €
{2,3,...} of states and an ‘inverse-temperature’ 8 € (0, oo). We shall consider
the case of zero externa-field, and we recall the notation of Section 1.3. We
write ¥ = {1,2,...,q}V for the configuration space. For e = (x,y) € E and
o = (ox:xeV)e X, letde(o) bedefined by the Kronecker delta
1 if oy = oy,

%e(0) = doy.0y = { 0 otherwise

The Potts probability measure is defined as
1 —8HO)
7G,p,q(0) = —¢€ , o€,
Zp

where the Hamiltonian H (o) is given by

Ho)=— Y Sl0),

e=(x,y)eE

and Zp = Zp(G, B, q) isthe appropriate normalizing constant.

Consider now the lattice LY with d > 2. The spin space isthe set ¥ =
{12, ...,q}Zd, and the appropriate o-field G is that generated by the finite-
dimensional cylinders of . Let A be a finite box of L9, which we consider
as agraph with edge-set E5. For r € X, let X} be the subset of X containing
all configurations that agree with = off A \ dA. The Potts measure on A ‘with
boundary condition ¢’ isthe probability measureon (X, §) satisfying

Camapqlon) ifo e Xy,

11.1 H =
(111 ap.a(®) {O otherwise,

where o isthe partial vector (ox : X € A) comprising spinsin A, and ¢}, isthe
normalizing constant. Of particular interest are the boundary conditionst = i for
giveni € {1, 2, ..., q}, in which case we write n}\’ﬁ’q. The symbol U, will be
used to denote the o -field generated by the spins (oy : y ¢ A\ 9A).
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(11.2) Definition. A probability measurer on (£, ) iscalled aGibbsstate of the
g-state Potts model with inverse-temperature 8 if it satisfies the DLR condition:

forall Ae g andboxes A, 7(A| Up)(r) = nf\’ﬂ’q(A) for r-ae. t.

The principal question concerning Gibbs states is the following. For which
values of the inverse-temperature 8 does there exist a unique (respectively, a
multiplicity of) Gibbs states? It turns out that there is a unique Gibbs state if and
only if the corresponding wired random-cluster model possesses (almost surely)
no infinite cluster. Prior to the formal statement of this claim, which will be given
in a form borrowed from [136, Thm 6.10], the reader is reminded of the weak
limitst

Thq = l'{gd TApa Thg= [{'T'Qd X pa

given in Theorem 4.91 and the remark immediately following. The measure ng’q

is caled the ‘free’ Potts measure.

(11.3) Theorem. Let 8 € (0,00),q € {2,3,...},andletp=1—eF.
(8 Themeasures ng’q, ”g,q are translation-invariant Gibbs states.
(b) [8] The following statements are equivalent:
(i) there exists a unique Gibbs state,
(i) 75 q00=1 =q°%
(iii) thewired random-cluster measure ¢;; , satisfies ¢ (0 <> 00) = 0.

We have highlighted the Potts measure né’q with boundary condition 1. One
may construct further measures ”E,q with boundary conditioni € {2,3,...,q}.

Such measures differ from né’q only through a re-labelling of the spin values
1,2,...,Q.

The main claim of the theorem is that there exists a unique Gibbs state if and
only if ¢ 4(0 <> 00) = 0. When ¢ (0 < 00) > 0, there exists more than one
Gibbs state, but how many? It is easily seen from the theorem that the measures
n/g’q, i € {12, ...,q}, arethen distinct Gibbs states, but do there exist further
states? The set of Gibbs states for given 8, q is convex, and thus we are asking
about the number of extremal Gibbs states. There are three situationsto consider.
The parameters p and 8 are related throughout by p = 1 — e 2.

1. Twodimensions(d = 2). Itisbelievedthattheyr/ig’C| arethe unique extremal
Gibbs states whenever p > pc(q). At the point of a discontinuous phase
transition (see Conjecture 6.32), the set of extremal Gibbs statesis believed
tober), fori €{0.1,2,....q}.

1There is a technical detail here in that 7A,B.q IS defined on A rather than on Zd, but we
overlook this.
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2. Supercritical phase (d > 3). Suppose p > pc(q). Itisbelieved that the
”/Is,q arethe uniqueextremal trangl ation-invariant Gibbs states. On the other
hand, there exist non-trandlation-invariant Gibbs states (see Theorem 7.89)
when g8 (and hence p) is sufficiently large.

3. Critical case (d > 3). Let p = pc(q). By Theorem 11.3, there exists

a unique Gibbs state if the phase transition is continuous in the sense that
¢F1)c,q(0 < o0) = 0. When q is sufficiently large, the transition is discon-
tinuous and there exist exactly q + 1 trandation-invariant extremal Gibbs
states n/ig’q, i €{0,1,2,...,q}, [25]1]. Thereisin addition an infinity of
non-trang ation-invariant extremal Gibbs states, [85, 254)].

To each vertex of ag-state Pottsmodel isallocated one of thestates 1, 2, . . ., g.
Theso-called* Pottslatticegas hasan augmented statespace0, 1, 2, . . ., g, where
the vertices labelled O are considered as ‘empty’. The Potts lattice gas may be
studied via the so-called * asymmetric random-cluster model’, see [15]. A similar
augmentation of the state space was introduced for the Ising model by Blume and
Capd in a study of first-order phase transitions, [50, 79]. This givesrise to a
‘Blume-Capel—Potts model’ which may be studied via a random-cluster repre-
sentation, see [142].

Proof of Theorem 11.3. (a) The existence of the measuresis proved in Theorem
4.91 and the comments immediately thereafter. Their trand ation-invariance fol-
lows from the translation-invariance of ¢B,q for b = 0, 1, see Theorem 4.19(b),
on following the recipes of Section 4.6.

We prove next that né’q is a Gibbs state, and the same proof isvalid for ng’q.
For boxes A, A satisfying A € A, let Va\a denote the o -field generated by the
states of verticesin A \ (A \ dA). Let A € G. By the martingale convergence
theorem (see [164, Ex. 12.3.9]),

Thq(Al Un) = Jim, T5q(Al Van),  mhgas
By weak convergence, Theorem 4.91,
75 (Al Vaa) = Jim, Txrpq(A L VAN,

and it is a simple calculation based on the definition of the finite-volume Potts
measures that

75 pq (A1 Va\a) (@) = 7% 5 4(A).
Combining the last three equations, we find as required that
Mg q(Al Un)(T) =7} 44(A), T -as.
(b) We provefirst that (i) implies (ii). Assumethat (i) holds, so that, in particular,
Mg ="pqfori =2,3,...,9. Then,
né’q(ao =1= né’q(ao =1])

:ﬂ%’q(O‘OZJ), J:1’27’q

(©Springer-Verlag 2006



324 Graphical Methods for Spin Systems [11.2]

However,

fe]

Y miqoo=] =1,
j=1

and (ii) follows.
By Theorem 1.16 applied to A with the wired boundary condition,

1
7} (00 =1) — 5= @- 9k g0 < 00).
Let A 1 29 and deduce by Theorems4.91 and 5.11 that
1 _
w500 =1) — g=@-a Depp.q(0 < 00).

Therefore, (ii) and (iii) are equivalent.

Finally, we provethat (iii) implies (i). Assume (iii), and let = be a Gibbs state
for the Potts model with parameters 8, g. Let A € § beacylinder event, and let
ng’ q denote the Potts measure on L9 with the free boundary condition. We claim
that

(11.4) m(A) =g (A,

which implies (i) since the cylinder eventsgenerate §. Let ¢ > 0. We shall prove
that

(115) |7} pq(A) — ng’q(A)| <e, for somebox A andall r € X.

Equation (11.4) followsby (rr -)averaging over T and appealing to Definition 11.2.

We concentrate for the moment on the measure 7§ 8.q- We may couple this
measure with a certain random-cluster-type measure in the same manner as de-
scribed in Section 1.4 for the free measures. For w € Q4 = {0, 1}, let K™ (w)
be the number of open clustersin the graph obtained from (A, E, ) by identifying
eachof thesetsV; = {x e A 1 1w =i},i = 1,2,...,q, asasinglevertex. Let ¢
be the random-cluster measure on Q2 5 with the usual cluster-count k(w) replaced
by k™ (w). Finaly, let ¢} 0.4 denote? ¢ conditioned on the event

(11.6) D' ={weQ:Vi < VjinA,foraldistincti, j € {1,2,...,q}}.
It isleft as an exercise to provethat 7 5. isthe law of the spin-vector obtained
asfollows. If x ¢ A\ dA, assign spin tx to X. For verticesin A\ 9 A, first sample

w € Q accordingto ¢} P, and then assign uniformly distributed random spins

2Since kT (w) differs from k(w) by aconstant (depending on ), we could take 5% pqto be
the wired measure ¢}\, p,q conditioned on D”.
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to each open cluster of w subject to the constraint: if x <> V;, then x is assigned
spini.

