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Preface

The random-cluster model was invented by Cees [Kees] Fortuin and Piet Kasteleyn
around 1969 as a unification of percolation, Ising, and Potts models, and as an
extrapolation of electrical networks. Their original motivation was to harmonize
the series and parallel laws satisfied by such systems. In so doing, they initiated
a study in stochastic geometry which has exhibited beautiful structure in its own
right, and which has become a central tool in the pursuit of one of the oldest
challenges of classical statistical mechanics, namely to model and analyse the
ferromagnet and especially its phase transition.

The importance of the model for probability and statistical mechanics was
not fully recognized until the late 1980s. There are two reasons for this period
of dormancy. Although the early publications of 1969–1972 contained many of
the basic properties of the model, the emphasis placed there upon combinatorial
aspects may have obscured its potential for applications. In addition, many of
the geometrical arguments necessary for studying the model were not known
prior to 1980, but were developed during the ‘decade of percolation’ that began
then. In 1980 was published the proof that pc = 1

2 for bond percolation on the
square lattice, and this was followed soon by Harry Kesten’s monograph on two-
dimensional percolation. Percolation moved into higher dimensions around 1986,
and many of the mathematical issues of the day were resolved by 1989. Interest
in the random-cluster model as a tool for studying the Ising/Potts models was
rekindled around 1987. Swendsen and Wang utilized the model in proposing an
algorithm for the time-evolution of Potts models; Aizenman, Chayes, Chayes, and
Newman used it to show discontinuity in long-range one-dimensional Ising/Potts
models; Edwards and Sokal showed how to do it with coupling.

One of my main projects since 1992 has been to comprehend the (in)validity
of the mantra ‘everything worth doing for Ising/Potts is best done via random-
cluster’. There is a lot to be said in favour of this assertion, but its unconditionality
is its weakness. The random-cluster representation has allowed beautiful proofs of
important facts including: the discontinuity of the phase transition for large values
of the cluster-factor q , the existence of non-translation-invariant ‘Dobrushin’ states
for large values of the edge-parameter p, the Wulff construction in two and more
dimensions, and so on. It has played important roles in the studies of other classical
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and quantum systems in statistical mechanics, including for example the Widom–
Rowlinson two-type lattice gas and the Edwards–Anderson spin-glass model. The
last model is especially challenging because it is non-ferromagnetic,and thus gives
rise to new problems of importance and difficulty.

The random-cluster model is however only one of the techniques necessary
for the mathematical study of ferromagnetism. The principal illustration of its
limitations concerns the Ising model. This fundamental model for a ferromagnet
has exactly two local states, and certain special features of the number 2 enable
a beautiful analysis via the so-called ‘random-current representation’ which does
not appear to be reproducible by random-cluster arguments.

In pursuing the theory of the random-cluster model, I have been motivated not
only by its applications to spin systems but also because it is a source of beautiful
problems in its own right. Such problems involve the stochastic geometry of
interacting lattice systems, and they are close relatives of those treated in my
monograph on percolation, published first in 1989 and in its second edition in
1999. There are many new complications and some of the basic questions remain
unanswered, at least in part. The current work is primarily an exposition of a fairly
mature theory, but prominence is accorded to open problems of significance.

New problems have arrived recently to join the old, and these concern primarily
the two-dimensional phase transition and its relation to the theory of stochastic
Löwner evolutions. SLE has been much developed for percolation and related
topics since the 1999 edition of Percolation, mostly through the achievements of
Schramm, Smirnov, Lawler, and Werner. We await an extension of the mathemat-
ics of SLE to random-cluster and Ising/Potts models.

Here are some remarks on the contents of this book. The setting for the vast
majority of the work reported here is the d-dimensional hypercubic lattice Zd

where d ≥ 2. This has been chosen for ease of presentation, and may usually
be replaced by any other finite-dimensional lattice in two or more dimensions,
although an extra complication may arise if the lattice is not vertex-transitive. An
exception to this is found in Chapter 6, where the self-duality of the square lattice
is exploited.

Following the introductory material of Chapter 1, the fundamental properties
of monotonic and random-cluster measures on finite graphs are summarized in
Chapters 2 and 3, including accounts of stochastic ordering, positive association,
and exponential steepness.

A principal feature of the model is the presence of a phase transition. Since
singularities may occur only on infinite graphs, one requires a definition of the
random-cluster model on an infinite graph. This may be achieved as for other
systems either by passing to an infinite-volume weak limit, or by studying measures
which satisfy consistency conditions of Dobrushin–Lanford–Ruelle (DLR) type.
Infinite-volume measures in their two forms are studied in Chapter 4.

The percolation probability is introduced in Chapter 5, and this leads to a study
of the phase transition and the critical point pc(q). When p < pc(q), one expects
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that the size of the open cluster containing a given vertex of Zd is controlled
by exponentially-decaying probabilities. This is unproven in general, although
exponential decay is proved subject to a further condition on the parameter p.

The supercritical phase, when p > pc(q), has been the scene of recent major
developments for random-cluster and Ising/Potts models. A highlight has been
the proof of the so-called ‘Wulff construction’ for supercritical Ising models. A
version of the Wulff construction is valid for the random-cluster model subject to
a stronger condition on p, namely that p > p̂c(q) where p̂c(q) is (for d ≥ 3) the
limit of certain slab critical points. We have no proof that p̂c(q) = pc(q) except
when q = 1, 2, and to prove this is one of the principal open problems of the day.
A second problem is to prove the uniqueness of the infinite-volume limit whenever
p 6= pc(q).

The self-duality of the two-dimensional square lattice Z2 is complemented by
a duality relation for random-cluster measures on planar graphs, and this allows
a fuller understanding of the two-dimensional case, as described in Chapter 6.
There remain important open problems, of which the principal one is to obtain a
clear proof of the ‘exact calculation’ pc(q) = √

q/(1 + √
q). This calculation is

accepted by probabilists when q = 1 (percolation), q = 2 (Ising), and when q is
large, but the “exact solutions” of theoretical physics seem to have no complete
counterpart in rigorous mathematics for general values of q satisfying q ∈ [1,∞).
There is strong evidence that the phase transition with d = 2 and q ∈ [1, 4) will
be susceptible to an analysis using SLE, and this will presumably enable in due
course a computation of its critical exponents.

In Chapter 7,we consider duality in three and more dimensions. The dual model
amounts to a probability measure on surfaces and certain topological complications
arise. Two significant facts are proved. First, it is proved for sufficiently large q
that the phase transition is discontinuous. Secondly, it is proved for q ∈ [1,∞) and
sufficiently large p that there exist non-translation-invariant ‘Dobrushin’ states.

The model has been assumed so far to be static in time. Time-evolutions may
be introduced in several ways, as described in Chapter 8. Glauber dynamics and
the Gibbs sampler are discussed, followed by the Propp–Wilson scheme known
as ‘coupling from the past’. The random-cluster measures for different values of
p may be coupled via the equilibrium measure of a suitable Markov process on
[0, 1]E , where E denotes the set of edges of the underlying graph.

The so-called ‘random-current representation’ was remarked above for the Ising
model, and a related representation using the ‘flow polynomial’ is derived in
Chapter 9 for the q-state Potts model. It has not so far proved possible to exploit
this in a full study of the Potts phase transition. In Chapter 10, we consider
the random-cluster model on graphs with a different structure than that of finite-
dimensional lattices, namely the complete graph and the binary tree. In each case
one may perform exact calculations of mean-field type.

The final Chapter 11 is devoted to applications of the random-cluster repre-
sentation to spin systems. Five such systems are described, namely the Potts
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and Ashkin–Teller models, the disordered Potts model, the spin-glass model of
Edwards and Anderson, and the lattice gas of Widom and Rowlinson.

There is an extensive literature associated with ferromagnetism, and I have not
aspired to a complete account. Salient references are listed throughout this book,
but inevitably there are omissions. Amongst earlier papers on random-cluster
models, the following include a degree of review material: [8, 44, 136, 149, 156,
169, 240].

I first encountered the random-cluster model one day in late 1971 when John
Hammersley handed me Cees Fortuin’s thesis. Piet Kasteleyn responded enthusi-
astically to my 1992 request for information about the history of the model, and
his letters are reproduced with his permission in the Appendix. The responses
from fellow probabilists to my frequent requests for help and advice have been
deeply appreciated, and the support of the community is gratefully acknowledged.
I thank Laantje Kasteleyn and Frank den Hollander for the 1968 photograph of
Piet, and Cees Fortuin for sending me a copy of the image from his 1971 California
driving licence. Raphaël Cerf kindly offered guidance on the Wulff construction,
and has supplied some of his beautiful illustrations of Ising and random-cluster
models, namely Figures 1.2 and 5.1. A number of colleagues have generously
commented on parts of this book, and I am especially grateful to Rob van den
Berg, Benjamin Graham, Olle Häggström, Chuck Newman, Russell Lyons, and
Senya Shlosman. Jeff Steif has advised me on ergodic theory, and Aernout van
Enter has helped me with statistical mechanics. Catriona Byrne has been a source
of encouragement and support. I express my thanks to these and to others who
have, perhaps unwittingly or anonymously, contributed to this volume.

G. R. G.
Cambridge

January 2006

Note added at reprinting: Several friends and colleagues have kindly made sug-
gestions for improvements, and special mention is made of Markus Heydenreich
(and the reading group at the Technische Universiteit Eindhoven), Remco van der
Hofstad, Kenshi Hosaka, and Svante Janson.

May 2009
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Chapter 1

Random-Cluster Measures

Summary. The random-cluster model is introduced, and its relationship to
Ising and Potts models is presented via a coupling of probability measures.
In the limit as the cluster-weighting factor tends to 0, one arrives at electrical
networks and uniform spanning trees and forests.

1.1 Introduction

In 1925 came the Ising model for a ferromagnet, and in 1957 the percolation model
for a disordered medium. Each has since been the subject of intense study,and their
theories have become elaborate. Each possesses a phase transition marking the
onset of long-range order, defined in terms of correlation functions for the Ising
model and in terms of the unboundedness of paths for percolation. These two
phase transitions have been the scenes of notable exact (and rigorous) calculations
which have since inspired many physicists and mathematicians.

It has been known since at least 1847 that electrical networks satisfy so-called
‘series/parallel laws’. Piet Kasteleyn noted during the 1960s that the percolation
and Ising models also have such properties. This simple observation led in joint
work with Cees Fortuin to the formulation of the random-cluster model. This
new model has two parameters, an ‘edge-weight’ p and a ‘cluster-weight’ q .
The (bond) percolation model is retrieved by setting q = 1; when q = 2, we
obtain a representation of the Ising model, and similarly of the Potts model when
q = 2, 3, . . . . The discovery of the model is described in Kasteleyn’s words in
the Appendix of the current work.

The mathematics begins with a finite graph G = (V , E), and the associated
Ising model1 thereon. A random variable σx taking values −1 and +1 is assigned
to each vertex x of G, and the probability of the configuration σ = (σx : x ∈ V )
is taken to be proportional to e−βH(σ ), where β > 0 and the ‘energy’ H (σ ) is the

1The so-called Ising model [190] was in fact proposed (to Ising) by Lenz. The Potts model
[105, 278] originated in a proposal (to Potts) by Domb.
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2 Random-Cluster Measures [1.1]

negative of the sum of σxσy over all edges e = 〈x, y〉 of G. As β increases, greater
probability is assigned to configurations having a large number of neighbouring
pairs of vertices with equal signs. The Ising model has proved extraordinarily
successful in generating beautiful mathematics of relevance to the physics, and it
has been useful and provocative in the mathematical theory of phase transitions
and cooperative phenomena (see, for example, [118]). The proof of the existence
of a phase transition in two dimensions was completed by Peierls, [266], by way
of his famous “argument”.

There are many possible generalizations of the Ising model in which the σx may
take a general number q of values, rather than q = 2 only. One such extension, the
so-called ‘Potts model’, [278], has attracted especial interest amongst physicists,
and has displayed a complex and varied structure. For example, when q is large, it
possesses a discontinuous phase transition, in contrast to the continuous transition
believed to take place for small q . Ising/Potts models are the first of three principal
ingredients in the story of random-cluster models. Note that they are ‘vertex-
models’ in the sense that they involve random variables σx indexed by the vertices
x of the underlying graph. (There is a related extension of the Ising model due to
Ashkin and Teller, [21], see Section 11.3.)

The (bond) percolation model was inspired by problems of physical type, and
emerged from the mathematics literature2 of the 1950s, [70]. In this model for
a porous medium, each edge of the graph G is declared ‘open’ (to the passage
of fluid) with probability p, and ‘closed’ otherwise, different edges having in-
dependent states. The problem is to determine the typical large-scale properties
of connected components of open edges as the parameter p varies. Percolation
theory is now a mature part of probability lying at the core of the study of ran-
dom media and interacting systems, and it is the second ingredient in the story of
random-cluster models. Note that bond percolation is an ‘edge-model’, in that the
random variables are indexed by the set of edges of the underlying graph. (There is
a variant termed ‘site percolation’ in which the vertices are open/closed at random
rather than the edges, see [154, Section 1.6].)

The theory of electrical networks on the graph G is of course more ancient than
that of Ising and percolation models, dating back at least to the 1847 paper, [215],
in which Kirchhoff set down a method for calculating macroscopic properties of
an electrical network in terms of its local structure. Kirchhoff’s work explains in
particular the relevance of counts of certain types of spanning trees of the graph.
To import current language, an electrical network on a graph G may be studied
via the properties of a ‘uniformly random spanning tree’ (UST) on G (see [31]).

The three ingredients above seemed fairly distinct until Fortuin and Kasteleyn
discovered around 1970, [120, 121, 122, 123, 203], that each features within a
certain parametric family of models which they termed ‘random-cluster models’.
They developed the basic theory of such models — correlation inequalities and
the like — in this series of papers. The true power of random-cluster models as

2See also the historical curiosity [323].
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[1.1] Introduction 3

a mechanism for studying Ising/Potts models has emerged progressively over the
intervening three decades.

The configuration space of the random-cluster model is the set of all subsets of
the edge-set E , which we represent as the set � = {0, 1}E of 0/1-vectors indexed
by E . An edge e is termed open in the configuration ω ∈ � if ω(e) = 1, and it
is termed closed if ω(e) = 0. The random-cluster model is thus an edge-model,
in contrast to the Ising and Potts models which assign spins to the vertices of G.
The subject of current study is the subgraph of G induced by the set of open edges
of a configuration chosen at random from � according to a certain probability
measure. Of particular importance is the existence (or not) of paths of open edges
joining given vertices x and y, and thus the random-cluster model is a model in
stochastic geometry.

The model may be viewed as a parametric family of probability measures φp,q

on �, the two parameters being denoted by p ∈ [0, 1] and q ∈ (0,∞). The
parameter p amounts to a measure of the density of open edges, and the parameter
q is a ‘cluster-weighting’ factor. When q = 1, φp,q is a product measure, and the
ensuing probability space is usually termed a percolation model or a random graph
depending on the context. The integer values q = 2, 3, . . . correspond in a certain
way to the Potts model on G with q local states, and thus q = 2 corresponds to the
Ising model. The nature of these ‘correspondences’, as described in Section 1.4, is
that ‘correlation functions’ of the Potts model may be expressed as ‘connectivity
functions’ of the random-cluster model. When extended to infinite graphs, it turns
out that long-range order in a Potts model corresponds to the existence of infinite
clusters in the corresponding random-cluster model. In this sense the Potts and
percolation phase transitions are counterparts of one another.

Therein lies a major strength of the random-cluster model. Geometrical meth-
ods of some complexity have been derived in the study of percolation, and some
of these may be adapted and extended to more general random-cluster models,
thereby obtaining results of significance for Ising and Potts models. Such has been
the value of the random-cluster model in studying Ising and Potts models that it
is sometimes called simply the ‘FK representation’ of the latter systems, named
after Fortuin and Kasteleyn. We shall see in Chapter 11 that several other spin
models of statistical mechanics possess FK-type representations.

The random-cluster and Ising/Potts models on the graph G = (V , E) are de-
fined formally in the next two sections. Their relationship is best studied via a
certain coupling on the product {0, 1}E × {1, 2, . . . , q}V , and this coupling is de-
scribed in Section 1.4. The ‘uniform spanning-tree’ (UST) measure on G is a
limiting case of the random-cluster measure, and this and related limits are the
topic of Section 1.5. This chapter ends with a section devoted to basic notation.
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4 Random-Cluster Measures [1.2]

1.2 Random-cluster model

Let G = (V , E) be a finite graph. The graphs considered here will usually possess
neither loops nor multiple edges, but we make no such general assumption. An
edge e having endvertices x and y is written as e = 〈x, y〉. A random-cluster
measure on G is a member of a certain class of probability measures on the set of
subsets of the edge set E . We take as state space the set � = {0, 1}E , members
of which are 0/1-vectors ω = (ω(e) : e ∈ E). We speak of the edge e as being
open (in ω) if ω(e) = 1, and as being closed if ω(e) = 0. For ω ∈ �, let
η(ω) = {e ∈ E : ω(e) = 1} denote the set of open edges. There is a one–one
correspondence between vectors ω ∈ � and subsets F ⊆ E , given by F = η(ω).
Let k(ω) be the number of connected components (or ‘open clusters’) of the graph
(V , η(ω)), and note that k(ω) includes a count of isolated vertices, that is, of
vertices incident to no open edge. We associate with � the σ -field F of all its
subsets.

A random-cluster measure on G has two parameters satisfying p ∈ [0, 1] and
q ∈ (0,∞), and is defined as the measure φp,q on the measurable pair (�,F )
given by

(1.1) φp,q(ω) = 1

ZRC

{∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω), ω ∈ �,

where the ‘partition function’, or ‘normalizing constant’, ZRC is given by

(1.2) ZRC = ZRC(p, q) =
∑

ω∈�

{∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω).

This measure differs from product measure through the inclusion of the term qk(ω).
Note the difference between the cases q ≤ 1 and q ≥ 1: the former favours fewer
clusters, whereas the latter favours a larger number of clusters. When q = 1,
edges are open/closed independently of one another. This very special case has
been studied in detail under the titles ‘percolation’ and ‘random graphs’, see [61,
154, 194]. Perhaps the most important values of q are the integers, since the
random-cluster model with q ∈ {2, 3, . . . } corresponds, in a way described in the
next two sections, to the Potts model with q local states. The bulk of the work
presented in this book is devoted to the theory of random-cluster measures when
q ≥ 1. The case q < 1 seems to be harder mathematically and less important
physically. There is some interest in the limit as q ↓ 0; see Section 1.5.

We shall sometimes write φG,p,q for φp,q when the choice of graph G is to be
stressed. Computer-generated samples from random-cluster measures on Z2 are
presented in Figures 1.1–1.2. When q = 1, the measure φp,q is a product measure
with density p, and we write φG,p or φp for this special case.
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[1.2] Random-cluster model 5

p = 0.30 p = 0.45

p = 0.49 p = 0.51

p = 0.55 p = 0.70

Figure 1.1. Samples from the random-cluster measure with q = 1 on a 40 × 40 box of the
square lattice. We have set q = 1 for ease of programming, the measure being of product form
in this case. The critical value is pc(1) = 1

2 . Samples with more general values of q may be
obtained by the method of ‘coupling from the past’, as described in Section 8.4.
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6 Random-Cluster Measures [1.3]

Figure 1.2. A picture of the random-cluster model with free boundary conditions on a 2048×
2048 box of L

2, with p = 0.585816 and q = 2. The critical value of the model with
q = 2 is pc =

√
2/(1 +

√
2) = 0.585786 . . . , and therefore the simulation is of a mildly

supercritical system. It was obtained by simulating the Ising model using Glauber dynamics
(see Section 8.2), and then applying the coupling illustrated in Figure 1.3. Each individual
cluster is highlighted with a different tint of gray, and the smaller clusters are not visible in
the picture. This and later simulations in Section 5.7 are reproduced by kind permission of
Raphaël Cerf.

1.3 Ising and Potts models

In a famous experiment, a piece of iron is exposed to a magnetic field. The field is
increased from zero to a maximum,and then diminished to zero. If the temperature
is sufficiently low, the iron retains some residual magnetization, otherwise it does
not. There is a critical temperature for this phenomenon, often called the Curie
point after Pierre Curie, who reported this discovery in his 1895 thesis, [98]3. The

3In an example of Stigler’s Law, [309], the existence of such a temperature was discovered
before 1832 by Pouillet, see [198].

c©Springer-Verlag 2006



[1.3] Ising and Potts models 7

famous (Lenz–)Ising model for such ferromagnetism, [190], may be summarized
as follows. One supposes that particles are positioned at the points of some
lattice embedded in Euclidean space. Each particle may be in either of two states,
representing the physical states of ‘spin-up’ and ‘spin-down’. Spin-values are
chosen at random according to a certain probability measure, known as a ‘Gibbs
state’, which is governed by interactions between neighbouring particles. The
relevant probability measure is given as follows.

Let G = (V , E) be a finite graph representing part of the lattice. We think of
each vertex x ∈ V as being occupied by a particle having a random spin. Since
spins are assumed to come in two basic types, we take as sample space the set
6 = {−1,+1}V . The appropriate probability mass function λβ,J,h on6 has three
parameters satisfying β, J ∈ [0,∞) and h ∈ R, and is given by

(1.3) λβ,J,h(σ ) = 1

ZI
e−βH(σ ), σ ∈ 6,

where the partition function ZI and the ‘Hamiltonian’ H : 6 → R are given by

(1.4) ZI =
∑

σ∈6
e−βH(σ ), H (σ ) = −J

∑

e=〈x,y〉∈E

σxσy − h
∑

x∈V

σx .

The physical interpretation of β is as the reciprocal 1/T of temperature, of J as
the strength of interaction between neighbours, and of h as the external magnetic
field. For reasons of simplicity, we shall consider here only the case of zero
external-field, and we assume henceforth that h = 0.

Each edge has equal interaction strength J in the above formulation. Since
β and J occur only as a product β J , the measure λβ,J,0 has effectively only a
single parameter β J . In a more complicated measure not studied here, different
edges e are permitted to have different interaction strengths Je, see Chapter 9. In
the meantime we shall wrap β and J together by setting J = 1, and we write
λβ = λβ,1,0

As pointed out by Baxter, [26], the Ising model permits an infinity of general-
izations. Of these, the extension to so-called ‘Potts models’ has proved especially
fruitful. Whereas the Ising model permits only two possible spin-values at each
vertex, the Potts model [278] permits a general number q ∈ {2, 3, . . . }, and is
governed by a probability measure given as follows.

Let q be an integer satisfying q ≥ 2, and take as sample space the set of vectors
6 = {1, 2, . . . , q}V . Thus each vertex of G may be in any of q states. For an edge
e = 〈x, y〉 and a configuration σ = (σx : x ∈ V ) ∈ 6, we write δe(σ ) = δσx ,σy

where δi, j is the Kronecker delta. The relevant probability measure is given by

(1.5) πβ,q(σ ) = 1

ZP
e−βH ′(σ ), σ ∈ 6,

where ZP = ZP(β, q) is the appropriate normalizing constant and the Hamiltonian
H ′ is given by

(1.6) H ′(σ ) = −
∑

e=〈x,y〉∈E

δe(σ ).
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8 Random-Cluster Measures [1.4]

In the special case q = 2, the multiplicative formula

(1.7) δσx ,σy = 1
2 (1 + σxσy), σx , σy ∈ {−1,+1},

is valid. It is now easy to see in this case that the ensuing Potts model is simply
the Ising model with an adjusted value of β, in that πβ,2 is the measure obtained
from λβ/2 by re-labelling the local states.

Here is a brief mention of one further generalization of the Ising model, namely
the so-called n-vector or O(n) model. Let n ∈ {1, 2, . . . } and let I be the set
of vectors of Rn with unit length. The n-vector model on G = (V , E) has
configuration space IV and Hamiltonian

Hn(s) = −
∑

e=〈x,y〉∈E

sx · sy, s = (sv : v ∈ V ) ∈ IV ,

where sx · sy denotes the dot product. When n = 1, this is the Ising model. It is
called the X/Y model when n = 2, and the Heisenberg model when n = 3.

1.4 Random-cluster and Ising/Potts models coupled

Fortuin and Kasteleyn discovered that Potts models may be re-cast as random-
cluster models, and furthermore that the relationship between the two systems
facilitates an extended study of phase transitions in Potts models, see [121, 122,
123, 203]. Their methods were elementary in nature. In a more modern approach,
we construct the two systems on a common probability space. There may in
principle be many ways to do this, but the standard coupling of Edwards and
Sokal, [108], is of special value.

Let q ∈ {2, 3, . . . }, p ∈ [0, 1], and let G = (V , E) be a finite graph. We
consider the product sample space 6 × � where 6 = {1, 2, . . . , q}V and � =
{0, 1}E as above. We define a probability mass function µ on 6 ×� by

(1.8) µ(σ,ω) ∝
∏

e∈E

{
(1 − p)δω(e),0 + pδω(e),1δe(σ )

}
, (σ, ω) ∈ 6 ×�,

where, as before, δe(σ ) = δσx ,σy for e = 〈x, y〉 ∈ E . The constant of proportion-
ality is exactly that which ensures the normalization

∑

(σ,ω)∈6×�
µ(σ,ω) = 1.

By an expansion of (1.8),

µ(σ,ω) ∝ ψ(σ)φp(ω)1F (σ, ω), (σ, ω) ∈ 6 ×�,

where ψ is the uniform probability measure on 6, φp is product measure on �
with density p, and 1F is the indicator function of the event

(1.9) F =
{
(σ, ω) : δe(σ ) = 1 for any e satisfying ω(e) = 1

}
⊆ 6 ×�.

Therefore, µ may be viewed as the product measure ψ × φp conditioned on F .

Elementary calculations reveal the following facts.
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[1.4] Random-cluster and Ising/Potts models coupled 9

(1.10) Theorem (Marginal measures ofµ) [108]. Let q ∈ {2, 3, . . . }, p ∈ [0, 1),
and suppose that p = 1 − e−β .

(a) Marginal on 6. The marginal measure µ1(σ ) = ∑
ω∈� µ(σ,ω) on 6 is

the Potts measure

µ1(σ ) = 1

ZP
exp

{
β
∑

e∈E

δe(σ )

}
, σ ∈ 6.

(b) Marginal on�. The marginal measureµ2(ω) = ∑
σ∈6 µ(σ,ω) on� is the

random-cluster measure

µ2(ω) = 1

ZRC

{∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω), ω ∈ �.

(c) Partition functions. We have that

∑

ω∈�

{∏

e∈E

pω(e)(1− p)1−ω(e)
}

qk(ω) =
∑

σ∈6

∏

e∈E

exp[β(δe(σ )−1)], (1.11)

which is to say that

ZRC(p, q) = e−β|E |ZP(β, q). (1.12)

The conditional measures of µ are given in the following theorem4, and illus-
trated in Figure 1.3.

(1.13) Theorem (Conditional measures of µ) [108]. Let q ∈ {2, 3, . . . },
p ∈ [0, 1), and suppose that p = 1 − e−β .

(a) For ω ∈ �, the conditional measure µ(· | ω) on 6 is obtained by putting
random spins on entire clusters of ω (of which there are k(ω)). These spins
are constant on given clusters, are independent between clusters, and each
is uniformly distributed on the set {1, 2, . . . , q}.

(b) For σ ∈ 6, the conditional measure µ(· | σ) on � is obtained as follows.
If e = 〈x, y〉 is such that σx 6= σy , we set ω(e) = 0. If σx = σy , we set

ω(e) =
{

1 with probability p,

0 otherwise,

the values of different ω(e) being (conditionally) independent random vari-
ables.

4The corresponding facts for the infinite lattice are given in Theorem 4.91.
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10 Random-Cluster Measures [1.4]

2 2 4 4

1 2 2 2

1 2 2 2

1 4 2 2

2 2 4 4

1 2 2 2

1 2 2 2

1 4 2 2

Figure 1.3. The upper diagram is an illustration of the conditional measure of µ on 6 given
ω, with q = 4. To each open cluster of ω is allocated a spin-value chosen uniformly from
{1, 2, 3, 4}. Different clusters are allocated independent values. In the lower diagram, we begin
with a configurationσ . An edge is placed between vertices x , y with probability p (respectively,
0) if σx = σy (respectively, σx 6= σy), and the outcome has as law the conditional measure of
µ on � given σ .

In conclusion, the measure µ is a coupling of a Potts measure πβ,q on V ,
together with the random-cluster measure φp,q on �. The parameters of these
measures are related by the equation p = 1 − e−β . Since 0 ≤ p < 1, we have
that 0 ≤ β < ∞.

This special coupling may be used in a particularly simple way to show that
correlations in Potts models correspond to open connections in random-cluster
models. When extended to infinite graphs, this will imply that the phase transition
of a Potts model corresponds to the creation of an infinite open cluster in the
random-cluster model. Thus, arguments of stochastic geometry, and particularly
those developed for the percolation model, may be harnessed directly in order
to understand the correlation structure of the Potts system. The basic step is as
follows.

Let {x ↔ y} denote the set of all ω ∈ � for which there exists an open path
joining vertex x to vertex y. The complement of the event {x ↔ y} is denoted by
{x /↔ y}.
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[1.4] Random-cluster and Ising/Potts models coupled 11

The ‘two-point correlation function’ of the Potts measure πβ,q on the finite
graph G = (V , E) is defined to be the function τβ,q given by

(1.14) τβ,q(x, y) = πβ,q(σx = σy)−
1

q
, x, y ∈ V .

The term q−1 is the probability that two independent and uniformly distributed
spins are equal. Thus5,

(1.15) τβ,q(x, y) = 1

q
πβ,q(qδσx ,σy − 1).