By positive association,

(11.7) $h.p.q <st Ph.pg

where the latter measure is to be interpreted as its projecti on onto {0, 1},

We return to the cylinder event A, and we let ¢ > 0. By the remark after
Theorem4.91, 70 , . = =) , & A 1 24, and thuswe may find abox B such that

(11.8) ‘ng’ﬁ’q(A) — ng’q(A)‘ <€ foral y D B.

Let A’ be abox sufficiently largethat: B € A/, and A is defined in terms of
the vertex-spinswithin A’. By (iii), we may choose abox © suchthat A’ € ®
and

(11.9) Ppq(A < 30) <.
Since ¢y , 4 = #p.q & A 129, wemay findabox A suchthat ® < A and
(11.10) Px pg(A < 30) < 2¢.

Lett € X. By (11.7) and (11.10),
(11.12) DA pg(A < 00) < 2, TEX.

Ontheevent {w € Q : A’ <4 90}, thereexistsaconnected subgraph T of © \ 90,
containing A" and with closed external edge-boundary A¢®. Let T bethemaximal
graph with this property, and let # be the set of all possible outcomesof I'. For
y € #,theevent {I" = y} is measurable on the o -field generated by the states of
edgesnot belongingto y. (Thereisasimilar stepinthe proof of Proposition 5.30.)
The marginal measure on y of ¢}\’p’q(- | I' = y) istherefore the free measure

¢9 . q and hence, by coupling,

TrpaA = D70 5 ((APR 5q(T=1)| < ¢} pg(A < DA).

yeH
By (11.8) and (11.11),
A p.a(A) = ”E,Q(A)| < 3¢,
whence (11.5) holds with an adjusted value of €, and (i) is proved. O
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11.3 The Ashkin-Teller model

Each vertex may bein either of two states of the Ising model. The Potts model was
proposed in 1952, and allows ageneral number q of local states. Nearly ten years
earlier, Ashkin and Teller [21] proposed a 4-state model which, with hindsight,
may be viewed as an interpolation between the Ising model and the 4-state Potts
model. Their model amountsto the following.

Let G = (V, E) be afinite graph. The set of local spin-valuesis taken to be
{A, B, C, D}, so that the configuration spaceis * = {A, B, C, D}V. Let Ji, o
be edge-interactionssatisfying 0 < J; < Jp, andlet 8 € (0, 0co0). The spinsat the
endverticesx and y of theedgee = (x, y) interact according to afunction § given
asfollows:

5(A,B)=46(C,D) =,
5(A,C)=46(A,D)=46(B,C)=45(B,D) = .

Thereissymmetry withinthe pair { A, B} andwithinthe pair {C, D}, but asymme-
try between the pairs. The Ashkin—Teller measureon G isthe probability measure
given by

1
aG,g(o) = Z—ATe_’SH(”), o€,

where Zat isthe appropriate normalizing constant and

H(o) = Z 8(ox, ay), oex.

e=(X,y):
oxF0y

Neighbouring pairs prefer to have the same spin, failing which they prefer to have
spinsin one of the sets { A, B}, {C, D}, and failing that either of the spinsin the
other pair. When J; = 0, the Ashkin—Teller model is equivalent to the Ising
model. When J; = Jp, it isequivalent to the 4-state Potts model.

Consider the lattice LY with d > 2. The spin spaceis = = {A, B, C, D}Zd,
and § denotes the o-field of X generated by the cylinder events. In order to
define Ashkin—Teller measureson theinfinitelattice, wefollow the standard recipe
outlined in the last section around Definition 11.2. For t € ¥ and abox A, one
may define an Ashkin-Teller measure «} , on A with boundary condition z. A
probability measure« on (X, ) iscalled aGibbsstate of the Ashkin—Teller model
with inverse-temperature 8 if, for any box A, the conditional measureon A, given
the configuration t off A \ 9A, iSaR’ﬁ.

For what values of B does there exist a unique Gibbs state?
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(11.12) Theorem [271]. Consider the Ashkin—Teller model onIL9 withd > 2 and
0 < J1 < Jo. Thereexist B1, B2 satisfying 0 < B1 < B2 < oo such that the
following hold.

() Thereisaunique Gibbs stateif 8 < 81.

(b) If B € (B1, B2), there is a multiplicity of Gibbs states each of which is
invariant under there-labellings A <+ BandC < D.

(c) If B > B2 then, for each s € {A, B, C, D}, there exists a Gibbs state in
which the local state s dominates. That is, for each s there exists a Gibbs
state o such that

alox =9) > 3, alox=1) <3, xez9 te{A B,C,D}\{s}

Furthermore, 81 < B2 if Jo/ J1 is sufficiently large.

It is an open question to decide whether 81 < B2 whenever J; < Jp. Perhaps
the answer depends on the choice of lattice.

Theorem 11.12 may be found in [271], and it is proved here via a random-
cluster representation following the treatment in [169]. Further results for the
Ashkin-Teller model and its random-cluster representation may be found in [93,
273, 289, 321].

The relevant graphical method makes uses the following edge-model. Let
G = (V, E) be afinite graph as before, and take as configuration space the set
Q =1{0,1,2)F. Forw € Qandi € {0, 1, 2}, wewrite ; (w) for the set of edgese
withw(e) =i. Letp = (po, p1, p2) beavector of non-negativerealswith sum 1.
The Ashkin-Teller random-cluster measure on G is the probability measure ¢ p
on Q given by

1
$G.p(w) = > p(\)no\ p\nll p\zﬂzlzk(mUnz)-i-k(nz)’ weQ,
ATRC

where ni = n;j (w) and Zatrc is the appropriate normalizing constant.
Supposethat 8 € (0,00),0 < J; < Jp, andlet p = (p1, p1, p2) satisfy

(11.13) pp=eP2 p=efl_ehl p,=1_eFr

We describe next how to couple ag g and ¢ p. Let w have law ¢ p. For each
cluster C12 of thegraph (V, n1(w)Un2(w)), weflipafair cointo determinewhether
the spinsin Cy2 are drawn from the pair { A, B} or from the pair {C, D}. Having
donethisfor each C12, we consider the clusters of the graph (V, n2(w)). For each
such cluster Co, weflip afair coin to determine which of the two possibilitieswill
be allocated to the vertices of Cp. Thus, for example, if C, € C12 and verticesin
C12 aretoreceivespinsfromthepair { A, B}, then either every vertexin Cx receives
spin A, or every vertex receives spin B, each such possibility having (conditional)
probability % This recipe results in a random spin-vector ¢ € {A, B, C, D}V,
and it isleft asan exercise to check that o haslaw ac g.
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Thekey question in deciding the multiplicity of Gibbs states is whether aweak
limit of the ¢ 5 p May possess an infinite cluster of edges each of which has either
state 1 or state 2 (respectively, each of which has state 2). We begin the proof of
Theorem 11.12 with alemma. The configuration space Q = {0, 1, 2}F may be
viewed asapartially ordered set. For probability measures 111, w2 on 2, wewrite
n1 <g p2 if w1 (f) < wo(f) for al non-decreasing functions f : @ — R. See
Section 2.1.

(11.14) Lemma. Suppose0 < J; < Jo. Let B € (0, 00), andlet p = p(B) satisfy
(11.13). The probability measures ®g = ¢g p(g) Satisfy

(11.15) Dp, <gq Pg,, O0< B <pB2<o0.

Proof. Each @4 is a probability measure on the partially ordered set Q. By

Theorems 2.1 and 2.32, inequality (11.15) holdsif, forv = 1, 2and every e € E,
mpe(v,£) = Pg(w@©) = v|w(f) =£(f) foral f € E\ {e})

isincreasing (that is, non-decreasing) in 8 € (0, oo) and § € Q.
Foree Eand & € Q, let k(e &) (respectively, k12(e, £)) be the number of

clusters of the graph (V, n2(&) \ {€}) (respectively, (V, n1(&) U n2(£) \ {e})) that
intersect the endvertices of e. It isan easy calculation that

p+mp+p if v = 2,

_ YoPo + yY1ip1 2

(11.16) mge(v, &) = B Yo Po _—
YoPo + y1P1 + P2 '

where

(11.17) Yo= 2rx12(8.8)+k2(@5)—2 y1= or1a(ef)-1

Note that

(11.18) =y =1

and, in addition, yo, y1, y0/y1, and yp — y1 are decreasing functions of &.
Now,

+ + 1
(11.19) voPotyiprt P2 _ (vo — yl)@ o (_ B 1) ’
P2 P2 P2
(11.20) voPotyiprtP2_, 1 P +i P2
YoPo Yo Po ¥o Po

3These were proved for the case Q@ = {0, 1}E, but similar results are valid in the more general
setting when @ = TE and T isafinite subset of R. See, for example, [136, Section 4].
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It is easily checked from (11.13) that po, po/p1, and 1/ py are decreasing in 8.
By (11.18), (11.19) is decreasing in 8. By the remark after (11.18), (11.19) is
decreasing in &, and therefore g e(2, £) isincreasing in g and £ as required.
Similarly, (11.20) isincreasing in g and &, and therefore so is g e(1, £) in
(11.16). We conclude that each g e(v, §) isincreasing in g and &, and (11.15)
follows. O

Sketch proof of Theorem 11.12. We follow [169]. For » € {0, 1, 2}, acluster of
type 1/2 (respectively, type 2) isacluster formed by the edgesewith w(e) € {1, 2}
(respectively, w(e) = 2). Asin the Potts case of the previous section, thereis a
unique Gibbs state if and only if every weak limit, as A 1 79, of ¢a,p POSSESSES
(almost surely) no infinite cluster of type 1/2. By Lemma11.14, thelast statement
about the ¢4 p is a decreasing property of g: if it holds when g = g’ then it
holdsfor 8 < B’. Therefore, there exists acritical value 81 such that there exists
a unique (respectively, multiplicity) of Gibbs states when 8 < 1 (respectively,
B > p1).

By (11.16)—(11.17),

mpel§) <2p+ p2=p (), £€Q, eckE,
where
p*(B) =2 —e Pl 1-eFh

By Theorems2.1 and 2.3, the law of the set of edgesof type 1/2in G isdominated
by a product measure with density p*(8). When p*(8) < p°(1.9), no weak
limit of ¢4, p May possess an infinite cluster of type 1/2. Here, pf°"d(LLY9) denotes
the critical probability of bond percolation on LY. We deduce that 81 > O.

Thesame argument may be applied to theexistence (or not) of aninfinitecluster
of type 2. Once again, there exists a critical value 8> marking the onset of the
existence of such acluster, and it iselementary that 81 < 2. By (11.16)—<(11.17),

nge(2,6) > 1p, £€Q, ecE,

implying asabovethat, when g islarge, every weak limit of ¢ o p possesses (almost
surely) an infinite cluster of type 2. Therefore, 82 < oo. Statement () is easily
seen to follow and, in addition, statement (b) when 81 < B2.

By (11.16),
mpe(l,6) >1—4pg=1—4e %
mpe(2.6) < pp=1—eF

Suppose there exists a non-empty interval | of values of g such that
(11.21) 1— e Bu o phonddy _ 1 4eBY.

If 8 € |, theedgesof type 1/2 dominate asupercritical product measure, and those
of type2 aredominated by asubcritical product measure. Therefore, 81 < 8 < B2,
and hence | isasub-interval of [81, B2], implying that 81 < B2. We may indeed
find such aninterval | if Jo/J; issufficiently large. O
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11.4 The disordered Potts ferromagnet

All our models have been assumed so far to be homogeneous in the sense that
their edge-parameters have been assumed equal. In a ‘disordered’ system, one
beginsinstead with a general family of edge-parametersindexed by the edge-set
E. It is potentially a major complication that the ensuing measures may not be
automorphism-invariant, and one may not apply techniques such as the ergodic
theorem. A degree of statistical homogeneity may be re-introduced by assuming
that the edge-parametersare chosen according to some given trand ation-invariant
random field. We restrict ourselves for simplicity here to the situation in which
this random field is a product measure with a given marginal distribution.

The disordered Potts model on afinite graph G = (V, E) isgiven asfollows.
One beginswith afamily J = (Je : e € E) of ‘random interactions #. These are
independent, identically distributed random variables taking values in the half-
open interval [0, co) according to a given law v. Let 8 € (0,00) and q €
{2, 3, ...}. Thecorresponding Potts (random) measure on the configuration space
»=1{12....,qVis

1
(11.22) my,q(o) = Z—efﬁH(J), =N
J
where Z; isthe appropriate (random) normalizing constant and
Ho)=—= Y Jebe(0).  8e(0) =bo,.0-
e=(Xx,y)eE

Such amodel is ferromagnetic in that the Je are non-negative random variables.
The non-ferromagnetic case is much harder, and the reader is referred to Section
11.5 for some partial results of random-cluster type.

The *disordered random-cluster model’ is defined similarly on G = (V, E).
Letg € (0,00),andlet p = (pe : € € E) beafamily of independent, identically
distributed random variables chosen from the interval [0, 1]. The corresponding
random-cluster (random) measure ¢p o on 2 = {0, 1}E isgiven asusual by

(11.23) bp.q(e) = Zi{l—[ pe® (1 — pe)lw(e)}qk(w)’ we Q.
p

ecE
where Z;, is the appropriate (random) normalizing constant.
With g, 8, and the J as above, let

(11.24) Pe=1—e Pk ecE.

The measures ¢p q and m3,q may be coupled as in Section 1.4. Asin Theorem
1.16,

1 _
(11.25) 73,q(ox = oy) — q = (1—gq Hgpqx < Y), X,y € V.
4Disordered systems were introduced in [143], and early papers include [132, 133].
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Consider the lattice L9 with d > 2. In developing the theory of disordered
random-cluster measures on L9, one needs to take care to avoid the use of spatial
homogeneity. It turns out that quite a lot of the theory of Chapters 1-4 remains
valid in this setting, including the comparison inequalities. When working on a
finite box A of the lattice LY with q € [1, 00), one may therefore pass to the
infinite-volume limit as A 1 79, asin Section 4.3. Without more ado, we shall
use the notation introduced earlier, including that of the infinite-volume random-
cluster measures ¢ o, ¢ -

The disordered Potts model has a random set of Gibbs states, and we seek a
condition under which this set comprises (almost surely) a singleton only. Asin
the previous sections, for given 8J, thereis aunique Gibbs state if and only if the
corresponding wired random-cluster measure possesses no i nfinite cluster.

Let | = {w € Q: w possesses an infinite cluster} and consider the probability
¢p.q(1), viewed as a function of 8. By the comparison inequalities, ¢ 4(1) is
non-decreasing in 8, and we define the critical point 8c(J) by

Be(d) = sup{p > 0: ¢5 4(1) =0},

noting that B¢(J) is arandom variable. The random variable q%ﬁq(l ) isinvariant
under lattice-trandations, and the invariant o-field of the pe is trivial, whence
d’rl!,q(l) € {0, 1}. Therefore, there existsa constant 3¢ € [0, oo] such that

0 |fﬁ<,3c,
1 |f‘3>ﬂc,

where P denotes the product measure with marginals v on the space [0, oo)]Ed .
A pivota roleis played by the atom of v at 0,

P =B =1 dpq(l) = {

1(0) = P(Je = 0).

By (11.24), P(Je = 0) = P(pe = 0). By the comparison inequality (3.22),
¢p q(1) =0, (P-dmost-surely), if 1 — v(0) < p"(LY). Therefore,

(11.26) Be=oc0 if v(0)>1— pndqd)
The situation is more interesting when v(0) < 1 — p2ond(Ld),
(11.27) Theorem [7]. Letd > 2, and consider the disordered Potts model on L9
with edge-interaction law v.
(@ If v(0) > 1 — pend(Ld), then B = oo.
(b) If v(0) < 1— pRond(19), there exists Bc = Bc(v) € (0, oo) suchthat: there

exists (P-almost-surely) a unique Gibbs state if 8 < B¢, and (P-almost-
surely) a multiplicity of Gibbs statesif 8 > fc.

The literature on disordered Potts models is substantial, see for example [7,
155] and the bibliographiesof [136, Section 9], [169, 259, 260]. L ower and upper
boundsfor 8c may befound at (11.28)—(11.29).
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Proof. Part (&) was proved at (11.26). Suppose that v(0) < 1 — p2d(Ld). By
the earlier remarks, it suffices to provethat 0 < B¢ < oco. By the comparison
inequality (3.22),

bpq(1) < ¢p(l)

where ¢p is the product measure on €2 in which edge e is open with probability
pe. Therefore,

Plgp q(D] < Plgp(D] = drpy (1),

since the average of a product measure is a product measure. Now,
P(pe) =P(l—e %) >0 asplo,
by monotone convergence. Therefore,
(11.28) Be = sup|B > 0: P(1— e Fl) < pPmd@d)} > o,
We turn to the upper bound for 8. By the other comparison inequality (3.23),
dp.q(1) = dp (1)
where ¢ isthe product measure on €2 in which edge e is open with probability

p/ _ Pe _ 1—e Pl
® Pe+q(l—pe) 1+ (q-—DehFlk’

By monotone convergence,
P(py) — 1—v(0) asp — oo,
and 1 —v(0) > ped(Ld), by assumption. Arguing as above,

1—ehl

(1129) B <inf {ﬂ >0:P <m

) > pgond(]Ld)} < 00,

and the theorem is proved. O
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11.5 The Edwards-Anderson spin-glass model

The Ising/Potts models with positive edge-interactions Je are termed ‘ferromag-
netic’: like spins attract one another, unlike spinsrepel. The corresponding edge-
variables pe = 1 — e % satisfy pe € [0, 1), and the random-cluster model is
a satisfactory tool for the analysis of the correlation structure. Conversely, when
the Je can be of either sign, the model is non-ferromagnetic, and the analysisis
relatively difficult and incomplete®. Therandom-cluster model playsarolein this
situation also, as described in this section in the context of an Ising model with
real-valued edge-interactions.