The ‘two-point connectivity function’ of the random-cluster measure φp,q is de-
fined as the function φp,q(x ↔ y) for x, y ∈ V , that is, the probability that x and
y are joined by a path of open edges. It turns out that these ‘two-point functions’
are (except for a constant factor) the same.

(1.16) Theorem (Correlation/connection) [203]. Let q ∈ {2, 3, . . . }, p ∈ [0, 1),
and suppose that p = 1 − e−β . Then

τβ,q(x, y) = (1 − q−1)φp,q(x ↔ y), x, y ∈ V .

The theorem may be generalized as follows. Suppose we are studying the Potts
model, and are interested in some ‘observable’ f : 6 → R. The mean value of
f (σ ) satisfies

πβ,q( f ) =
∑

σ

f (σ )πβ,q(σ ) =
∑

σ,ω

f (σ )µ(σ, ω)

=
∑

ω

F(ω)φp,q(ω) = φp,q(F)

where F : � → R is given by

F(ω) = µ( f | ω) =
∑

σ

f (σ )µ(σ | ω).

Theorem 1.16 is obtained by setting f (σ ) = δσx ,σy − q−1.

The Potts models considered above have zero external-field. Some complica-
tions arise when an external field is added; see the discussions in [15, 44].

Proof of Theorem 1.10. (a) Let σ ∈ 6 be given. Then
∑

ω∈�
µ(σ,ω) ∝

∑

ω∈�

∏

e∈E

{
(1 − p)δω(e),0 + pδω(e),1δe(σ )

}

=
∏

e∈E

[1 − p + pδe(σ )].

5If µ is a probability measure and X a random variable, the expectation of X with respect to
µ is written µ(X).
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12 Random-Cluster Measures [1.4]

Now p = 1 − e−β and

1 − p + pδ = eβ(δ−1), δ ∈ {0, 1},
whence

(1.17)
∑

ω∈�

∏

e∈E

{
(1 − p)δω(e),0 + pδω(e),1δe(σ )

}
=
∏

e∈E

exp[β(δe(σ )− 1)].

Viewed as a set of weights on6, the latter expression generates the Potts measure.

(b) Let ω ∈ � be given. We have that

(1.18)
∏

e∈E

{
(1 − p)δω(e),0 + pδω(e),1δe(σ )

} = p|η(ω)|(1 − p)|E\η(ω)|1F (σ, ω),

where 1F (σ, ω) is the indicator function that δe(σ ) = 1 whenever ω(e) = 1, see
(1.9). Now, 1F (σ, ω) = 1 if and only if σ is constant on every open cluster of ω.
There are k(ω) such clusters, and therefore qk(ω) qualifying spin-vectors σ . Thus,

(1.19)
∑

σ∈6

∏

e∈E

{
(1 − p)δω(e),0 + pδω(e),1δe(σ )

}
= p|η(ω)|(1 − p)|E\η(ω)|qk(ω).

This set of weights on � generates the random-cluster measure.

(c) We obtain the same answer if we sum (1.17) over all σ , or we sum (1.19) over
all ω. �

Proof of Theorem 1.13. (a) Let ω ∈ � be given. From (1.18)–(1.19),

µ(σ | ω) = 1F (σ, ω)

qk(ω)
, σ ∈ 6,

whence the conditional measure is uniform on those σ with 1F (σ, ω) = 1.

(b) Let σ ∈ 6 be given. By (1.8),

µ(ω | σ) = Kσ
∏

e∈E : δe(σ )=0

δω(e),0
∏

e∈E : δe(σ )=1

{
(1 − p)δω(e),0 + pδω(e),1

}
,

where Kσ = Kσ (p, q). Therefore, µ(ω | σ) is a product measure on � with

ω(e) = 1 with probability

{
0 if δe(σ ) = 0,

p if δe(σ ) = 1.
�

Proof of Theorem 1.16. By Theorem 1.13(a),

τβ,q(x, y) =
∑

σ,ω

{
1{σx=σy}(σ )− q−1}µ(σ,ω)

=
∑

ω

φp,q(ω)
∑

σ

µ(σ | ω)
{
1{σx =σy}(σ )− q−1}

=
∑

ω

φp,q(ω)
{
(1 − q−1)1{x↔y}(ω)+ 0 · 1{x /↔y}(ω)

}

= (1 − q−1)φp,q(x ↔ y),

c©Springer-Verlag 2006



[1.5] The limit as q ↓ 0 13

where µ is the above coupling of the Potts and random-cluster measures. �

Here is a final note. The random-cluster measure φp,q has two parameters p,
q . In a more general version, we replace p by a vector p = (pe : e ∈ E) of reals
each of which satisfies pe ∈ [0, 1]. The corresponding random-cluster measure
φp,q on (�,F ) is given by

(1.20) φp,q(ω) = 1

Z

{∏

e∈E

pω(e)e (1 − pe)
1−ω(e)

}
qk(ω), ω ∈ �,

where Z is the appropriate normalizing factor. The measure φp,q is retrieved by
setting pe = p for all e ∈ E .

1.5 The limit as q ↓ 0

Let G = (V , E) be a finite connected graph, and let φp,q be the random-cluster
measure on G with parameters p ∈ (0, 1), q ∈ (0,∞). We consider in this section
the set of weak limits which may arise as q ↓ 0. In preparation, we introduce
three graph-theoretic terms.

A subset F of the edge-set E is called:

• a forest of G if the graph (V , F) contains no circuit,

• a spanning tree of G if (V , F) is connected and contains no circuit,

• a connected subgraph of G if (V , F) is connected.

In each case we consider the graph (V , F) containing every vertex of V ; in this
regard, sets F of edges satisfying one of the above conditions are sometimes
termed spanning. Note that F is a spanning tree if and only if it is both a forest
and a connected subgraph. For � = {0, 1}E and ω ∈ �, we call ω a forest
(respectively, spanning tree, connected subgraph) if η(ω) is a forest (respectively,
spanning tree, connected subgraph). Write �for, �st, �cs for the subsets of �
containing all forests, spanning trees, and connected subgraphs, respectively, and
write USF, UST, UCS for the uniform probability measures6 on the respective
sets �for, �st, �cs.

We consider first the weak limit of φp,q as q ↓ 0 for fixed p ∈ (0, 1). This limit
may be ascertained by observing that the dominant terms in the partition function

ZRC(p, q) =
∑

ω∈�
p|η(ω)|(1 − p)|E\η(ω)|qk(ω)

are those for which k(ω) is a minimum, that is, those with k(ω) = 1. It follows
that limq↓0 φp,q is precisely the product measure φp = φp,1 (that is, percolation

6This usage of the term ‘uniform spanning forest’ differs from that of [31].
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14 Random-Cluster Measures [1.5]

with intensity p) conditioned on the resulting graph (V , η(ω)) being connected.
That is, φp,q ⇒ φcs

r as q ↓ 0, where r = p/(1 − p),

(1.21) φcs
r (ω) =

{ 1

Zcs
r |η(ω)| if ω ∈ �cs,

0 otherwise,

and Zcs = Zcs(r) is the appropriate normalizing constant. In the special case
p = 1

2 , we have that φp,q ⇒ UCS as q ↓ 0.

Further limits arise if we allow both p and q to converge to 0. Suppose p = pq

is related to q in such a way that p → 0 and q/p → 0 as q ↓ 0; thus, p approaches
zero slower than does q . We may write ZRC in the form

ZRC(p, q) = (1 − p)|E | ∑

ω∈�

(
p

1 − p

)|η(ω)|+k(ω) (q(1 − p)

p

)k(ω)

.

Note that p/(1 − p) → 0 and q(1 − p)/p → 0 as q ↓ 0. Now, k(ω) ≥ 1 and
|η(ω)|+k(ω) ≥ |V | forω ∈ �; these two inequalities are satisfied simultaneously
with equality if and only if ω ∈ �st. Therefore, in the limit as q ↓ 0, the ‘mass’ is
concentrated on spanning trees, and it is easily seen that the limit mass is uniformly
distributed. That is, φp,q ⇒ UST.

Another limit emerges if p approaches 0 at the same rate as does q . Take
p = αq where α ∈ (0,∞) is constant, and consider the limit as q ↓ 0. This time
we write

ZRC(p, q) = (1 − αq)|E | ∑

ω∈�

(
α

1 − αq

)|η(ω)|
q |η(ω)|+k(ω).

We have that |η(ω)| + k(ω) ≥ |V | with equality if and only if ω ∈ �for, and it
follows that φp,q ⇒ φfor

α , where

(1.22) φfor
α (ω) =

{ 1

Zfor
α|η(ω)| if ω ∈ �for,

0 otherwise,

and Zfor = Zfor(α) is the appropriate normalizing constant. In the special case
α = 1, we find that φp,q ⇒ USF.

Finally, if p approaches 0 faster than does q , in that p/q → 0 as p, q → 0,
it is easily seen that the limit measure is concentrated on the empty set of edges.
We summarize the three special cases above in a theorem.

(1.23) Theorem. We have in the limit as q ↓ 0 that:

φp,q ⇒





UCS if p = 1
2 ,

UST if p → 0 and q/p → 0,

USF if p = q.
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The spanning-tree limit is especially interesting for historical and mathematical
reasons. As explained in the Appendix, the random-cluster model originated in
a systematic study by Fortuin and Kasteleyn of systems of a certain type which
satisfy certain parallel and series laws (see Section 3.8). Electrical networks
are the best known such systems: two resistors of resistances r1 and r2 in par-
allel (respectively, in series) may be replaced by a single resistor with resistance
(r−1

1 + r−1
2 )−1 (respectively, r1 + r2). Fortuin and Kasteleyn [123] realized that

the electrical-network theory of a graph G is related to the limit as q ↓ 0 of the
random-cluster model on G, where p is given7 by p = √

q/(1+√
q). It has been

known since Kirchhoff’s theorem, [215], that the electrical currents which flow
in a network may be expressed in terms of counts of spanning trees. We return to
this discussion of UST in Section 3.9.

The theory of the uniform-spanning-tree measure UST is beautiful in its own
right (see [31]), and is linked in an important way to the emerging field of stochastic
growth processes of ‘stochastic Löwner evolution’ (SLE) type (see [231, 284]),
to which we return in Section 6.7. Further discussions of USF and UCS may be
found in [165, 268].

1.6 Basic notation

We present some of the basic notation necessary for a study of random-cluster
measures. Let G = (V , E) be a graph, with finite or countably infinite vertex-set
V and edge-set E . If two vertices x and y are joined by an edge e, we write x ∼ y,
and e = 〈x, y〉, and we say that x is adjacent to y. The (graph-theoretic) distance
δ(x, y) from x to y is defined to be the number of edges in a shortest path of G
from x to y.

The configuration space of the random-cluster model on G is the set � =
{0, 1}E , points of which are represented as vectors ω = (ω(e) : e ∈ E) and called
configurations. For ω ∈ �, we call an edge e open (or ω-open, when the role of ω
is to be emphasized) if ω(e) = 1, and closed (or ω-closed) if ω(e) = 0. We speak
of a set F of edges as being ‘open’ (respectively, ‘closed’) in the configuration ω
if ω( f ) = 1 (respectively, ω( f ) = 0) for all f ∈ F .

The indicator function of a subset A of� is the function 1A : � → {0, 1} given
by

1A(ω) =
{

0 if ω /∈ A,

1 if ω ∈ A.

For e ∈ E , we write Je = {ω ∈ � : ω(e) = 1}, the event that the edge e is open.
We use Je to denote also the indicator function of this event, so that Je(ω) = ω(e).
A function X : � → R is called a cylinder function if there exists a finite subset
F of E such that X (ω) = X (ω′) whenever ω(e) = ω′(e) for e ∈ F . A subset A
of � is called a cylinder event if its indicator function is a cylinder function. We

7This choice of p is convenient, but actually one requires only that q/p → 0, see [166].
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16 Random-Cluster Measures [1.6]

take F to be the σ -field of subsets of � generated by the cylinder events, and we
shall consider certain probability measures on the measurable pair (�,F ). If G
is finite, then F is the set of all subsets of �; all events are cylinder events, and
all functions are cylinder functions. The complement of an event A is written Ac

or A.

For W ⊆ V , let EW denote the set of edges of G having both endvertices in
W . We write FW (respectively, TW ) for the smallest σ -field of F with respect
to which each of the random variables ω(e), e ∈ EW (respectively, e /∈ EW ), is
measurable. The notation FF , TF is to be interpreted similarly for F ⊆ E . The
intersection of the TF over all finite sets F is called the tail σ -field and is denoted
by T . Sets in T are called tail events.

There is a natural partial order on the set� of configurations given by: ω1 ≤ ω2
if and only if ω1(e) ≤ ω2(e) for all e ∈ E . Rather than working always with the
vector ω ∈ �, we shall sometimes work with its set of open edges, given by

(1.24) η(ω) = {e ∈ E : ω(e) = 1}.

Clearly,
ω1 ≤ ω2 if and only if η(ω1) ⊆ η(ω2).

The smallest (respectively, largest) configuration is that with ω(e) = 0 (respec-
tively, ω(e) = 1) for all e, and this is denoted by 0 (respectively, 1). A function
X : � → R is called increasing if X (ω1) ≤ X (ω2) whenever ω1 ≤ ω2. Sim-
ilarly, X is decreasing if −X is increasing. Note that every increasing function
X : � → R is necessarily bounded since X (0) ≤ X (ω) ≤ X (1) for all ω ∈ �.
A subset A of� is called increasing (respectively, decreasing) if it has increasing
(respectively, decreasing) indicator function.

For ω ∈ � and e ∈ E , let ωe and ωe be the configurations obtained from ω by
‘switching on’ and ‘switching off’ the edge e, respectively. That is,

(1.25)

ωe( f ) =
{
ω( f ) if f 6= e,

1 if f = e,
for f ∈ E,

ωe( f ) =
{
ω( f ) if f 6= e,

0 if f = e,
for f ∈ E .

More generally, for J ⊆ E and K ⊆ E \ J , we denote by ωJ
K the configuration

that equals 1 on J , equals 0 on K , and agrees with ω on E \ (J ∪ K ). When J
and/or K contain only one or two edges, we may omit the necessary parentheses.
The Hamming distance between two configurations is given by

(1.26) H (ω1, ω2) =
∑

e∈E

|ω1(e)− ω2(e)|, ω1, ω2 ∈ �.

A path of G is defined as an alternating sequence x0, e0, x1, e1, . . . , en−1, xn

of distinct vertices xi and edges ei = 〈xi , xi+1〉. Such a path has length n and
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is said to connect x0 to xn . A circuit or cycle of G is an alternating sequence
x0, e0, x1, . . . , en−1, xn, en, x0 of vertices and edges such that x0, e0, . . . , en−1,

xn is a path and en = 〈xn, x0〉; such a circuit has length n + 1. For ω ∈ �, we call
a path or circuit open if all its edges are open, and closed if all its edges are closed.
Two subgraphs of G are called edge-disjoint if they have no edges in common,
and disjoint if they have neither edges nor vertices in common.