In the last section, the Je were allowed to be random variables taking values
in the half-line [0, co). A model which is especially interesting and relatively
poorly understood is the so-called * Edwards—Anderson spin-glass model’, [109],
in which the Je are independent, identically distributed random variables taking
valuesin R with asymmetric distribution (that is, Je and — Je have the same law).
Two natural distributionsfor the Je arethe normal distribution, and the symmetric
distribution on the two-point space {—1, 1}. There are several beautiful open
problems concerning the Edwards—Anderson model. We refer the reader to [260]
for an account of the theory, and to [262, 263] for recent results and speculations.

LetG = (V, E) beafinitegraph, andwrite = = {—1, 1}V and Q2 = {0, 1} for
the associated vertex- and edge-configuration spaces®. LetJ = (Je: e € E) be
agiven vector of reals, which may be negative or positive. We shall be interested
in the Ising” measure 7rg3 = g, gy given by

1

(11.30) mpy(0) = ?e‘ﬂH(”), cex,
|

(11.31) He)=—= Y 3Joxoy.
e=(x,y)eE

The inverse-temperature 8 € (0, co) isregarded as the parameter to be varied.

When Je > 0 (respectively, Jo < 0), the spins at the endvertices of the edge
e prefer to be equal (respectively, opposite). The usual stochastic orderings of
the measures are invalid when some of the Je are negative, and the consegquent
theory is substantially less developed than that of the ferromagnetic case. This
notwithstanding, the measure g3 may be coupled as follows with a random-
cluster-type measure on  with edge-parameters (pe : € € E) given by

(11.32) Pe =1 — e Pl ecE.
Let P bethe product measureon X x Q given by
= { e (I}
xeV ecE

5See Kasteleyn's remark about the anti-ferromagnet in Paragraph 12 of the Appendix.

e take the vertex-spins to be —1 and 1 in order to highlight a symmetry.

"The term ‘Ising’ is normally used in the ferromagnetic case only, but we choose to retain it
in this disordered model.
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where
P (ox=-1D)=¢"ox=1 =3 XeV,
P%(w@® =1) =1-9¢%w(E® =0)=pe, ecE.
Let W =Wg C ¥ x Q bethe (non-empty) event
(11.33) W= {(a, w) : Jeoxoy > Oforall e= (x, y) withw(e) = 1}.

Thatis, W isthe set of pairs (o, w) € E x Q such that the spins at the endvertices
of every open edge e have the same sign (respectively, opposite signs) if Jo >
0 (respectively, Je < 0). We now define the probability measure u to be P
conditioned on W,

(11.34) u(o, w) = ﬁu(a, w)lw(o, w), (o0,w) € X x Q.

LetU = Ug € Q bethe event
(11.35) U ={weQ:thereexistso € = with (5, ») € W}.

A configuration w €  iscalled frustrated if w ¢ U. It isleft as an exercise®
to show that the marginal measure on X of w is the Ising measure (11.30), and
the marginal measure on 2 is the random-cluster measure with parameters p =
(pe: € € E), g = 2, conditioned on the event U. We writethis as

p(o) =mpy(o), o €X,
(11.36) _
p(w) = ¢p(w), weQ,

where

_ _ 1
(1L37)  Gp@) = Pop@) = Ztp2@lu@). Z=Y dp2).

weU

The conditional measureon ¥ of u is determined as follows, the derivationis
omitted. First, we sample w € Q2 accordingto therelevant marginal ¢,. Given o,
the (conditional) law of the random spin o has as support the set

S(w) = {o €Y :(o,w) GW},

which is non-empty since w € U (u-almost-surely). Let C be an open cluster of
w, and let X, y bedistinct verticesin C. Let p be an open path from x to y. Since
every edge e of p is open, it must be the case that pe > 0, and therefore Je £ O.

8This coupling may be found in [129] and the present account draws on [259, 260]. Thefirst
use of arrandom-cluster representation in this context appears to bein [202].
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Let 0 € S(w). By (11.33), oy = nx,yox Where ny y is the product of the signs
of the Je for e € p. Thus, the relative signs of the spinson C are determined by
knowledge of w. Since there are two possible choices for the spin at any given
X, there are two choices for the spin-configuration on C, and we choose between
these according to the flip of afair coin. In summary, we assign spins randomly
to V in such away that: the spins within a cluster satisfy oy = 1x,yox as above,
and the spins of different clusters are independent.

Let w € Q. We extend the definition of ny y by setting nx y = 0if x <4 y, and
we arrive at a proposition which may be viewed as a generalization of Theorem
1.16 to situations in which g = 2 and the J. may be of either sign.

(11.38) Proposition [259]. For any finitegraph G = (V, E),
py(ox0oy) = Ep(nx,y), X,y €V.

When Je > Oforall e € E, thenny y = 1ix«y}, and theconclusion of Theorem
1.16 is retrieved.

We pass now to the infinite-volume limit. Let d > 2, let A be afinite box of
LY, andwrite 2y = {0, 1}, Fort € =, let X} begivenasin Section 11.2. We
may construct ameasure uj on X} x 2 by adapting the definition of . given
above. Thereference product measure P isgiven similarly but subjectto ox = 7«
for x € 9A, and u, isobtained by conditioning P on the event W = W, . The
marginal of 1} on X} isan Ising measure with boundary condition .

A (EA-)Gibbs state for the Edwards-Anderson model on L9 is defined to be
a probability measure 7 on ¥ = {-1, 1}Zd satisfying the DLR condition as
in Definition 11.2. The principal problem is to determine, for a given vector
J = (Je : e € EY), the set of values of 8 for which there exists a unique Gibbs
state. Only a limited amount is known about this problem. One of the main
difficulties is that correlations are not generally monotonic in 8, and thus we
know no satisfactory definition of a critical value of 8. Nevertheless, for given J
we may define
(11.39)

Bc(J) = sup{B : thereis aunique Gibbs state at inverse-temperature 8.

Thefollowing is proved as an application of the random-cluster method.

(11.40) Theorem [259]. Consider the Ising model on L9 with real-valued edge-
interactionsJ = (Je : e € E%) and inverse-temperature 8. We havethat Sc(J) >
Bc(1d]), where the latter is the critical inverse-temperature for the ferromagnetic
Ising model with edge-interactions |J| = (| Je| : € € EY).

Itisanimportant open problem to decide whether or not there isnon-uniqueness
of Gibbs states on L9 for large 8, [260]. There has been a considerable amount
of discussion of and speculation around this question, for an account of which the
reader is referred to the work of Newman and Stein [262, 263].
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We consider briefly the special caseinwhichthe J. havethe symmetric distribu-
tion on the two-point space {—1, 1}. The quantity 8c(J) isatrandation-invariant
function of a family of independent random variables. Therefore, there exists
areal number BEA such that P(Bc(J) = BEA) = 1. The theorem implies the
uniqueness of Gibbs states for every possible value of the vector J, whenever
0 < B < Bc(1) with B¢(2) the critical inverse-temperature for the ferromagnetic
Ising model with constant edge-interaction 1. The weak inequality BEA > Bc(1)
may be strengthened to strict inequality for this case, [100].

Proof of Theorem 11.40. We begin with a discussion of boundary conditions. Let
J=(J:ecE%be given, and 8 € (0,00). For t € ¥ and abox A, write
Ty 83 for the corresponding |sing measure on A with boundary condition z, asin
(11.1). Let A beacylinder event of X, and suppose 8 is such that,

(1141) fordlz, v’ €%, 7} 5)(A) — 7k 43(A) >0  asApZ%

Let 7, r’ be Gibbs states at inverse-temperature 8. We may sample T according
to r, and 7’ according to 7/, thereby obtaining from (11.41) and the definition of
a Gibbs state (asin, for example, Definition 11.2), that 7 (A) = n/(A). Sincethe
cylinder events generate therequisite o -field of X, we deducethat 7 = =/. It will
therefore suffice to prove (11.41) under the assumption that 8 < Sc(]J]), and this
will be achieved via a transformation to the random-cluster model.

We construct next the random-cluster measure on A corresponding to thelsing
measure z ; 3 and we remind thereader of the ferromagnetic case around (11.6).

Let Q4 = {0, 1} and

(11.42) Uf = {w € Q4 : thereexistso € £} suchthat (o, ) € W |},
where Wy C X7 x Q4 isgiven by

(11.43) W} = {(0, ) : Jeoxoy > Oforall e = (x,y) € Ex withw(e) = 1}.

Let p = (pe : € € EY) satisfy (11.32). Asin Section 11.2 (see the footnote on
page 324), we let ¢>f\’p be the wired random-cluster measure ¢/l\’p’2 conditioned
ontheevent Uj.

Theevent U isadecreasing subset of Q2,, so that, by positive association,

(11.44) Php <t Bhp2

There is a close link between stochastic inequalities and couplings. For w €
Qp, let S(w) = {Xx € A: X<« dA},and G = A\ S(w). We claim that there
exists a probability measure k on Q5 x Q4 such that:

(i) thefirst marginal is ¢ ,, and the second marginal is ¢3 | .
(i) the support of « isthe set of pairs (wo, w1) satisfying wo < w1,
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(iii) for any suitable g, conditional on the event {G(w1) = g}, the marginal law
of {wo(e) : e € Eg} isthe free measure ¢ .
The full proof of this step is omitted, and the reader is referred to [259] and to
the closely related proof of Proposition 5.30. The idea is to sample the states
wo(e), w1(e) of edgesrecursively, beginningwith edgeseincidentto d A. At each
stage, one checksthe stochastic domination (conditional on the past history of the
construction) that is necessary to continue the pointwise ordering.

Let A, A be boxes such that: A is defined in terms of the spins within A,
and A C A. Let S, G, and « be given as above. If w1 € {A <> 3dA}, then
G(w1) 2 A, and we write # for the set of possible values of G on this event.
Using the coupling of the Ising and random-cluster measures, together with the
remarks above, it follows by conditioning on the event {A <4 9 A} that

Th (A =D 3 52(G = Q)mg p3(A) + P} po(A < JA)MY,
geH

for some mj satisfying 0 < mj < 1. Similarly,

Th 3D =D ¢ 02(G = D7g pa(A) + ¢} 2(A < JA)MY.
geH

By subtraction,
(11.45) |78 53 (A) — T} 53 (A)] < @3 2(A < IA).

For 8 < Bc(]d]), the right side of (11.45) approaches 0 as A 4 79, and (11.41)
follows as required. O

11.6 The Widom—Rowlinson lattice gas

Particles of two types, type 1 and type 2 say, are distributed randomly within a
bounded measurable subset A of RY in such away that no 1-particleiswithin unit
distance of any 2-particle. A ssimple probabilistic model for this physical model
is the following, termed the Widom-Rowlinson model after the authors of the
paper [319] on the liquid/vapour transition. Let A € (0, co). Let IT1 and T2 be
independent subsets of A chosen as spatial Poisson processes® with intensity A.
Let D, bethe event

Da = {Ix—y| > 1forall x € My, y € M2},

and let a5 bethe law of the pair (IT1, IT2) conditioned on the event D . This
measure iswell defined since P(D,) > 0 for bounded A.

9See [164, Section 6.13] for an introduction to the theory of spatial Poisson processes.
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The definition of the Widom—Rowlinson measure px , may be extended to
the whole of RY in the usual manner, following. A probability measure on pairs
of countable subsets of RY is called a (WR-)Gibbs state if, conditional on the
configuration off any bounded measurable set A, the configuration within A is
that of two independent Poisson processes on A conditional on no 1-particle in
RY being within unit distance of any 2-particle.

How many Gibbs states exist for a given value of A? The following theorem
may be proved using random-cluster methods in the continuum.

(11.46) Theorem [285]. Consider the Widom-Rowlinson model on RY with
d > 2. There exist constants A1, A2 satisfying 0 < A1 < A2 < oo such that:
there is a unique Gibbs state when . < A1, and there exist multiple Gibbs states
when A > Ao.

It is an open problem to show the existence of a single critical value marking
the onset of multiple Gibbs states. In advance of the proof, which is sketched
at the end of the section, we turn to alattice version of this model introduced in
[232].

Let G = (V, E) beafinite graph. To each vertex we allocatea‘type’ from the
‘type-space’ {0, 1, 2}, and we write £y = {0, 1, 2}V for the ensuing spin space.
For o € I, let z(o) be the number of vertices x with oy = 0. Let A € (0, 00),
and consider the probability measure on v given by

: 1 ife e,
uGa(0) =1 ZwR
0 otherwise,

where D isthe event that, for al x, y € V, x »~ y whenever ox = 1and oy = 2,
and Zr is the appropriate normalizing constant.

Consider now the infinite lattice LY whered > 2, and let ¥ = {0, 1, Z}Zd,
endowed with the usual o-field . We may define a Gibbs state in the manner
given above: a probability measure u on (X, ) is called alattice (WR-)Gibbs
dtate if it satisfies the appropriate DLR condition.

(11.47) Theorem [232]. Consider thelattice W dom—Rowlinson model on L9 with
d > 2. Thereexist constants A1, A2 satisfying0 < A1 < A2 < oo suchthat: there
is a unique Gibbs state when 1. < A1, and there exist multiple Gibbs states when
A > Ao,

Itisan open problem to show the existence of asinglecritical valueof A. Proofs
of such factshingeusually on monotonicity, but such monotonicity isnot generally
valid for thismodel, see [69]. Progress has been made for certain lattices, [171],
but the case of L9 remains unsolved.

Themainingredient in the proof of thelatter theoremisacertain ‘ site-random-
cluster measure’, given asfollowsfor thefinite graph G. The configuration space
isQv = {0,1}V. Forw € Qv, Letk(w) bethenumber of componentsin thegraph
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obtained from G by deleting every vertex x with w(x) = 0. The site-random-
cluster measure g, p,q is given by

1

{l—[ pa)(X)(l_ p)lw(x)}qk(w)’ = QVa

xeV

where p € [0, 1], q € (0, 00), and Zsrc is the appropriate normalizing constant.
Thismeasurereduceswhen q = 1tothe product measureon 2y otherwiseknown
as site percolation.

At first sight, one might guess that the theory of such measures may be devel-
oped in much the same manner as that of the usual random-cluster model, but this
isfalse. The problemisthat, even for g € [1, oo), the measures g, p q lack the
stochastic monotonicity which has proved so useful in the other case. Specificaly,
the function k does not satisfy inequality (3.11).

Proof of Theorem 11.47. We follow [136], see ds0 [86]. Let G = (V, E) bea
finite graph, andlet q = 2, A € (0, 00), and p = A/(1 + A). We show first how
to couple pg,x and ¥, p,q- Let w be sampled from Qy according to ¥ p.q. If
w(X) = 0, we set ox = 0. To each vertex y with w(y) = 1, we alocate a type
from the set {1, 2}, each value having probability % and we do this by allocating
agiventypeto each given cluster of w, these types being constant within clusters,
and independent between clusters. The outcomeis a spin vector o taking values
in Xy, and it isleft as an exercise to check that o haslaw pg ;.

Next, we compare ¥, p,q With aproduct measureon Qv . Itisimmediatefrom
(11.48) that, for& €e Qandx € V,

Pq
PA + (1 — p)g<o”

Y. pa(e) =1]oy) =&y foradly ¢ V\ {x}) =

where k (X, &) isthe number of open clusters of & that contain neighbours of x.
[Here, &x denotesthe configuration obtained from & by setting the state of x to 0.]
If the maximum degree of verticesin GisA,then0 < «(x,&) < A, and

P1 < Y6, pa(eX) = 1]o(y) = &(y) foraly ¢ V \ {x}) < p2,

where
m—— P4 P
pq+ (1 — p)2’ pa+1-p
By Theorems 2.1 and 2.3,
(11.49) #G,p1 <st ¥G,p.q <st #G,p,

where ¢ ¢ isproduct measure on 2y with density r.

Consider now a finite box A of L9, with A = 2d. It may be seen as in the
case of the Potts model of Section 11.2 that there is a multiplicity of WR-Gibbs
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states if and only if the 5 p q have aweak limit (as A 1 79) that possesses an
infinite cluster with strictly positive probability. By (11.49), this cannot occur if
p2 < pgt(LY), but this does indeed occur if p; > pde(LY). Here, pge(Ld)
denotes the critical probability of site percolation on L9, see [154]. O

Sketch proof of Theorem 11.46. The full proof is not included here, and inter-
ested readers are referred to [136, Thm 10.2] for further details'®. Rather asin
the previous proof, we relate the Widom—Rowlinson model to a type of ‘con-
tinuum site-random-cluster measure’. Let A be a bounded measurable subset
of RY. For any countable subset T of A, let N(IT) be the union of the closed
%—neighbourhoods of the pointsin IT, and let k(IT) be the number of (topolog-
ically) connected components of N(IT). Consider now the probability measure

T A5 On the family of countable subsets of A given by
1
ﬁA,)L(dH) = —Zk(H)TL’AJ(dH)
Zy

where 74, is the law of a Poisson process on A with intensity A, and Z, isa
normalizing constant.