Let ω ∈ �. Consider the random subgraph of G containing the vertex set V
and the open edges only, that is, the edges in η(ω). The connected components
of this graph are called open clusters. We write Cx = Cx (ω) for the open cluster
containing the vertex x , and we call Cx the open cluster at x . The vertex-set of Cx

is the set of all vertices of G that are connected to x by open paths, and the edges of
Cx are those edges of η(ω) that join pairs of such vertices. We shall occasionally
use the term Cx to represent the set of vertices joined to x by open paths, rather
than the graph of this open cluster. We shall be interested in the size of Cx , and
we denote by |Cx | the number of vertices in Cx . Note that Cx = {x} whenever
x is an isolated vertex, which is to say that x is incident to no open edge. We
denote by k(ω) the number of open clusters in the configuration ω, that is, k(ω) is
the number of components of the graph (V , η(ω)). The random variable k plays
an important role in the definition of a random-cluster measure, and the reader
is warned of the importance of including in k a count of the number of isolated
vertices of the graph.

Let ω ∈ �. If A and B are sets of vertices of G, we write ‘A ↔ B’ if there
exists an open path joining some vertex in A to some vertex in B; if A ∩ B 6= ∅
then A ↔ B trivially. Thus, for example, Cx = {y ∈ V : x ↔ y}. We write
‘A /↔ B’ if there exists no open path from any vertex of A to any vertex of B ,
and ‘A ↔ B off D’ if there exists an open path joining some vertex in A to some
vertex in B that uses no vertex in the set D.

If W is a set of vertices of the graph, we write ∂W for the boundary of A, being
the set of vertices in A that are adjacent to some vertex not in A,

∂W = {x ∈ W : there exists y /∈ W such that x ∼ y}.

We write 1eW for the set of edges of G having exactly one endvertex in W , and
we call 1eW the edge-boundary of W .

We shall be mostly interested in the case when G is a subgraph of a
d-dimensional lattice with d ≥ 2. Rather than embarking on a debate of just
what constitutes a ‘lattice-graph’, we shall, almost without exception, consider
only the case of the (hyper)cubic lattice. This restriction enables a clear exposi-
tion of the theory and open problems without suffering the complications which
arise through allowing greater generality.

Let d be a positive integer. We write Z = {. . . ,−1, 0, 1, . . . } for the set of
all integers, and Zd for the set of all d-vectors x = (x1, x2, . . . , xd) with integral
coordinates. For x ∈ Zd , we generally write xi for the i th coordinate of x , and we
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18 Random-Cluster Measures [1.6]

define

δ(x, y) =
d∑

i=1

|xi − yi |.

The origin of Zd is denoted by 0. The set {1, 2, . . . } of natural numbers is denoted
by N, and Z+ = N ∪ {0}. The real line is denoted by R.

We turn Zd into a graph, called the d-dimensional cubic lattice, by adding edges
between all pairs x , y of points of Zd with δ(x, y) = 1. We denote this lattice by
Ld , and we write Zd for the set of vertices of Ld , and Ed for the set of its edges.
Thus, Ld = (Zd ,Ed ). We shall often think of Ld as a graph embedded in Rd , the
edges being straight line-segments between their endvertices. The edge-set EV of
V ⊆ Zd is the set of all edges of Ld both of whose endvertices lie in V .

Let x , y be vertices of Ld . The (graph-theoretic) distance from x to y is simply
δ(x, y), and we write |x | for the distance δ(0, x) from the origin to x . We shall
make occasional use of another distance function on Zd , namely

‖x‖ = max
{|xi | : i = 1, 2, . . . , d

}
, x ∈ Zd ,

and we note that
‖x‖ ≤ |x | ≤ d‖x‖, x ∈ Zd .

For ω ∈ � = {0, 1}E
d
, we abbreviate to C the open cluster C0 at the origin.

A box of Ld is a subset of Zd of the form

3a,b =
{

x ∈ Zd : ai ≤ xi ≤ bi for i = 1, 2, . . . , d
}
, a, b ∈ Zd ,

and we sometimes write

3a,b =
d∏

i=1

[ai , bi ]

as a convenient shorthand. The expression 3a,b is used also to denote the graph
with vertex-set3a,b together with those edges of Ld joining two vertices in3a,b.
For x ∈ Zd , we write x + 3a,b for the translate by x of the box 3a,b. The
expression 3n denotes the box with side-length 2n and centre at the origin,

(1.27) 3n = [−n, n]d = {x ∈ Zd : ‖x‖ ≤ n}.
Note that ∂3n = 3n \3n−1.

In taking what is called a ‘thermodynamic limit’,one works often on a finite box
3 of Zd , and then takes the limit as3 ↑ Zd . Such a limit is to be interpreted along
a sequence 3 = (3n : n = 1, 2, . . . ) of boxes such that: 3n is non-decreasing in
n and, for all m, 3n ⊇ [−m,m]d for all large n.

For any random variable X and appropriate probability measure µ, we write
µ(X) for the expectation of X ,

µ(X) =
∫

X dµ.

Let ⌊a⌋ and ⌈a⌉ denote the integer part of the real number a, and the least integer
not less than a, respectively. Finally, a ∧ b = min{a, b} and a ∨ b = max{a, b}.
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Chapter 2

Monotonic Measures

Summary. The property of monotonicity of measures leads naturally to
positive association and the FKG inequality. A monotonic measure may be
used as the seed for a parametric family of measures satisfying probabilistic
inequalities including influence, sharp-threshold, and exponential-steepness
inequalities.

2.1 Stochastic ordering of measures

The stochastic ordering of probability measures provides a technique which is fun-
damental to the study of random-cluster measures. Let E be a finite or countably
infinite set, let � = {0, 1}E , and let F be the σ -field generated by the cylinder
events of�. In applications of the arguments of this section, E will be the edge-set
of a graph, and thus we refer to members of E as ‘edges’, although the graphical
structure is not itself relevant at this stage.

The configuration space � is a partially ordered set with partial order given
by: ω1 ≤ ω2 if ω1(e) ≤ ω2(e) for all e ∈ E . A random variable X : � → R
is called increasing if X (ω1) ≤ X (ω2) whenever ω1 ≤ ω2. An event A ∈
F is called increasing (respectively, decreasing) if its indicator function 1A is
increasing (respectively, decreasing). The set �, equipped with the topology
of open sets generated by the cylinder events, is a metric space, and we speak
of a random variable X : � → R as being ‘continuous’ if it is a continuous
function on this metric space. Since � is compact, any continuous function on
� is necessarily bounded. In addition, any increasing function X : � → R is
bounded since X (0) ≤ X (ω) ≤ X (1) for ω ∈ �.

Given two probability measures µ1, µ2 on (�,F ), we write µ1 ≤st µ2 (or
µ2 ≥st µ1), and we say that µ1 is stochastically smaller than µ2, if1 µ1(X) ≤
µ2(X) for all increasing continuous random variables X on �.

1Recall that µ(X) denotes the expectation of X under µ, that is, µ(X) = ∫
X dµ.
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20 Monotonic Measures [2.1]

For two probability measures φ1, φ2 on (�,F ), a coupling of φ1 and φ1 is
a probability measure κ on (�,F ) × (�,F ) whose first (respectively, second)
marginal is φ1 (respectively, φ2). There exist many couplings of any given pair
φ1, φ2, and the art of coupling lies in finding one that is useful. Let µ1, µ2 be
probability measures on (�,F ). The theorem known sometimes as ‘Strassen’s
theorem’ states that µ1 ≤st µ2 if and only if there exists a coupling κ satisfying
κ(S) = 1, where S = {(ω1, ω2) ∈ �2 : ω1 ≤ ω2} is the ‘sub-diagonal’ of the
product space�2. A useful account of coupling and its applications may be found
in [237].

We call a probability measure µ on (�,F ) strictly positive if µ(ω) > 0 for all
ω ∈ �. For ω1, ω2 ∈ �, we denote by ω1 ∨ ω2 and ω1 ∧ ω2 the ‘maximum’ and
‘minimum’ configurations given by

ω1 ∨ ω2(e) = max{ω1(e), ω2(e)}, e ∈ E,

ω1 ∧ ω2(e) = min{ω1(e), ω2(e)}, e ∈ E .

We suppose for the remainder of this section that E is finite. There is a useful
sufficient condition for the stochastic inequality µ1 ≤st µ2, as follows.

(2.1) Theorem (Holley inequality) [185]. Let µ1 and µ2 be strictly positive
probability measures on the finite space (�,F ) such that

(2.2) µ2(ω1 ∨ ω2)µ1(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2), ω1, ω2 ∈ �.

Then
µ1(X) ≤ µ2(X) for increasing functions X : � → R,

which is to say that µ1 ≤st µ2.

This may be extended in (at least) two ways. Firstly, a similar claim2 is valid in
the more general setting where�= T E and T is a finite subset of R. Secondly, one
may relax the condition that the measures be strictly positive. See, for example,
[136, Section 4].

Let S ⊆ �2 (= �×�) be the set of all ordered pairs (π, ω) of configurations
satisfying π ≤ ω, as above. In the proof of Theorem 2.1, we shall construct a
coupling κ of µ1 and µ2 such that κ(S) = 1. It is an immediate consequence
that µ1 ≤st µ2. There is a variety of couplings of measures which play roles in
the theory of random-cluster measures. Another may be found in the proof of
Theorem 3.45.

Condition (2.2) in key to Theorem 2.1, and it is equivalent to a condition of
monotonicity on the one-point conditional distributions.

2An application of such a claim may be found in the analysis of the Ashkin–Teller model at
Theorem 11.12.
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(2.3) Theorem. Let µ1, µ2 be strictly positive probability measures on (�,F ).
The following are equivalent.

(a) The pair µ1, µ2 satisfies (2.2).

(b) The one-point conditional probabilities are monotonic in that

µ2
(
ω(e) = 1

∣∣ω( f ) = ζ( f ) for all f ∈ E \ {e}
)

≥ µ1
(
ω(e) = 1

∣∣ω( f ) = ξ( f ) for all f ∈ E \ {e}
)

(2.4)

for all e ∈ E, and all pairs ξ, ζ ∈ � satisfying ξ ≤ ζ .

(c) It is the case that

µ2(ζ
e)

µ2(ζe)
≥ µ1(ξ

e)

µ1(ξe)
, ξ ≤ ζ, e ∈ E . (2.5)

The following is sufficient for (2.2).

(2.6) Theorem. Let µ1, µ2 be strictly positive probability measures on (�,F )
such that

(2.7) µ2(ω
e)µ1(ωe) ≥ µ1(ω

e)µ2(ωe), ω ∈ �, e ∈ E .

If either µ1 or µ2 satisfies

(2.8) µ(ωe f )µ(ωe f ) ≥ µ(ωe
f )µ(ω

f
e ), ω ∈ �, e, f ∈ E,

then (2.2) holds.

Proof of Theorem 2.1. The theorem amounts to a ‘mere’ numerical inequality
involving a finite number of positive reals. It may in principle be proved in a
totally elementary manner, using essentially no general mechanism. The proof
given here proceeds by constructing certain reversible Markov chains. There is
some extra mechanism required, but the method is beautiful, and in addition yields
a structure which finds applications elsewhere.

The main step of the proof is designed to show that, under condition (2.2), µ1
and µ2 may be ‘coupled’ in such a way that the sub-diagonal S has full measure.
This is achieved by constructing a certain Markov chain with the coupled measure
as invariant measure.

Here is a preliminary calculation. Let µ be a strictly positive probability mea-
sure on (�,F ). We may construct a reversible Markov chain with state space �
and unique invariant measure µ by choosing a suitable generator (or ‘Q-matrix’)
satisfying the detailed balance equations. The dynamics of the chain involve the
‘switching on or off’ of components of the current state. Let G : �2 → R be
given by

(2.9) G(ωe, ω
e) = 1, G(ωe, ωe) = µ(ωe)

µ(ωe)
, ω ∈ �, e ∈ E .
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We let G(ω, ω′) = 0 for all other pairs ω,ω′ with ω 6= ω′. The diagonal elements
G(ω, ω) are chosen in such a way that

∑

ω′∈�
G(ω, ω′) = 0, ω ∈ �.

It is elementary that

µ(ω)G(ω, ω′) = µ(ω′)G(ω′, ω), ω, ω′ ∈ �,

and therefore G generates a Markov chain on the state space�which is reversible
with respect to µ. The chain is irreducible, for the following reason. For ω,ω′ ∈
�, one may add edges one by one to η(ω) thus arriving at the unit vector 1,
and then one may remove edges one by one thus arriving at ω′. By (2.9), each
such transition has a strictly positive intensity, whence the chain is irreducible. It
follows that the chain has unique invariant measure µ. Similar constructions are
explored in Chapter 8. An account of the general theory of reversible Markov
chains may be found in [164, Section 6.5].

We follow next a similar route for pairs of configurations. Letµ1 andµ2 satisfy
the hypotheses of the theorem, and let S be the set of all ordered pairs (π, ω) of
configurations in � satisfying π ≤ ω. We define H : S × S → R by

H (πe, ω;πe, ωe) = 1,(2.10)

H (π, ωe;πe, ωe) = µ2(ωe)

µ2(ωe)
,(2.11)

H (πe, ωe;πe, ω
e) = µ1(πe)

µ1(πe)
− µ2(ωe)

µ2(ωe)
,(2.12)

for all (π, ω) ∈ S and e ∈ E ; all other off-diagonal values of H are set to 0. The
diagonal terms H (π, ω;π,ω) are chosen in such a way that

∑

(π ′,ω′)∈S

H (π, ω;π ′, ω′) = 0, (π, ω) ∈ S.

Equation (2.10) specifies that, for π ∈ � and e ∈ E , the edge e is acquired by π
(if it does not already contain it) at rate 1; any edge so acquired is added also to ω
if it does not already contain it. (Here, we speak of a configurationψ ‘containing
the edge e’ if ψ(e) = 1.) Equation (2.11) specifies that, for ω ∈ � and e ∈ E
with ω(e) = 1, the edge e is removed from ω (and also from π if π(e) = 1) at
the rate given in (2.11). For e with π(e) = 1, there is an additional rate given in
(2.12) at which e is removed from π but not from ω. This additional rate is indeed
non-negative, since the required inequality

(2.13) µ2(ω
e)µ1(πe) ≥ µ1(π

e)µ2(ωe) whenever π ≤ ω,
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follows from (2.2) with ω1 = πe and ω2 = ωe.