It is not hard to verify the following coupling. Let IT be a random countable
subset of A with law 74 ;. To each point x € IT we allocate either type 1 or
type 2, each possibility having probability % Thisis done simultaneously for all
x € I1 by alocating a random type to each component of N(IT), this type being
constant within components, and independent between components. The outcome
is a configuration (I3, I2) of two sets of points labelled 1 and 2, respectively,
and it may be checked that the law of (IT1, I12) iSua 2.

One uses arguments of stochastic domination next, but in the continuum. The
methods of Section 2.1 may be adapted to the continuum to obtain a criterion
under which 7 5 , may be compared to some i ;. It turns out that there exists
a = a(d) € (0, co) such that

(11.50) TA.an <st TAL <st TA2 for bounded measurable A.

Let 7r;, be the law of a Poisson process on RY with intensity 2. It isa central
fact of continuum percolation, see[154, Section 12.10] and [253], that there exists
Ac € (0, 0o) such that the percolation probability

(11.51) p(x) = m,(N(IT) possesses an unbounded component)
satisfies .
P21 ifa > e

It may be seen asin Section 11.2 that there exists a multiplicity of WR-Gibbs
states if and only the 75, have aweak limit (as A 1 RY) that allocates strictly
positive probability to the occurrence of an unbounded component. By (11.50)—
(11.51), this cannot occur when A < A1 = %Ac, but does indeed occur when
A > A2 = Ao/ ]

10The proof utilizes arguments of [86, 138].

(©Springer-Verlag 2006



Appendix
The Origins of FK(G)

The basic theory of the random-cluster model was presented in a series of papers
by Kees[Cees| Fortuin and Piet Kasteleyn around 1970, and in the 1971 doctoral
thesis of Fortuin. This early work contains several of the principa ingredients
of Chapters 2 and 3 of the current book. The impact of the approach within the
physics community was attenuated at the time by the combinatorial style and the
level of abstraction of these papers.

The random-cluster model has had substantial impact on the study of 1sing and
Potts models. It has, in addition, led to the celebrated FKG inequality, [124],
of which the history is as follows!. Following a suggestion of Kasteleyn, For-
tuin proved an extension of Harris's positive-correlation inequality, [181, Lemma
4.1], to the random-cluster model, [122]. Kasteleyn spoke of related work dur-
ing a lecture at the IHES in 1970, with Jean Ginibre in the audience. Ginibre
realized subsequently that the inequality could be set in the general context of a
probability measure . on the power set of a finite set, subject to the condition
LXUY)Yu(XNY) > n(X)u(Y), and he proceeded to write the first draft of the
ensuing publication. Meanwhile, Fortuin met Ginibre at the 1970 Les Houches
Summer School on ‘ Statistical mechanics and quantum field theory’.

In areply dated 23 September 1970 to Ginibre's first draft, Kasteleyn made a
number of suggestions, including to extend the domain of the main theorem to a
finite distributive lattice, thereby generalizing the result to include both a totally
ordered finite set and the power set of a finite set. He proposed the use of the
standard result that any finite distributive lattice is lattice-isomorphic to a sub-
lattice of the power set of somefinite set. The article was re-drafted accordingly.
Thetwo Dutch co-authorslater “thought it worthwhileto devel op asel f-supporting
| atti ce-theoretic proof " of theprincipal proposition?. Ginibreplaced hisown name
third in the list of authors, and the subsequent paper, [124], was published in the

1| am indebted to Cees Fortuin and Jean Ginibre for their recollections of the events leading
to the formulation and proof of the FKG inequality, and to Frank den Hollander for passing on
material from Piet Kasteleyn's papers.

2The quotation is taken from the notes written by Kasteleyn on Ginibre's second draft.
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Communicationsin Mathematical Physicsin 1971.

Ginibre recollects chatting with Kasteleyn at an AMS meeting during Spring
1971, and summarizing the situation as follows: “You had the proof and the
conclusion of the theorem, and | provided the assumption”. Thisfirst proof used
induction, the coupling proof of Chapter 2 was found later by Holley, [185].

In responseto an enquiry concerning the discovery of random-cluster measures,

Piet Kasteleyn kindly contributed the following material, quoted from two letters
to the present author dated November 1992.

First letter from Piet Kasteleyn to GRG, dated 11 November 1992.

You asked me about the origin of Kees Fortuin’s and my ideas on the random-
cluster model. | have excavated my recollections and here, and in the subsequent
pages, is what came up.

When in the late ' 60s Fortuin came from the Technical University of Delft to
Leiden for aPhD study, | had for sometime beenintrigued by asimilarity between
a number of very elementary facts concerning three different models defined on
finite graphs. | was at that time actively interested in graph theory and | had begun
to toy with afew ideasin order to find out if there was more behind this similarity
than sheer accidents or trivialities.

| told Fortuin about the datathat had struck me and proposed him to look closer
at them and at related problems. So we began to cooperate and first attacked
the case of finite graphs. When this led to success, we turned to infinite graphs.
Since Keeswas very good, he mastered in a short time the necessary mathematics
and began to work more and more independently. It became a good piece of
PhD research, of which the resultswere set down in histhesis and (identically) in
our and his papers on the percolation model and the random-cluster model. The
details you find on the following pages. Asyou will see, the first few steps were
all extremely ssimple. Thereforeyou may find my account unnecessarily detailed.
| found it fun, however, to go through this history once again.

Let G = (V, E) be afinite connected graph with vertex set V and edge set E
(multiple edges allowed).

A. Consider afunction R : E — [0, c0). Then (G, R) may be considered as
representing an electric network consisting of ‘branches' (resistors) and ‘ nodes
(for brevity identify edges with branches and nodes with vertices), where R(e) is
the resistance of the branch e.

(i) Suppose E containstwo edges e; and ey, placed ‘in series (i.e. having end

points (u, v) and (v, w), respectively, with u # w):

u v w

[ ® °

€1 €2

Write R(e1) = Ry, R(e2) = Ro. We can replace e; and e by asingle new
edge e between u and w without affecting the el ectric currentsand potentials
that arise in the rest of the network when a potential difference is imposed
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on an arbitrary pair of nodes (# v), provided we attribute to e a resistance
R(e) = R=R; + Ro.

(if) Suppose next that E containstwo edges e; and e; which are ‘parallel’ (i.e.
which have the same pair of end points):

"
€
We can now replace e; and e by a single edge e without affecting the rest

of the network, as before, provided we choose R(e) = R according to the
following ‘ substitution rule’;

_ RiR
R+ R

B. Consider afunction J : E — [0, c0). Then (G, J) may be considered as
representing an Ising model consisting of spins taking values 1, having ferro-
magnetic interactions described by the Hamiltonian

H)=-) J@Eo(e),

ecE

whereo : V — {—1,1} and o () = o (U)o (v) where u and v are the end points
of e. The probability of the spin state o is

n(o) = 2 te PH@

with Z the normalizing factor (partition function).

(i) Leter and ex betwo edgesin serieswith Ji 2 = J(e1,2), asbefore. We can
replace e; and e, by a single edge e without affecting the probabilities of
the spin stateson V \ {v} provided we choose

14 e2fUitd)

3@ =13=02.) M09 5o

This can be seen as the result of ‘summing out’ the variable o (v).
(ii) Let e; and e be parallel edges. We can replace them by a single edge e
without affecting the rest of the system provided we choose J(e) = J =
J1 + Jp. Trivid: thetwo similar termsin H are combined to one.
C. Consider p: E — [0, 1]. Then (G, p) may be considered as representing a
percolation model with the usual interpretation of p(e).
(i) As before, with suitable trandations of concepts. The substitution rule is
now p = pip2.
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(if) Asbefore. The substitution ruleis p = p1 + p2 — p1p2.

So far for the facts. Question: do they reflect some relation between the three
systems? To answer this question we began with the following elementary steps
(inwhich order, | do not remember exactly; theonel give here will not befar from
the actual one).