Let (Yt , Z t )t≥0 be a Markov chain on S with generator H , and set (Y0, Z0) =
(0, 1), where 0 (respectively, 1) is the state of all zeros (respectively, ones). We
write P for the appropriate probability measure. Since all transitions retain the
ordering of the two components of the state, we may assume that the chain satisfies
P(Yt ≤ Z t for all t) = 1. By examination of (2.10)–(2.12) we see that Y =
(Yt : t ≥ 0) is a Markov chain with generator given by (2.9) with µ = µ1, and
that Z = (Z t : t ≥ 0) arises similarly with µ = µ2. Here is a brief explanation of
this elementary step in the case of Y , a similar argument holds for Z . For π ∈ �
and e ∈ E ,

P(Yt+h = πe | Yt = πe)

=
∑

ω∈�
P
(
Yt+h = πe

∣∣ (Yt , Z t ) = (πe, ω)
)
P(Z t = ω | Yt = πe)

=
∑

ω∈�
[h + o(h)]P(Z t = ω | Yt = πe) by (2.10)

= h + o(h).

Similarly, with Je the event that e is open,

P(Yt+h = πe | Yt = πe)

=
∑

ω∈Je, ω′∈�
P
(
(Yt+h, Z t+h) = (πe, ω

′)
∣∣ (Yt , Z t ) = (πe, ωe)

)

×P(Z t = ωe | Yt = πe)

=
∑

ω∈Je

[{
H (πe, ωe;πe, ωe)+ H (πe, ωe;πe, ω

e)
}
h + o(h)

]

×P(Z t = ωe | Yt = πe)

=
∑

ω∈Je

[
µ1(πe)

µ1(πe)
h + o(h)

]
P(Z t = ωe | Yt = πe) by (2.11) and (2.12)

= µ1(πe)

µ1(πe)
h + o(h).

Let κ be an invariant measure for the paired chain (Yt , Z t )t≥0. Since Y and Z
have (respective) unique invariant measures µ1 and µ2, the marginals of κ are µ1
and µ2. Since P(Yt ≤ Z t for all t) = 1,

κ(S) = κ
(
{(π, ω) : π ≤ ω}

)
= 1,

and κ is the required ‘coupling’ of µ1 and µ2.

Let (π, ω) ∈ S be chosen according to the measure κ . Then

µ1(X) = κ(X (π)) ≤ κ(X (ω)) = µ2(X),

for any increasing function X . Therefore µ1 ≤st µ2. �
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Proof of Theorem 2.3. Inequality (2.4) is equivalent to

µ2(ζ
e)[µ1(ξ

e)+ µ1(ξe)] ≥ µ1(ξ
e)[µ2(ζ

e)+ µ2(ζe)],

which is the same as (2.5). Therefore, (b) and (c) are equivalent.

It is clear that (a) implies (c). Suppose conversely that (c) holds. We identify
a configuration ω ∈ � with the set of indices η(ω) at which ω takes the value 1.
Let ω1, ω2 ∈ �, and write Ak = η(ωk). Let B = A1 \ A2 = {b1, b2, . . . , br },
and write Bs = {b1, b2, . . . , bs} for s ≥ 1. Assume ω1 6= ω2, and without loss of
generality that r ≥ 1. By (2.5),

µ2(ω1 ∨ ω2)

µ2(ω2)
= µ2(A2 ∪ B)

µ2(A2 ∪ Br−1)
· µ2(A2 ∪ Br−1)

µ2(A2 ∪ Br−2)
· · · µ2(A2 ∪ B1)

µ2(A2)

≥ µ1((A1 ∩ A2) ∪ B)

µ1((A1 ∩ A2) ∪ Br−1)
· µ1((A1 ∩ A2) ∪ Br−1)

µ1((A1 ∩ A2) ∪ Br−2)

· · · µ1((A1 ∩ A2) ∪ B1)

µ1(A1 ∩ A2)

= µ1(ω1)

µ1(ω1 ∧ ω2)

as required for (a). The above may be called a ‘telescoping’ argument. �

Proof of Theorem 2.6. We prove first by a telescoping argument that (2.7) is
equivalent to

(2.14)
µ2(ζ )

µ2(ξ)
≥ µ1(ζ )

µ1(ξ)
, ξ, ζ ∈ �, ξ ≤ ζ.

As above, we identify a configurationω ∈ �with the set of indicesη(ω) at whichω
takes the value 1. That (2.14) implies (2.7) is immediate on setting ζ = ωe, ξ = ωe.
Conversely, let ξ, ζ ∈ � satisfy ξ ≤ ζ . Let B = η(ζ ) \ η(ξ) = {b1, b2, . . . , br },
and write Bs = {b1, b2, . . . , bs} for s ≥ 0. We may assume ξ 6= ζ so that r ≥ 1.
By (2.7),

µ2(ζ )

µ2(ξ)
=

r∏

s=1

µ2(η(ξ) ∪ Bs)

µ2(η(ξ) ∪ Bs−1)

≥
r∏

s=1

µ1(η(ξ) ∪ Bs)

µ1(η(ξ) ∪ Bs−1)
= µ1(ζ )

µ1(ξ)
.

Inequality (2.8) may be written as

(2.15)
µ(ωe f )

µ(ω
f

e )
≥
µ(ωe

f )

µ(ωe f )
, ω ∈ �, e, f ∈ E .
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The edge f is ‘switched on’ in both numerator and denominator of the left side,
and ‘switched off’ on the right side. Let ξ, ζ ∈ � and ξ ≤ ζ . By a sequential
application of (2.15) to all edges (other than possibly e) in η(ζ )\η(ξ), (2.8) implies

(2.16)
µ(ζ e)

µ(ζe)
≥ µ(ξ e)

µ(ξe)
, ξ ≤ ζ, e ∈ E .

It follows by Theorem 2.3 that

(2.17)
µ(ω1 ∨ ω2)

µ(ω2)
≥ µ(ω1)

µ(ω1 ∧ ω2)
, ω1, ω2 ∈ �.

Assume that (2.7) holds, and letω1, ω2 ∈ �. Ifµ1 satisfies (2.8), then it satisfies
(2.17), and (2.2) follows from (2.14) with ζ = ω1 ∨ ω2, ξ = ω2. Similarly, if
µ2 satisfies (2.8), it satisfies (2.17), and (2.2) follows from (2.14) with ζ = ω1,
ξ = ω1 ∧ ω2. �

2.2 Positive association

Let E be a finite set as in the last section, and let � = {0, 1}E . A probability
measureµ on� is said to have the FKG lattice property if it satisfies the so-called
FKG lattice condition:

(2.18) µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ �.

It is a consequence of the Holley inequality (Theorem 2.1), as follows, that any
strictly positive probability measure with the FKG lattice property satisfies the
so-called FKG inequality. A stronger result will appear at Theorem 2.27.

(2.19) Theorem (FKG inequality) [124, 185]. Let µ be a strictly positive prob-
ability measure on � satisfying the FKG lattice condition. Then

(2.20) µ(XY ) ≥ µ(X)µ(Y ) for increasing functions X,Y : � → R.

There is an extensive literature on the FKG inequality3 and its extensions.
See, for example, [2, 25, 184]. One may extend the inequality to probability
measures on sample spaces of the form T E with T a finite subset of R. In addition,
some of the results of this section are valid for measures that are not strictly
positive. Any probability measure µ satisfying (2.20) is said to have the property
of ‘positive association’ or, more concisely, to be ‘positively associated’. We
consider in Section 4.1 the positive association of measures on� = {0, 1}E when
E is countably infinite.

3The history and origins of the FKG inequality are described in the Appendix.
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Correlation-type inequalities play an important role in mathematical physics.
For example, the FKG inequality is a fundamental tool in the study of the Ising
and random-cluster models, see Chapter 3. There are many other correlation
inequalities in statistical physics (see [118]), but these do not generally have a
random-cluster equivalent and are omitted from the current work.

Proof. Since inequality (2.20) involves a finite set of real numbers only, it may
in principle be proved in a totally elementary manner, [280]. We follow here the
more interesting route via the Holley inequality, Theorem 2.1. Assume that µ
satisfies the FKG lattice condition (2.18), and let X and Y be increasing functions.
Let a > 0 and Y ′ = Y + a. Since

µ(XY ′)− µ(X)µ(Y ′) = µ(XY )− µ(X)µ(Y ),

it suffices to prove (2.20) with Y replaced by Y ′. We may pick a sufficiently large
that Y (ω) > 0 for all ω ∈ �. Thus, it suffices to prove (2.20) under the additional
hypothesis that Y is strictly positive, and we assume henceforth that this holds.
Define the strictly positive probability measures µ1 andµ2 on (�,F ) by µ1 = µ

and

µ2(ω) = Y (ω)µ(ω)∑
ω′∈� Y (ω′)µ(ω′)

, ω ∈ �.

Since Y is increasing, inequality (2.2) follows from (2.18). By the Holley inequal-
ity, µ2(X) ≥ µ1(X), which is to say that∑

ω∈� X (ω)Y (ω)µ(ω)∑
ω′∈� Y (ω′)µ(ω′)

≥
∑

ω∈�
X (ω)µ(ω). �

If X is increasing and Y is decreasing, we may apply (2.20) to X and −Y
to find, under the conditions of the theorem, that µ(XY ) ≤ µ(X)µ(Y ). In the
special case when X = 1A, Y = 1B , the indicator functions of events A and B ,
we obtain similarly that

(2.21) µ(A ∩ B) ≥ µ(A)µ(B) for increasing events A, B.

Let X = (X1, X2, . . . , Xr ) be a vector of random variables taking values in
{0, 1}r . We speak of X as being positively associated if its law on {0, 1}r is
itself positively associated. Let Y = h(X) where h : {0, 1}r → {0, 1}s is a
non-decreasing function. It is standard that the vector Y is positively associated
whenever X is positively associated. The proof is straightforward, as follows. Let
A, B be increasing subsets of {0, 1}s . Then

P(Y ∈ A ∩ B) = P
(
X ∈ {h−1 A} ∩ {h−1 B}

)

≥ P(X ∈ h−1 A)P(X ∈ h−1 B)

= P(Y ∈ A)P(Y ∈ B),

since h−1 A and h−1 B are increasing subsets of {0, 1}r .

We turn now to a consideration of the FKG lattice condition. Recall the Ham-
ming distance between configurations defined in (1.26). A pair ω1, ω2 ∈ � is
called comparable if either ω1 ≤ ω2 or ω1 ≥ ω2, and incomparable otherwise.
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(2.22) Theorem. A strictly positive probability measureµ on (�,F ) satisfies the
FKG lattice condition if and only the inequality of (2.18) holds for all incomparable
pairs ω1, ω2 ∈ � with H (ω1, ω2) = 2.

For pairs ω1, ω2 that differ on exactly two edges e and f , the inequality of
(2.18) is equivalent to the statement that, conditional on the states of all other
edges, the states of e and f are positively associated.

Proof. The inequality of (2.18) is a triviality when H (ω1, ω2) = 1, and the claim
now follows by Theorem 2.6 with µ1 = µ2 = µ. See also [257, Lemma 6.5]. �

The FKG lattice condition is sufficient but not necessary for positive association.
It is equivalent for strictly positive measures to a stronger property termed ‘strong
positive-association’ (or, sometimes, ‘strong FKG’). For F ⊆ E and ξ ∈ �, we
write �F = {0, 1}F and

(2.23) �
ξ

F = {ω ∈ � : ω(e) = ξ(e) for all e ∈ E \ F},

the set of configurations that agree with ξ on the complement of F . Let µ be a
probability measure on (�,F ), and let F , ξ be such that µ(�ξF ) > 0. We define

the conditional probability measure µξF on �F by

(2.24) µ
ξ
F (ωF ) = µ(ωF | �ξF ) = µ(ωF × ξ)

µ(�
ξ

F )
, ωF ∈ �F ,

where ωF × ξ denotes the configuration that agrees with ωF on F and with ξ on
its complement. We say that µ is strongly positively-associated if: for all F ⊆ E
and all ξ ∈ � such that µ(�ξF ) > 0, the measure µξF is positively associated.

We call µ monotonic if: for all F ⊆ E , all increasing subsets A of�F , and all
ξ, ζ ∈ � such that µ(�ξF ), µ(�

ζ

F ) > 0,

(2.25) µ
ξ

F (A) ≤ µ
ζ

F (A) whenever ξ ≤ ζ.

That is, µ is monotonic if, for all F ⊆ E ,

(2.26) µ
ξ

F ≤st µ
ζ

F whenever ξ ≤ ζ.

We call µ 1-monotonic if (2.26) holds for all singleton sets F . That is, µ is
1-monotonic if and only if, for all f ∈ E , µ(Jf | �ξf ) is a non-decreasing
function of ξ . Here, Jf denotes the event that f is open.
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28 Monotonic Measures [2.2]

(2.27) Theorem4. Let µ be a strictly positive probability measure on (�,F ).
The following are equivalent.

(a) µ is strongly positively-associated.

(b) µ satisfies the FKG lattice condition.

(c) µ is monotonic.

(d) µ is 1-monotonic.

It is a near triviality to check that any product measure on � satisfies the FKG
lattice condition, and thus product measures are strongly positively-associated.
This is the q = 1 case of Theorem 3.8, and is usually referred to as Harris’s
inequality, [181]. We give two examples of probability measures that are positively
associated but do not satisfy the statements of the above theorem.

(2.28) Example5. Let ǫ, δ ∈ (0, 1), and let µ0, µ1 be the probability measures on
{0, 1}3 given by

µ0(010) = µ0(001) = δ, µ0(000) = 1 − 2δ,

µ1(111) = µ1(100) = 1
2 .

Let ǫ ∈ [0, 1] and set µ = ǫµ0 + (1 − ǫ)µ1. Note that

µ(011) = µ(101) = µ(110) = 0.

It may be checked that µ does not satisfy the FKG lattice condition whereas, for
sufficiently small positive values of the constants ǫ, δ, the measure µ is positively
associated. Note from the above that µ is not strictly positive. However, a strictly
positive example may be arranged by replacing µ by the probability measure
µ′ = (1 − η)µ+ ηµ2 where

µ2(011) = µ2(101) = µ2(110) = 1
3

and η is small and positive.

(2.29) Example6. Let X and Y be independent Bernoulli random variables with
parameter 1

2 , so that
P(X = 0) = P(X = 1) = 1

2 ,

and similarly for Y . Let Z = max{X,Y }. It is clear that

P(X = 1 | Z = 1) > P(X = 1), P(X = 1 | Y = Z = 1) = P(X = 1).

4Closely related material is discussed in [204]. The equivalence of (a) and (b) is attributed in
[8] to J. van den Berg and R. M. Burton (1987). See [136] for a further discussion of monotonic
measures.

5Proposed by J. Steif.
6Proposed by J. van den Berg.
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It is easy to deduce that the law µ of the triple (X,Y, Z) is not monotonic. It is
however positively associated since the triple (X,Y, Z) is an increasing function
of the independent pair X , Y .

As in the previous example, µ is not strictly positive, a weakness which we
remedy differently than before. Let X ′, Y ′, Z ′ (respectively, X ′′, Y ′′, Z ′′) be
Bernoulli random variables with parameter δ (respectively, 1 − δ), and assume the
maximal amount of independence. The triple

(A, B,C) =
(
(X ∨ X ′) ∧ X ′′, (Y ∨ Y ′) ∧ Y ′′, (Z ∨ Z ′) ∧ Z ′′)

is an increasing function of positively associated random variables,and is therefore
positively associated. However, for small positive δ, it is only a small (stochastic)
perturbation of the original triple (X,Y, Z), and one may check that (A, B,C) is
not monotonic. It is easily verified that P((A, B,C) = ω) > 0 for allω ∈ {0, 1}3.

Proof of Theorem 2.27. Throughout, µ is assumed strictly positive.

(a) ⇐⇒ (b). We prove first that (a) implies (b). By Theorem 2.22, it suffices to
prove (2.18) for two incomparable configurations ω1, ω2 that disagree on exactly
two distinct edges e, f ∈ E . We order E = (e1, e2, . . . , em) with e1 = e and
e2 = f , and we express a configuration ω as a ‘word’ ω(e1) · ω(e2) · . . . · ω(em)

in the alphabet with two letters. Thus ω1 = 0 · 1 · w and ω2 = 1 · 0 · w for some
word w of length |E | − 2. By strong positive-association, α(xy) = µ(x · y · w)
satisfies

α(11)
[
α(00)+ α(01)+ α(10)+ α(11)

] ≥ [
α(01)+ α(11)

][
α(10)+ α(11)

]
,

which may be simplified to obtain as required that

α(11)α(00) ≥ α(01)α(10).

We prove next that (b) implies (a). Suppose (b) holds, and let F ⊆ E and
ξ ∈ �. It is immediate from (2.24) that

µ
ξ

F (ω1 ∨ ω2)µ
ξ

F (ω1 ∧ ω2) ≥ µ
ξ

F (ω1)µ
ξ

F (ω2), ω1, ω2 ∈ �F .

By Theorem 2.19, µξF is positively associated.

(b) H⇒ (c). By the Holley inequality, Theorem 2.1, it suffices to prove for
ωF , ρF ∈ �F that

µ
ζ

F (ωF ∨ ρF )µ
ξ

F (ωF ∧ ρF ) ≥ µ
ζ

F (ωF )µ
ξ

F (ρF ) whenever ξ ≤ ζ.

This is, by (2.24), an immediate consequence of the FKG lattice property applied
to the pair ωF × ζ , ρF × ξ .

(c) H⇒ (d). This is trivial.

(d) H⇒ (b). Let µ be 1-monotonic. By Theorem 2.3, the pair µ, µ satisfies
(2.2), which is to say that µ satisfies the FKG lattice condition. �

c©Springer-Verlag 2006



30 Monotonic Measures [2.3]

2.3 Influence for monotonic measures

Let N ≥ 1, and let E be an arbitary finite set with |E | = N . We write� = {0, 1}E

as usual, and F for the set of all subsets of �. Let µ be a probability measure on
(�,F ), and A an increasing event. The (conditional) influence on A of the edge
e ∈ E is defined by

(2.30) IA(e) = µ(A | Je = 1)− µ(A | Je = 0),

where J = (Je : e ∈ E) denotes7 the identity function on �. There has been an
extensive study of the largest influence, maxe IA(e), whenµ is a product measure,
and this has been used to obtain concentration theorems for φp(A) viewed as
a function of p, where φp denotes product measure with density p on �. Such
results have applications to several topics including random graphs, random walks,
and percolation. Theorems concerning influence were first proved for product
measures, but they may be extended in a natural way to monotonic measures.

(2.31) Theorem (Influence) [141]. There exists a constant c satisfying c ∈ (0,∞)

such that the following holds. Let N ≥ 1, let E be a finite set with |E | = N, and let
A be an increasing subset of � = {0, 1}E . Let µ be a strictly positive probability
measure on (�,F ) that is monotonic. There exists e ∈ E such that

IA(e) ≥ c min
{
µ(A), 1 − µ(A)

} log N

N
.

There are several useful references concerning influence for product measures,
see [125, 126, 200, 201, 329] and their bibliographies. The order of magnitude
N−1 log N is the best possible, see [34].

Proof. Letµ be strictly positive and monotonic. The idea is to encodeµ in terms of
Lebesgue measure λ on the Euclidean cube [0, 1]E , and then to apply the influence
theorem8 of [67]. This will be done via a certain function f : [0, 1]E → {0, 1}E

constructed next. A similar argument will be used to prove Theorem 3.45.

We may suppose without loss of generality that E = {1, 2, . . . , N}. Let x =
(xi : i = 1, 2, . . . , N) ∈ [0, 1]E , and let f (x) = ( fi (x) : i = 1, 2, . . . , N) ∈ RE

be given recursively as follows. The first coordinate f1(x) is defined by:

(2.32) with a1 = µ(J1 = 1), let f1(x) =
{

1 if x1 > 1 − a1,

0 otherwise.

Suppose we know the values fi (x) for i = 1, 2, . . . , k − 1. Let

(2.33) ak = µ
(
Jk = 1

∣∣ Ji = fi (x) for i = 1, 2, . . . , k − 1
)
,

7Thus, Je denotes both the event {ω ∈ � : ω(e) = 1} and its indicator function.
8An interesting aspect of the proof of this theorem is the use of discrete Fourier transforms

and hypercontractivity.
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and define

(2.34) fk(x) =
{

1 if xk > 1 − ak,

0 otherwise.

It may be shown as follows that the function f : [0, 1]E → {0, 1}E is non-
decreasing. Let x ≤ x′, and write ak = ak(x) and a′

k = ak(x′) for the values
in (2.32)–(2.33) corresponding to the vectors x and x′. Clearly a1 = a′

1, so that
f1(x) ≤ f1(x′). Since µ is monotonic, a2 ≤ a′

2, implying that f2(x) ≤ f2(x′).
Continuing inductively, we find that fk(x) ≤ fk(x′) for all k, which is to say that
f (x) ≤ f (x′).

Let A ∈ F be an increasing event, and let B be the increasing subset of [0, 1]E

given by B = f −1(A). We make four notes concerning the definition of f .

(a) For given x, each ak depends only on x1, x2, . . . , xk−1.

(b) Since µ is strictly positive, the ak satisfy 0 < ak < 1 for all x ∈ [0, 1]N and
k ∈ E .

(c) For any x ∈ [0, 1]N and k ∈ E , the values fk(x), fk+1(x), . . . , fN (x) de-
pend on x1, x2, . . . , xk−1 only through the values f1(x), f2(x), . . . , fk−1(x).

(d) The function f and the event B depend on the ordering of the set E .

Let U = (Ui : i = 1, 2, . . . , N) be the identity function on [0, 1]E , so that U
has law λ. By the definition of f , f (U) has law µ. Hence,

(2.35) µ(A) = λ( f (U) ∈ A) = λ(U ∈ f −1(A)) = λ(B).

Let
K B(i) = λ(B | Ui = 1)− λ(B | Ui = 0),

where the conditional probabilities are interpreted as

λ(B | Ui = u) = lim
ǫ↓0

λ
(
B
∣∣Ui ∈ (u − ǫ, u + ǫ)

)
.

By [67, Thm 1], there exists a constant c ∈ (0,∞), independent of the choice
of N and A, such that: there exists e ∈ E with

(2.36) K B(e) ≥ c min
{
λ(B), 1 − λ(B)

} log N

N
.

We choose e accordingly. We claim that

(2.37) IA( j) ≥ K B( j) for j ∈ E .

By (2.35) and (2.36), it suffices to prove (2.37). We prove first that

(2.38) IA(1) ≥ K B(1),
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which is stronger than (2.37) with j = 1. By (b) and (c) above,

IA(1) = µ(A | J1 = 1)− µ(A | J1 = 0)(2.39)

= λ(B | f1(U) = 1)− λ(B | f1(U) = 0)

= λ(B | U1 > 1 − a1)− λ(B | U1 ≤ 1 − a1)

= λ(B | U1 = 1)− λ(B | U1 = 0)

= K B(1).

We turn to (2.37) with j ≥ 2. We re-order the set E to bring the index j to
the front. That is, we let F be the re-ordered index set F = (k1, k2, . . . , kN ) =
( j, 1, 2, . . . , j − 1, j + 1, . . . , N). Let g = (gkr : r = 1, 2, . . . , N) denote the
associated function given by (2.32)–(2.34) subject to the new ordering, and let
C = g−1(A). We claim that

(2.40) KC (k1) ≥ K B( j).

By (2.39) with E replaced by F , KC(k1) = IA( j), and (2.37) follows. It remains
to prove (2.40), and we use monotonicity again for this. It suffices to prove that

(2.41) λ(C | Uj = 1) ≥ λ(B | Uj = 1),

together with the reversed inequality given Uj = 0. Let

(2.42) U = (U1,U2, . . . ,Uj−1, 1,Uj+1, . . . ,UN ).

The 0/1-vector f (U) = ( fi (U) : i = 1, 2, . . . , N) is constructed sequentially (as
above) by considering the indices 1, 2, . . . , N in turn. At stage k, we declare fk(U)
equal to 1 if Uk exceeds a certain function ak of the variables fi (U), 1 ≤ i < k.
By the monotonicity of µ, this function is non-increasing in these variables. The
index j plays a special role in that: (i) f j (U) = 1, and (ii) given this fact, it is
more likely than before that the variables fk(U), j < k ≤ N , will take the value
1. The values fk(U), 1 ≤ k < j are unaffected by the value of Uj .

Consider now the 0/1-vector g(U) = (gkr (U) : r = 1, 2, . . . , N), constructed
in the same manner as above but with the new ordering F of the index set E .
First we examine index k1 (= j ), and we automatically declare gk1(U) = 1 (since
Uj = 1). We then construct gkr (U), r = 2, 3, . . . , N , in sequence. Since the ak

are non-decreasing in the variables constructed so far,

(2.43) gkr (U ) ≥ fkr (U), r = 2, 3, . . . , N.

Therefore, g(U) ≥ f (U), and hence

(2.44) λ(C | Uj = 1) = λ(g(U) ∈ A) ≥ λ( f (U) ∈ A) = λ(B | Uj = 1).

Inequality (2.41) has been proved. The same argument implies the reversed in-
equality obtained from (2.41) by changing the conditioning to Uj = 0. Inequality
(2.40) follows, and the proof is complete. �
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2.4 Sharp thresholds for increasing events

We consider next certain families of probability measures µp indexed by a pa-
rameter p ∈ (0, 1), and we prove a sharp-threshold theorem subject to a hypoth-
esis of monotonicity. The idea is as follows. Let A be a non-empty increasing
event in � = {0, 1}N . Subject to a certain hypothesis on the µp , the function
f (p) = µp(A) is non-decreasing with f (0) = 0 and f (1) = 1. If A has a certain
property of symmetry, the sharp-threshold theorem asserts that f (p) increases
steeply from 0 to 1 over a short interval of p-values with length of order 1/ log N .

We use the notation of the previous section. Let µ be a probability measure on
(�,F ). For p ∈ (0, 1), let µp be the probability measure given by

(2.45) µp(ω) = 1

Zp
µ(ω)

{∏

e∈E

pω(e)(1 − p)1−ω(e)
}
, ω ∈ �,

where Zp is the normalizing constant

Zp =
∑

ω∈�
µ(ω)

{∏

e∈E

pω(e)(1 − p)1−ω(e)
}
.

It is elementary that µ = µ 1
2
, and that (each) µp is strictly positive if and only

if µ is strictly positive. It is easy to check that (each) µp satisfies the FKG
lattice condition (2.18) if and only if µ satisfies this condition, and it follows by
Theorem 2.27 that, for strictly positive µ, µ is monotonic if and only if (each) µp

is monotonic. In order to prove a sharp-threshold theorem for the family µp , we
present first a differential formula of the type referred to as Russo’s formula, [154,
Section 2.4].

(2.46) Theorem [39]. For a random variable X : � → R,

(2.47)
d

dp
µp(X) = 1

p(1 − p)
covp(|η|, X), p ∈ (0, 1),

where covp denotes covariance with respect to the probability measure µp , and
η(ω) is the set of ω-open edges.

We note for later use that

(2.48) covp(|η|, X) =
∑

e∈E

covp(Je, X).

Proof. We follow [39, Prop. 4] and [156, Section 2.4]. Write

νp(ω) = p|η(ω)|(1 − p)N−|η(ω)|µ(ω), ω ∈ �,
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so that

(2.49) µp(X) = 1

Zp

∑

ω∈�
X (ω)νp(ω).

It is elementary that
(2.50)

d

dp
µp(X) = 1

Zp

∑

ω∈�

( |η(ω)|
p

− N − |η(ω)|
1 − p

)
X (ω)νp(ω)−

Z ′
p

Zp
µp(X),

where Z ′
p = d Zp/dp. Setting X = 1, we find that

0 = 1

p(1 − p)
µp(|η| − pN)−

Z ′
p

Zp
,

whence

p(1 − p)
d

dp
µp(X) = µp

(
[|η| − pN]X

)
− µp(|η| − pN)µp(X)

= µp(|η|X)− µp(|η|)µp(X)

= covp(|η|, X). �

Let 5 be the group of permutations of E . Any π ∈ 5 acts9 on � by πω =
(ω(πe) : e ∈ E). We say that a subgroup A of5 acts transitively on E if, for all
pairs j, k ∈ E , there exists α ∈ A with αj = k.

Let A be a subgroup of 5. A probability measure φ on (�,F ) is called A-
invariant ifφ(ω) = φ(αω) for allα ∈ A. An event A ∈ F is called A-invariant if
A = αA for all α ∈ A. It is easily seen that, for any subgroup A, µ is A-invariant
if and only if (each) µp is A-invariant.

(2.51) Theorem (Sharp threshold) [141]. There exists a constant c satisfying
c ∈ (0,∞) such that the following holds. Let N = |E | ≥ 1 and let A ∈ F be an
increasing event. Let µ be a strictly positive probability measure on (�,F ) that
is monotonic. Suppose there exists a subgroup A of 5 acting transitively on E
such that µ and A are A-invariant. Then

(2.52)
d

dp
µp(A) ≥ cmp

p(1 − p)
min

{
µp(A), 1−µp(A)

}
log N, p ∈ (0, 1),

where mp = µp(Je)(1 − µp(Je)).

Let ǫ ∈ (0, 1
2 ) and let A be non-empty and increasing. Under the conditions

of the theorem, µp(A) increases from ǫ to 1 − ǫ over an interval of values of p
having length of order 1/ log N . This amounts to a quantification of the so-called
S-shape results described and cited in [154, Section 2.5]. Note that mp does not
depend on the choice of edge e.

The proof is preceded by an easy lemma. Let

Ip,A(e) = µp(A | Je = 1)− µp(A | Je = 0), e ∈ E .

9This differs slightly from the definition of Section 4.3, for reasons of local convenience.
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(2.53) Lemma. Let A ∈ F . Suppose there exists a subgroup A of 5 acting
transitively on E such thatµ and A are A-invariant. Then Ip,A(e) = Ip,A( f ) for
all e, f ∈ E and all p ∈ (0, 1).