1. To bring case B somewhat morein line with A and C, go over from J(e) to
w(e) = exp(—2BJ(e)). Then the substitution rules are

M; (i) w = wiwo.
1+ wiwo

i) w=
2. Introduce new variables, viz.
incase A: R* = R~ (conductivity);
incaseB: w* = (1—w)/(1+ w) =tanh(BJ);
incase C: p* = 1 — p. Thisreduces the substitution rulesto:

(i) (i)
A R=R+ R RE=R + R}
B »— w1 + wp w*zwf%-w;
1+ wiwo 14+ wiw;
c P = p1p2 p* = pip;

3. (Sideline) Note that if G is planar and G* is its dual, then the situation

in G corresponds to O in G* and conversely. So the starred vari-

ables can be considered as ‘dual’ to the original ones (note that R** = R etc).
4. Consider now a g-state Potts model witho : V — {1,2,...,q9} and
H=2) J(l-5(®)
ecE

with J(e) > O for all e; the factor 2 is inserted for the sake of comparison and
a constant term is omitted. Define w(e) as for the Ising model. For case (i), a
simple calculation (summation over o (v)) showsthat the substitution rule is now

_wit w2+ (q—2wiwe
1+ @—-Dwiwz
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That for case (ii) is, asin the Ising model, w = wiwy. It takes the same form as
for case (i), with w* instead of w, if we define

Wt — 1—w
1+ @-Duw

5. Now note that by substituting g = 1 in the last few formulae we get w =
w1+ w2 —wiwz, or 1 —w = (1 — w1 — wp) and w* = 1 — w. Hence, if
wewritel — w = p, werecover therulesfor C. Soin thisvery special sense, the
percolation model behaves, just like the Ising model, asa special case of the Potts
model.

6. At first sight the electric network does not seem to fit into the Potts model. It
doesso, however, if wetakean appropriateformal limit. Definefor the Potts model
S= q‘%(l — w). Inthelimit g — 0 (which at this stage is still meaningless,
since g is an integer), the substitution rules reduce to

SS
S+ S

() S= (i) S=S+S

and the duality ruleis S* = 1/S. In other words, we recover the rules for the
network, with S= R™1 (= R¥).

7. So far we had got only a first indication about a relationship between the
systems A—C and the Potts model. We then wanted to turn to more general
situations. We had observed that (for arbitrary G) certain characteristic quantities
in A—C, such as

(A) thetotal current flowing through an electric network when a unit potential
differenceisimposed on two arbitrary vertices x and y,

(B) thetwo-spin correlation E[o (X)o (y)] of the Ising model,

(C) thepair connectivity E[I (x <> y)] of the percolation model
can all be written in the form P(X)/Q(X) (where X standsfor S= R™1, p =
1 — w, and p, respectively), with P and Q polynomials in the edge variables
X (e) that are linear in each variable separately. For the electric network, P and
Q arehomogeneousin all variables S(e) together (of degree V| —2and [V | — 1,
respectively); Q is the generating function of spanning trees of G, and P is the
generating function of spanning forests which consist of two trees, with x and
y in different trees. For the Ising model, Q is the partition function (which has
also agraph-theoretical interpretation, viz. interms of cycles). For the percolation
model, Q = lidentically.

8. From thelinearity in the X (e) it followsthat P(X) = P(X, G) satisfies, for
each edge e, the recursion relation

P(X,G) = P+ X(e) P>,
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with Py and P, polynomialsin all X (f) with f # e. Thisrelation holds also for
the Potts model with arbitrary q, againwith p = 1 — w. A similar relation holds

for Q.

9. Now if in the Potts model we have p(e) = 0, i.e. w(e) = 1, for some edge
e, this means that J(e) = O; this is equivalent to having an interaction graph
G with the edge e deleted. Similarly, p(e) = 1, w(e) = 0, means that the
interaction is infinitely strong; this is equivalent to having an interaction graph
with the edge e contracted (i.e. deleted and its end pointsidentified). If DeG and
CeG, respectively, are the graphs thus obtained from G, then obviously,

P(ps DEG) = Pls
P(p. CeG) = Py + Py.

Hence, we can write

P(p,G) = P(p, DeG) + p(&){P(p, CeG) — P(p, DeG)}
=[1— p(e)]P(p, DeG) + p(e)P(p, CeG).

10. Iteration of the last step leads directly to the expansion of P and Q in the
variables p(e) and 1 — p(e). Since0 < p(e) < 1, we could interpret the p(e)
as probabilities and the entire system as an example (the first one we knew) of
‘weighted’ (we would now say ‘dependent’) percolation. The generalization to
arbitrary positive q (and even to complex q!) was now obvious. Then the limit
g — 0, as described above, could be taken correctly, and what came out was the
electric network with all its properties.

11. Itisthe system obtained in thisway which — for lack of amoreinstructive
name — we called the random-cluster model. Most people have just called it
the Potts model, and of course, it is closely related to the generalized spin model

bearing this name. (We referred to the latter model as the Ashkin-Teller—Potts
model, because Ashkin and Teller werereally thefirst to consider generalizations
of the Ising model to more than two spin states; one of these was the 4-state Potts
model.) Fortuinand | preferred, however, to distinguish between the two systems,
because they are different in principle. It is only in the paper by Edwards and
Sokal that the relation between the two was fully established for integral values of
g. Itisnow obviousthat to every function f (o) of the spin statein the Potts model
there corresponds a function F (w) of the edge state in the random-cluster model

such that the expectation of F with respect to the random-cluster measure equals
the expectation of f with respect to the Potts measure, and conversely. F and f

are transformed into each other via kernels which are nothing but the conditional
probabilities of Edwards and Sokal. The relations which Fortuin and | found
between spin correlationsin the |sing model and certain connectivity probabilities
in the random-cluster model with q = 2 were special cases.

12. After thus having introduced the random-cluster model for finite graphs,
we were prepared to tackle infinite graphs. Fortuin wanted absolutely to treat
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these in as general a setting as possible and not restrict himself from the outset to
regular lattices, as | had suggested to him. This admittedly makes his papers less
accessible, but, in my opinion, also richer than they would have been if he had
followed my suggestion. But thisis a matter of taste.

So far about history. Looking at the subsequent devel opments, | am somewhat
surprised by the fact that (to my knowledge) no one has given any attention to
the domain of g between 0 and 1, not even to the limit in which one recoversthe
electric network, wherelife becomesmuch simpler. Of course, the FK G inequality
does not hold in this domain, but does that imply that nothing of interest can be
done? | admit that Fortuin wasthefirst to restrict himself to theregionwhere FK G
holds, but that was because the time for his PhD research was limited! In fact,
if I remember correctly, some mathematician once published a paper in which a
graph-theoretical interpretation was given to the random-cluster model (probably
under the name of dichromatic polynomial) forq = —1 (or g = —2, | am not
sure).

Then thereisthe ‘antiferromagnetic’ Potts model, where J(e) isallowed to be
negative. Ifitis, p(e) isalso negative, so that astandard probability interpretation
isimpossible. Thiscasehasnot beeninvestigated either, asfar asl know. Still, itis
of interest, if only because, for integral positive g, thelimit whereall J(e) become
infinitely negativeleads oneinto the theory of vertex colouringswith g colours! In
this connection | may point out that for two-dimensional regular lattices the value
g = 4 playsavery specia role in the random-cluster model: for q < 4 the phase
transition is ‘ of second order’ (i.e. the percolation probability is continuous), for
g > 4itis‘of first order’. So it may be that there is more to be said about the
four-colour problem than we know at present!

Second letter from Piet Kasteleyn to GRG, dated 17 November 1992.

... | have been a bit too hasty in my conclusion about the connection between
functions f (o) inthe Pottsmodel (PM) and functions F (w) in the random-cluster
model (RCM). What | wroteabout the‘ transformation’ from f to F and viceversa
may be formally true, but it istrivial. What is not trivial, is the question whether
to each f there corresponds an F depending only on the edge configuration w,
and not (parametrically) on p = (pe : € € E), and vice versa. | do not remember
having seen this question discussed in the literature. In one direction thereis no
problem. If for given f (o) we define

f@) > F@) =) flo)uo | ),

this F (w) satisfiestherequirement | mentioned, because (o | w) doesnot depend
on p. However, the map

F) > f(0)=) Flouw o)
does not satisfy the requirement, 1 (w | o) dependson pe explicitly.
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To analyse this point we can proceed as follows. Using your notation we have

m(0) =7G.pq(@) = Z [ [((L— pe) + pedo (),

ecE

¢ (@) = ¢6,p.q(@) = Z_1<1—[((1_ Pe)(1— »(e)) + pew<e)))qk<‘”>.

ecE

The expectation w.r.t. 7 of afunction f (¢) = f (o, G) can be written as

Exf=) f0)Z tJ](1+ peldo(® — 1))

o ecE
=z fo) Y (]‘[ m)(]‘[{&;(e) - 1}>.
o DCE ‘eeD ecD

The expectation w.r.t. ¢ of afunction F(w) = F(w, G) can be written as

EsF =Y F(w)Zl<l_[({1 — w(©)} + pef2w(e) — 1})>qk(‘“)

e

=71y qd“/F(

x Z(]‘[ pe)(l"[{zw<e)—1})( [1 {1—w<e)}).