Proof. Sinceµ is A-invariant, so is µp for every p. Let e, f ∈ E , and find α ∈ A

such that αe = f . Under the given conditions,

µp(A, Jf = 1) =
∑

ω∈A

µp(ω)Jf (ω) =
∑

ω∈A

µp(αω)Je(αω)

=
∑

ω′∈A

µp(ω
′)Je(ω

′) = µp(A, Je = 1).

We deduce with A = � that µp(Jf = 1) = µp(Je = 1). On dividing, we obtain
that µp(A | Jf = 1) = µp(A | Je = 1). A similar equality holds with 1 replaced
by 0, and the claim of the lemma follows. �

Proof of Theorem 2.51. By Lemma 2.53, Ip,A(e) = Ip,A( f ) for all e, f ∈ E .
Since A is increasing and µp is monotonic, each Ip,A(e) is non-negative, and
therefore

covp(Je, 1A) = µp(Je1A)− µp(Je)µp(A)

= µp(Je)(1 − µp(Je))Ip,A(e)

≥ mp Ip,A(e), e ∈ E .

Summing over the index set E as in (2.47)–(2.48), we deduce (2.52) by Theorem
2.31 applied to the monotonic measure µp . �

2.5 Exponential steepness

This chapter closes with a further differential inequality for the probability of a
monotonic event. Let A ∈ F and ω ∈ �. We define HA(ω) to be the Hamming
distance from ω to A, that is,

(2.54) HA(ω) = inf
{

H (ω′, ω) : ω′ ∈ A
}
,

where H (ω′, ω) is given in (1.26). Note that
(2.55)

HA(ω) =





inf

{∑

e

[ω′(e)− ω(e)] : ω′ ≥ ω, ω′ ∈ A

}
if A is increasing,

inf

{∑

e

[ω(e)− ω′(e)] : ω′ ≤ ω, ω′ ∈ A

}
if A is decreasing.

Suppose now that A is increasing (respectively, decreasing). Here are three useful
facts concerning HA.
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(i) HA is a decreasing (respectively, increasing) random variable.

(ii) The function |η| + HA (respectively, |η| − HA) is increasing, since the
addition of a single open edge to a configurationω causes |η(ω)| to increase
by 1, and HA(ω) to decrease (respectively, increase) by at most 1.

(iii) We have that HA(ω)1A(ω) = 0 for ω ∈ �.

Given a probability measure µ on (�,F ), the associated measures µp ,
p ∈ (0, 1), are given by (2.45).

(2.56) Theorem [153, 163]. Let µ be a strictly positive probability measure on
(�,F ) that is monotonic. For a non-empty event A ∈ F , and p ∈ (0, 1),

d

dp
logµp(A) ≥ µp(HA)

p(1 − p)
, if A is increasing,(2.57)

d

dp
logµp(A) ≤ − µp(HA)

p(1 − p)
, if A is decreasing.(2.58)

Inequality (2.57) bears a resemblance to a formula valid for percolation that
may be written as

d

dp
logφp(A) = 1

p
φp(NA | A),

where NA is the number of pivotal edges for the increasing event A, andφp denotes
product measure with density p on (�,F ). See [154, p. 44] for further details.

Proof. Since µ is assumed strictly positive and monotonic, it satisfies the FKG
lattice property. Therefore, every µp satisfies the FKG lattice property, and hence
is positively associated. Let A ∈ F be non-empty and increasing. By (2.47),
(ii)–(iii) above, and positive association,

d

dp
µp(A) = 1

p(1 − p)
covp(|η|, 1A)

= 1

p(1 − p)

[
covp(|η| + HA, 1A)− covp(HA, 1A)

]

≥ − 1

p(1 − p)
covp(HA, 1A)

= µp(HA)µp(A)

p(1 − p)
,

and (2.57) follows. The argument is easily adapted for decreasing A. �

Let A ∈ F be non-empty and increasing. Inequality (2.57) is usually used
in integrated form. Integrating over the interval [r, s], and using the facts that
p(1 − p) ≤ 1

4 and that HA is decreasing, we obtain that

µr (A) ≤ µs(A) exp

{
−4

∫ s

r
µp(HA) dp

}
(2.59)

≤ µs(A) exp
{−4(s − r)µs(HA)

}
, 0 < r ≤ s < 1.

This may sometimes be combined with a complementary inequality derived by a
consideration of ‘finite energy’, see Theorem 3.45.
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Chapter 3

Fundamental Properties

Summary. The basic properties of random-cluster measures are presented in
a manner suitable for future applications. Accounts of conditional random-
cluster measures and positive association are followed by differential formu-
lae, a sharp-threshold theorem, and exponential steepness. There are several
useful inequalities involving partition functions. The series/parallel laws are
formulated, and the chapter ends with a discussion of negative correlation.

3.1 Conditional probabilities

Throughout this chapter, G = (V , E) will be assumed to be a finite graph. Let
φG,p,q be the random-cluster measure on G. Whether or not a given edge e is
open depends on the configuration on the remainder of the graph. The relevant
conditional probabilities may be described in the following useful manner.

For e = 〈x, y〉 ∈ E , the expression G \ e (respectively, G.e) denotes the graph
obtained from G by deleting (respectively, contracting) the edge e. We write
�〈e〉 = {0, 1}E\{e} and, for ω ∈ �, we define ω〈e〉 ∈ �〈e〉 by

ω〈e〉( f ) = ω( f ), f ∈ E, f 6= e.

Let Ke denote the event that x and y are joined by an open path not using e.

(3.1) Theorem (Conditional probabilities) [122]. Let p ∈ (0, 1), q ∈ (0,∞).

(a) We have for e ∈ E that

φG,p,q(ω | ω(e) = j) =
{
φG\e,p,q(ω〈e〉) if j = 0,

φG.e,p,q(ω〈e〉) if j = 1,
(3.2)

and

φG,p,q(ω(e) = 1 | ω〈e〉) =
{ p if ω〈e〉 ∈ Ke,

p

p + q(1 − p)
if ω〈e〉 /∈ Ke.

(3.3)
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(b) Conversely, if φ is a probability measure on (�,F ) satisfying (3.3) for all
ω ∈ � and e ∈ E, then φ = φG,p,q .

The effect of conditioning on the absence or presence of an edge e is to replace
the measure φG,p,q by the random-cluster measure on the respective graph G\e or
G.e. In addition, the conditional probability that e is open, given the configuration
elsewhere, depends only on whether or not Ke occurs, and is then given by the
stated formula. By (3.3),

(3.4) 0 < φG,p,q(ω(e) = 1 | ω〈e〉) < 1, e ∈ E, p ∈ (0, 1), q ∈ (0,∞).

Thus, givenω〈e〉, each of the two possible states of e occurs with a strictly positive
probability. This useful fact is known as the ‘finite-energy property’, and is related
to the property of so-called ‘insertion tolerance’ (see Section 10.12).

We shall sometimes need to condition on the states of more than one edge.
Towards this end, we state next a more general property than (3.2), beginning with
a brief discussion of boundary conditions; more on the latter topic may be found
in Section 4.2. Let ξ ∈ �, F ⊆ E , and let �ξF be the subset of � containing all
configurations ψ satisfying ψ(e) = ξ(e) for all e /∈ F . We define the random-
cluster measure φξF,p,q on (�,F ) by
(3.5)

φ
ξ

F,p,q(ω) =





1

Z ξF (p, q)

{∏

e∈F

pω(e)(1 − p)1−ω(e)
}

qk(ω,F) if ω ∈ �ξF ,

0 otherwise,

where k(ω, F) is the number of components of the graph (G, η(ω)) that intersect
the set of endvertices of F , and

(3.6) Z ξF (p, q) =
∑

ω∈�ξF

{∏

e∈F

pω(e)(1 − p)1−ω(e)
}

qk(ω,F).

Note that φξF,p,q(�
ξ

F ) = 1.

(3.7) Theorem. Let p ∈ [0, 1], q ∈ (0,∞), and F ⊆ E. Let X be a random
variable that is FF -measurable. Then

φG,p,q(X | TF )(ξ) = φ
ξ

F,p,q(X), ξ ∈ �.

In other words, given the states of edges not belonging to F , the conditional
measure on F is a random-cluster measure subject to the retention of open con-
nections of ξ using edges not belonging to F .

Here is a final note. Let p ∈ (0, 1) and q 6= 1. It is easily seen that the states
of two distinct edges e, f are independent if and only if the pair e, f lies in no
circuit of G. This may be proved either directly or via the simulation methods of
Sections 3.4 and 8.2.
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Proof of Theorem 3.1. (a) This is easily seen by an expansion of the conditional
probability,

φG,p,q(ω | ω(e) = j) =
{
φG,p,q(ωe)/φG,p,q(Je) if j = 0,

φG,p,q(ω
e)/φG,p,q(Je) if j = 1,

ω ∈ �,

where Je = {ω ∈ � : ω(e) = 1}, and ωe, ωe are given by (1.25).

Similarly,

φG,p,q(ω(e) = 1 | ω〈e〉) = φG,p,q(ω
e)

φG,p,q(ωe)+ φG,p,q(ωe)

= [p/(1 − p)]|η(ω
e)|qk(ωe)

[p/(1 − p)]|η(ωe)|qk(ωe) + [p/(1 − p)]|η(ωe)|qk(ωe)

=





p/(1 − p)

[p/(1 − p)] + 1
if ωe ∈ Ke,

p/(1 − p)

[p/(1 − p)] + q
if ωe /∈ Ke,

where η(ω) is, as usual, the set of open edges in �.

(b) The claim is immediate by the fact, easily proved, that a strictly positive proba-
bility measure φ is specified uniquely by the conditional probabilities
φ(ω(e) = 1 | ω〈e〉), ω ∈ �, e ∈ E . �

Proof of Theorem 3.7. This holds by repeated application of (3.2), with one
application for each edge not belonging in F . �

3.2 Positive association

Let φp,q denote the random-cluster measure on G with parameters p and q . We
shall see that φp,q satisfies the FKG lattice condition (2.18) whenever q ≥ 1, and
we arrive thus at the following conclusion.

(3.8) Theorem (Positive association) [122]. Let p ∈ (0, 1) and q ∈ [1,∞).

(a) The random-cluster measure φp,q is strictly positive and satisfies the FKG
lattice condition.

(b) The random-cluster measure φp,q is strongly positively-associated, and in
particular

φp,q(XY ) ≥ φp,q(X)φp,q (Y ) for increasing X,Y : � → R,

φp,q(A ∩ B) ≥ φp,q(A)φp,q(B) for increasing A, B ∈ F .

It is not difficult to see that φp,q is not (in general) positively associated when
q ∈ (0, 1), as illustrated in the example following. Let G be the graph containing
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just two vertices and having exactly two parallel edges e and f joining these
vertices. It is an easy computation that

(3.9) φp,q(Je ∩ Jf )− φp,q(Je)φp,q (Jf ) = p2q2(q − 1)(1 − p)2

Z(p, q)2
,

where Jg is the event that g is open. This is strictly negative if 0 < p, q < 1.

Proof of Theorem 3.8. Let p ∈ (0, 1) and q ∈ [1,∞). Part (b) follows from (a)
and Theorem 2.27. It is elementary that φp,q is strictly positive. We now check
as required that φp,q satisfies the FKG lattice condition (2.18). Since the set η(ω)
of open edges in a configuration ω satisfies

(3.10) |η(ω1 ∨ ω2)| + |η(ω1 ∧ ω2)| = |η(ω1)| + |η(ω2)|, ω1, ω2 ∈ �,

it suffices, on taking logarithms, to prove that

(3.11) k(ω1 ∨ ω2)+ k(ω1 ∧ ω2) ≥ k(ω1)+ k(ω2), ω1, ω2 ∈ �.

By Theorem 2.22, we may restrict our attention to incomparable pairs ω1, ω2
that differ on exactly two edges. There must then exist distinct edges e, f ∈ E
and a configuration ω ∈ � such that ω1 = ωe

f , ω2 = ω
f

e . As in the proof of
Theorem 2.27, we omit reference to the states of edges other than e and f , and
we write ω1 = 10 and ω2 = 01. Let D f be the indicator function of the event
that the endvertices of f are connected by no open path of E \ { f }. Since D f is
a decreasing random variable, we have that D f (10) ≤ D f (00). Therefore,

k(10)− k(11) = D f (10) ≤ D f (00) = k(00)− k(01),

which implies (3.11). �

Theorem 3.8 applies only to finite graphs G, whereas many potential applica-
tions concern infinite graphs. We shall see in Sections 4.3 and 4.4 how to derive
the required extension.

3.3 Differential formulae and sharp thresholds

One way of estimating the probability of an event A is via an estimate of its
derivative dφp,q(A)/dp. When q = 1, there is a formula for this derivative which
has proved very useful in reliability theory, percolation, and elsewhere, see [22,
126, 154, 287]. This formula has been extended to random-cluster measures. For
ω ∈ �, let |η| = |η(ω)| = ∑

e∈E ω(e) be the number of open edges of ω as usual,
and k = k(ω) the number of open clusters.
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[3.3] Differential formulae and sharp thresholds 41

(3.12) Theorem [39]. Let p ∈ (0, 1), q ∈ (0,∞), and let φp,q be the correspond-
ing random-cluster measure on a finite graph G = (V , E). We have that

d

dp
φp,q (X) = 1

p(1 − p)
covp,q(|η|, X),(3.13)

d

dq
φp,q (X) = 1

q
covp,q(k, X),(3.14)

for any random variable X : � → R, where covp,q denotes covariance with
respect to φp,q .

In most applications, we set X = 1A, the indicator function of some given
event A, and we obtain that

(3.15)
d

dp
φp,q(A) = φp,q(1A|η|)− φp,q (A)φp,q(|η|)

p(1 − p)
,

with a similar formula for the derivative with respect to q .

Here are two simple examples of Theorem 3.12 which result in monotonicities
valid for all q ∈ (0,∞). Let h : R → R be non-decreasing. On setting X =
h(|η|), we have from (3.13) that

d

dp
φp,q(X) = 1

p(1 − p)
covp,q(|η|, h(|η|)) ≥ 0.

In the special case h(x) = x , we deduce that the mean number of open edges
is a non-decreasing function of p, for all q ∈ (0,∞). Similarly, by (3.14), for
non-decreasing h,

d

dq
φp,q(h(k)) = 1

q
covp,q(k, h(k)) ≥ 0.

This time we take h = −1(−∞,1], so that −h is the indicator function of the
event that the open graph (V , η(ω)) is connected. We deduce that the probability
of connectedness is a decreasing function of q on the interval (0,∞). These
examples are curiosities, given the failure of stochastic monotonicity when q < 1.

Let q ∈ [1,∞). Since φp,q satisfies the FKG lattice condition (2.18), it is
monotonic. Let A be a subgroup of the automorphism group1 Aut(G) of the
graph G = (V , E). We call E A-transitive if A acts transitively on E .