DCE ‘“eeD ecD ecE\D

Inorder that E; f = EyF identically in p we must have

VD C E: Z f(a)(l_[{(sg(e) - 1})

ecD

=qu(”>F<w>(1"[{2w<e>—1})( I1 {1—w<e>}). (+)

ecD ecE\D

It follows from what | remarked on u(o | w) that for given f (o) thereis a
solution F(w) of this equation. (It is readily verified.) Question: is there a
solution f (o) for given F(w)? The answer isnot in general. If, e.g., G contains
the subgraph K, (the complete graph on r vertices, having %r(r — 1) edges),
and we choose D = the edge-set of this subgraph, then there is no o such that
[lecp{ds(€) — 1} # 0ifr > g. Thereason is that it is not possible to have
different spin values for every pair of adjacent verticesin D if you have only g
different values at your disposal. Hence the |.h.s. of (x) equals O for this D, so
that F (w) hasto satisfy the condition

qu(w)p(w)(l—[{Zw(e) - 1})( [T - w(e)}> =0. ()

ecD ecE\D
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This can be rewritten, if we denote an edge configuration not by w, but by the set
of open edges. Let us denotethisby C (your n(w)). Then

1 ifee C,
-1 ifee E\C,

0 ifeeC,

Za)(e)—l:{ .
1 ifeeE\C.

1—a)(e)={

Hence, thel.h.s. of the condition (xx*) reducesto

0= q“OFEC)(-1P"EOlccpy = Y MOF©C)(-1)P\C
CCE Cch

where Y ~-p = D _c.ccp So the condition reads:.

> (~1P\CIg“OF©C) = 0.
CcDh

For g = 2 (Ising model), the existence of a triangle in G aready causes a
relation (it cannot accommodate 3 unequal pairs of spins). Thisis, e.g., satisfied
by F(C) = ljuwuy, but not by F(C) = ljuovow), Whereu, v, w are vertices.

You may be amused to see what happensin thecaseq = 1!

My conclusionisthat the PM is‘included’ (in the spirit of thisanalysis) in the
RCM, but that generically the RCM is ‘richer’: there are questionsonecanask in
the RCM which have no counterpart in the PM. In addition, of course, the RCM
makes also sensefor q ¢ N, but the PM — as far as we know (Fortuin and | tried
hard!) — not.

Postscript by Cees Fortuin, 11 September 2003.

| remember especially thefirst time he [Piet] told me about hisideas (end of 1966
when | till was doing my military service and he already had invited me to work
with him): weweresitting next each other at thetabl ein front of thewindow, which
he used for working sessions, and he explained his ideas (the ABC of the |etter)
while | was listening. My first work was then * putting the electrical current of a
network into the scheme’. The actual formulating of the model took sometime: |
guess that it was end 1968/begin 1969 before on my blackboard the formulawith
2" appeared (the reformulation of the Ising model); | then went to his office and
said something like: “1 have found what we sought” (but half and half expecting
he would say that he aready knew!). We walked back to my office where he
overlooked the blackboard and remarked that this was a special moment(!).
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List of Notation

Graphs and sets:
G=(V,E) 15 Graphwithvertex-setV and edge-set E
Ew 16 Set of edges having both endverticesin W
VE 174 Set of verticesincident to edgesinthe set E
Aut(G) 74 Automorphism group of G
Gy 133 Dua graph of the planar graph G
(X, ) 15 Edgejoining vertices x and y
X~y 15 xisadjacenttoy
R 18 Therea line (—oo, c0)
Z 17 Theset{...,—2,-1,0,1,2,...} of integers
Zy 18 Theset {0, 1,2, ...} of non-negativeintegers
N 18 Thenatural numbersZ.. \ {0}
Ld 18 Thed-dimensional (hyper)cubic lattice
Ed 18 Theset of edgesof L9
Ev 18 Subset of edges having both endverticesin V
T 159 Thetriangular lattice
H { 159 The hexagonal lattice
169 The set of plaquettes of L3
U 164 The upper half-plane
Xi 17 Theith component of the vertex x e Z¢
Aap 18 Thebox with vertex-set ]_[id:l[a; , bi]
An 18 The box with vertex-set [—n, n]@
S(L,n) 124 Thebox [0, L — 1] x [—n, n]9-1
deg(u) 58 The degree of the vertex u
deg(W) 43 Themaximal degree of a spanning set W of vertices
aA 17 Thesurface of the set A of vertices
AeW 17 The edge boundary of W
Ae;sC 170 Edge-set given interms of asurface § of plaquettes
0eD 174 The 1-edge-boundary of the edge-set D
Oext F 147 Set of verticesof VE ininfinite paths of the complement
AextD 174 The external edge-boundary of the edge-set D
AintD 174 Theinternal edge-boundary of the edge-set D
AysC 170 Subset of C giveninterms of a surface § of plaguettes
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9TA, 3~A 197 Upper and lower boundariesof A
rad(D) 110 Radius of a subgraph D of L9 containing O

(X, Y) 18 Number of edgesin the shortest path from x to y

[X| 18 §(0, x)

[IX]] 18 max{|xi| 11 <i <d}

h(e) 169 The plaguette intersecting the edge e € 3

[H] 170 Subset of R3 lying in some plaquette of H

E(H) 169 Set of edges corresponding to the set H of plaquettes

5 170 The closure or extended interface of aset § of plaquettes
DL.m 201 The set of interfaces

8o 201 Theregular interface

2 169 s-connectednessfor plaguettes

Ilh1, ha|| 169 The L*° distance between the centres of plaguettes hy, ho
ins(T) 169 Union of the bounded connected componentsof RY \ T
out(T) 169 Union of the unbounded connected componentsof RY \ T
|A 17 Cardinaity of A, or number of verticesof A

AAB 60 Symmetric differenceof Aand B

Probability notation:

w(X) 18 Expectation of the random variable X under the measure 1

P, q 4 Edge and cluster-weighting parameters

¢G,pq> Pp.q 4 Random-cluster measureon G with parameters p, g
&G,p, Pp 4 Product measure with density p on edgesof G
Zg(p, Q) 4 Random-cluster partition function

Ag.h 7 lsing probability measure

T,h 7 Potts probability measure

¢i’ 0.4 38 Random-cluster measure on A with boundary condition &
¢ q 75 Random-cluster measure on 1.9 with boundary condition b
Wo.q 72 Set of limit-random-cluster measures

Rp.q 78  Set of DLR-random-cluster measures

UCs 13 Uniform connected graph

usT 13 Uniform spanning tree

USF 13 Uniform (spanning) forest

1A 15 Indicator function of an event A

COVp g 41 Covariance corresponding to ¢p q

covp 33 Covariance corresponding to ip

varp q 56 Variance corresponding to ¢p

1) 15 Typical realization of open and closed edges

Q 15 The space {0, 1}F of configurations

F 16 Theo-field of Q generated by the cylinders

Fa 16 Theo-field generated by states of edgesin E

Ta 16 Theo-field generated by states of edgesin E9 \ E»
T 16 Thetail o-field

Qf: 27 Set of configurationsthat agree with & off F
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we, ®°
w1V w2
w1 N\ W2
H (w1, w2)
n(w)

K(w)

I (w)

A, A°
AOB
B(X)
CX)

Dx

la(e)

<«

=

16
20
20
16
16
17
79
16
64
241
233
82
30
19
69

List of Notation

Configuration o with e declared closed/open
Maximum configuration of w1 and w2
Minimum configuration of w1 and w2
Hamming distance between w1 and w;

The set of edgesthat are openin w

Number of open componentsin

Number of infinite open clustersin
Complement of event A

Event that A and B occur ‘digointly’

Space of bounded measurable functionsfrom X to R
Space of continuous functionsfrom X to R
Discontinuity set of the random variable X
Influence of the edge e on the event A
Stochastic domination inequality

Weak convergence

Random-cluster notation:

Cx

C
pc(q)
Psd(q)
Pe(@)
Pe(@)
@

bond
P

17

18

99
135
124
113
197
329
340
114
115
114

98
115

17
17
15
37

18
18
18
18
7
171

Open cluster at x

Open cluster Cp at 0

Critical value of p under ¢p q

The self-dual point of the random-cluster model on L2
Critical point defined via slab connections

Critical point for polynomial/exponential decay
Critical point for the roughening transition

Critical probability of bond percolation

Critical probability of site percolation

Critical point for the time-constant

Critical point for exponential decay of connectivity
The time-constant associated with the measure
Percol ation probability under ¢

Correlation length

Indicator function that the endvertices of e have equal spin

Event that thereexista € Aandb € B suchthata < b
Complement of the event {A < B}

Event that e is open; also the indicator function of this event

Event that endvertices of e arejoined by an open path
not using e

Maximum of a and b

Minimum of aand b

Least integer not lessthan ¢
Greatest integer not greater than ¢
The Kronecker delta
s-dimensional Lebesgue measure
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