1The automorphism group Aut(G) is discussed further in Sections 4.3 and 10.12.
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(3.16) Theorem (Sharp threshold) [141]. There exists an absolute constant
c ∈ (0,∞) such that the following holds. Let A ∈ F be an increasing event,
and suppose there exists a subgroup A of Aut(G) such that E is A-transitive and
A is A-invariant. Then, for p ∈ (0, 1) and q ∈ [1,∞),

(3.17)
d

dp
φp,q (A) ≥ C min

{
φp,q(A), 1 − φp,q(A)

}
log |E |,

where

C = c min

{
1,

q

{p + q(1 − p)}2

}
.

Since q ≥ 1, (3.17) implies that

(3.18)
d

dp
φp,q(A) ≥ c

q
min

{
φp,q(A), 1 − φp,q (A)

}
log |E |,

an inequality that may be integrated directly. Let p1 = p1(A, q) ∈ (0, 1) be
chosen such that φp1,q(A) ≥ 1

2 . Then

− d

dp
log[1 − φp,q(A)] ≥ c

q
log |E |, p ∈ (p1, 1),

and hence, by integration,

(3.19) φp,q(A) ≥ 1 − 1
2 |E |−c(p−p1)/q , p ∈ (p1, 1), q ∈ [1,∞),

whenever the conditions of Theorem 3.16 are satisfied. If in addition p1 ≥√
q/(1 + √

q), then C = c, and hence

(3.20) φp,q (A) ≥ 1 − 1
2 |E |−c(p−p1), p ∈ (p1, 1).

An application to box crossings in two dimensions may be found in [141].

Proof of Theorem 3.12. The first formula was proved for Theorem 2.46, and the
second is obtained in a similar fashion. �

Proof of Theorem 3.16. With A as in the theorem, φp,q is A-invariant since
A ⊆ Aut(G). The claim is a consequence of Theorem 2.51 on noting from (3.3)
that

φp,q(Je)φp,q(Je)

p(1 − p)
≥ min

{
1,

q

[p + q(1 − p)]2

}
, e ∈ E . �
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3.4 Comparison inequalities

The comparison inequalities of this section are an important tool in the study of
random-cluster measures. As usual, we write φp,q for the random-cluster measure
on the finite graph G = (V , E).

(3.21) Theorem (Comparison inequalities) [122]. It is the case that:

φp1,q1 ≤st φp2,q2 if q1 ≥ q2, q1 ≥ 1, and p1 ≤ p2,(3.22)

φp1,q1 ≥st φp2,q2 if q1 ≥ q2, q1 ≥ 1, and
p1

q1(1 − p1)
≥ p2

q2(1 − p2)
.(3.23)

The first of these inequalities may be strengthened as in the next theorem. A
subset W of the vertex set V is called spanning if every edge of E is incident to
at least one vertex of W . The degree deg(W ) of a spanning set W is defined to be
the maximum degree of its members, that is, the maximum number of edges of G
incident to any one vertex in W .

(3.24) Theorem [151]. For 1 ∈ {1, 2, . . . }, there exists a continuous function
γ (p, q) = γ1(p, q), which is strictly increasing in p on (0, 1), and strictly de-
creasing in q on [1,∞), such that the following holds. Let G be a finite graph,
and suppose there exists a spanning set W such that deg(W ) ≤ 1. Then

(3.25) φp1,q1 ≤st φp2,q2 if 1 ≤ q2 ≤ q1 and γ (p1, q1) ≤ γ (p2, q2).

An application is to be found in Section 5.1, where it is proved that the critical
point pc(q) of an infinite-volume random-cluster model on a lattice is strictly
increasing in q .

Proof of Theorem 3.21. We may assume that p1, p2 ∈ (0, 1), since the other cases
are straightforward. We may either apply the Holley inequality (Theorem 2.1) or
use the positive association of random-cluster measures (Theorem 3.8) as follows.
Let X : � → R be increasing. Then

φp2,q2(X)

= 1

Z(p2, q2)

∑

ω∈�
X (ω)p|η(ω)|

2 (1 − p2)
|E\η(ω)|qk(ω)

2

=
(

1 − p2

1 − p1

)|E | 1

Z(p2, q2)

∑

ω∈�
X (ω)Y (ω)p|η(ω)|

1 (1 − p1)
|E\η(ω)|qk(ω)

1

=
(

1 − p2

1 − p1

)|E | Z(p1, q1)

Z(p2, q2)
φp1,q1(XY )

where

Y (ω) =
(

q2

q1

)k(ω) ( p2/(1 − p2)

p1/(1 − p1)

)|η(ω)|
.
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Setting X = 1, we obtain

φp2,q2(1) = 1 =
(

1 − p2

1 − p1

)|E | Z(p1, q1)

Z(p2, q2)
φp1,q1(Y ),

whence, on dividing,

(3.26) φp2,q2(X) = φp1,q1(XY )

φp1,q1(Y )
.

Assume now that the conditions of (3.22) hold. Since k(ω) is a decreasing
function and |η(ω)| is increasing, we have that Y is increasing. Since q1 ≥ 1,
φp1,q1 is positively associated, whence

(3.27) φp1,q1(XY ) ≥ φp1,q1(X)φp1,q1(Y ),

and (3.26) yields φp2,q2(X) ≥ φp1,q1(X). Claim (3.22) follows.

Assume now that the conditions of (3.23) hold. We write Y (ω) in the form

Y (ω) =
(

q2

q1

)k(ω)+|η(ω)| ( p2/[q2(1 − p2)]

p1/[q1(1 − p1)]

)|η(ω)|
.

Note that k(ω) + |η(ω)| is an increasing function of ω, since the addition of an
extra open edge to ω causes |η(ω)| to increase by 1 and k(ω) to decrease by at
most 1. In addition, |η(ω)| is increasing. Since q2 ≤ q1 and p2/[q2(1 − p2)] ≤
p1/[q1(1 − p1)] by assumption, we have that Y is decreasing. By the positive
association of φp1,q1 as above,

φp1,q1(XY ) ≤ φp1,q1(X)φp1,q1(Y ),

and (3.26) now implies φp2,q2(X) ≤ φp1,q1(X). Claim (3.23) follows. �

The proof of Theorem 3.24 begins with a subsidiary result. This contains two
inequalities, only the first of which will be used in that which follows.

(3.28) Proposition [151]. Let p ∈ (0, 1), q ∈ [1,∞) and1 ∈ {1, 2, . . . }. There
exists a strictly positive and continuous function α(p, q) = α1(p, q) such that
the following holds. Let G be a finite graph, and suppose there exists a spanning
set W such that deg(W ) ≤ 1. Then

(3.29) α(p, q)
∂

∂p
φp,q(A) ≤ −q

∂

∂q
φp,q(A) ≤ p(1 − p)

∂

∂p
φp,q(A)

for all increasing events A.

Proof. Let A be an increasing event, and write θ(p, q) = φp,q(A). As in the
proof of Theorem 2.1 we shall construct a Markov chain Z t = (X t ,Yt ) taking
values in the product space �2.
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Let ω ∈ � and e ∈ E , and let ωe, ωe be the configurations given at (1.25). Let
De(ω) be the indicator function of the event that the endvertices of e are connected
by no open path of E \ {e}. We define the functions H, H A : �2 → R as follows.
First,

H (ωe, ω
e) = 1,(3.30)

H (ωe, ωe) = 1 − p

p
q De(ω),(3.31)

for ω ∈ � and e ∈ E . Secondly, H (ω, ω′) = 0 for other pairs ω,ω′ with ω 6= ω′.
Next, we define H A by

(3.32) H A(ω, ω′) = H (ω, ω′)1A(ω ∧ ω′) if ω 6= ω′.

The diagonal terms H (ω, ω) and H A(ω, ω) are chosen in such a way that

∑

ω′∈�
H (ω, ω′) =

∑

ω′∈�
H A(ω, ω′) = 0, ω ∈ �.

Let S = {(π, ω) ∈ �2 : π ≤ ω}, the set of all ordered pairs of configurations,
and let J : S × S → R be given by

J (πe, ω;πe, ωe) = 1,(3.33)

J (π, ωe;πe, ωe) = H A(ωe, ωe),(3.34)

J (πe, ωe;πe, ω
e) = H (πe, πe)− H A(ωe, ωe),(3.35)

for e ∈ E . All other off-diagonal values of J are set to 0, and the diagonal elements
are chosen such that

∑

(π ′,ω′)∈S

J (π, ω;π ′, ω′) = 0, (π, ω) ∈ S.

The function J will be used as the generator of a Markov chain Z = (Z t : t ≥ 0)
on the state space S ⊆ �2. With J viewed in this way, equation (3.33) specifies
that, for π ∈ � and e ∈ E , the edge e is acquired by π (if it does not already
contain it) at rate 1; any edge thus acquired is added also to ω if it does not already
contain it. Equation (3.34) specifies that, for ω ∈ � and e ∈ η(ω), the edge e is
removed from ω (and also from π if e ∈ η(π)) at rate H A(ωe, ωe). For e ∈ η(π)
(⊆ η(ω)), there is an additional rate at which e is removed from π but not from
ω. This additional rate is indeed non-negative, since

H (πe, πe)− H A(ωe, ωe) = 1 − p

p

[
q De(π) − q De(ω)1A(ωe)

]
≥ 0,

c©Springer-Verlag 2006



46 Fundamental Properties [3.4]

by (3.31) and (3.32). We have used the facts that q ≥ 1, and De(ω) ≤ De(π) for
π ≤ ω. The ensuing Markov chain has no possible transition that can exit the set
S. That is, if the chain starts in S, then we may assume it remains in S for all time.

It is easily seen as in Section 2.1 and [39] that there exists a Markov chain
Z t = (X t ,Yt ) on the state space S such that:

(i) Z t has generator J , that is, for (π, ω) 6= (π ′, ω′),

P
(
Z t+h = (π ′, ω′)

∣∣ Z t = (π, ω)
)

= J (π, ω;π ′, ω′)h + o(h),

(ii) X t ⇒ φp,q(·) as t → ∞,

(iii) Yt ⇒ φp,q(· | A) as t → ∞,

(iv) X t ≤ Yt for all t .

See [164, Chapter 6] for an account of the theory of Markov chains.

Differentiating θ = θ(p, q) = φp,q(A) with respect to p, one obtains as in
Theorem 3.12 that

∂θ

∂p
= 1

p(1 − p)
covp,q(|η|, 1A)(3.36)

= 1

p(1 − p)

{
φp,q(|η|1A)− φp,q (|η|)φp,q(A)

}

= θ(p, q)

p(1 − p)

{
lim

t→∞ P
(|η(Yt )| − |η(X t )|

)}

= θ(p, q)

p(1 − p)

∑

e∈E

lim
t→∞ P

(
X t (e) = 0, Yt (e) = 1

)
,

where |η| = |η(ω)| is the number of open edges, and P is the appropriate proba-
bility measure for the chain Z . A similar calculation using (3.14) yields that

(3.37)
∂θ

∂q
= 1

q
covp,q(k, 1A) = − 1

q
θ(p, q)

{
lim

t→∞ P
(
k(X t )− k(Yt )

)}
,

where k = k(ω) is the number of open components.

By an elementary graph-theoretic argument,

k(X t )− k(Yt ) ≤ |η(Yt )| − |η(X t )|,

whence, by (3.36)–(3.37),

−q
∂θ

∂q
≤ p(1 − p)

∂θ

∂p
,

which is the right-hand inequality of (3.29).
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Let 1 be a positive integer, and let W be a spanning set of vertices satisfying
deg(W ) ≤ 1. For x ∈ V , let Ix be the indicator function of the event that x is an
isolated vertex. Clearly,

(3.38) P
(
k(X t )− k(Yt )

)
≥
∑

x∈W

P
(
Ix (X t ) = 1, Ix (Yt ) = 0

)
,

since the right-hand side counts the number of vertices of W that are isolated in
X t but not in Yt . Let x ∈ W , and let ex be any edge of E that is incident to x . We
claim that

(3.39) νP
(
X t (ex ) = 0, Yt (ex) = 1

)
≤ P

(
Ix (X t+1) = 1, Ix (Yt+1) = 0

)

for some ν = ν1(p, q) which is continuous, and is strictly positive on (0, 1) ×
[1,∞). Here, ν is allowed to depend on the value of1 but not further upon x , ex ,
W , G, or the choice of event A. Once (3.39) is proved, the left-hand inequality
of (3.29) follows with α = νp(1 − p)/1 by summing (3.39) over x and using
(3.36)–(3.38) as follows:

−q
∂θ

∂q
≥ θ

{
lim

t→∞

∑

x∈W

P
(
Ix (X t+1) = 1, Ix (Yt+1) = 0

)}

≥ θν

{
lim

t→∞

∑

x∈W

1

1

∑

e: e∼x

P
(
X t (e) = 0, Yt (e) = 1

)}

≥ θν

1

{
lim

t→∞

∑

e∈E

P
(
X t (e) = 0, Yt (e) = 1

)}

= νp(1 − p)

1

∂θ

∂p
,

where
∑

e: e∼x denotes summation over all edges e incident to the vertex x .

Finally we prove (3.39). Let Ex be the set of edges of E that are incident to x .
Suppose that the event Ft = {X t (ex ) = 0, Yt (ex) = 1} occurs. Let:

(a) T be the event that, during the time-interval (t, t + 1), every edge e of
Ex \ {ex} with X t (e) = 1 changes its X-state from 1 to 0; the removal of
such edges from X may or may not entail their removal from Y ,

(b) U be the event that no edge e of Ex \ {ex} with X t (e) = 0 changes its state
(Xu(e),Yu(e)) in the time-interval (t, t + 1),

(c) V be the event that the state (Xu(ex),Yu(ex )) of the edge ex remains un-
changed during the time-interval (t, t + 1).

By elementary computations using the generator of the chain Z t = (X t ,Yt ),
there exists a strictly positive and continuous function νW = νW (p, q) on (0, 1)×
[1,∞), which is allowed to depend on G and W only through the quantity deg(W ),
such that

P(T ∩ U ∩ V | Ft ) ≥ νW , t ≥ 0,
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uniformly in x , ex , and G. This inequality remains true if we replace νW by the
strictly positive and continuous function ν = ν1(p, q) defined by

ν1(p, q) = min
{
νW (p, q) : W a spanning set such that 0 ≤ deg(W ) ≤ 1

}
.

If Ft ∩ T ∩ U ∩ V occurs, then x is isolated in X t+1 but not in Yt+1 (since
Yt+1(ex) = 1). Therefore, (3.39) is valid, and the proof of the proposition is
complete. A function ν of the required form may be written down explicitly. �

Proof of Theorem 3.24. Let α be as in Proposition 3.28, and let A be an increasing
event. Inequality (3.29) may be stated in the form

(3.40) (α, q).∇φp,q(A) ≤ 0 ≤ (p(1 − p), q).∇φp,q(A),

where

∇ f =
(
∂ f

∂p
,
∂ f

∂q

)
, f : (0, 1)× [1,∞) → R.

In addition, by Theorem 3.21,

∂

∂q
φp,q(A) ≤ 0 ≤ ∂

∂p
φp,q(A).

The right-hand inequality of (3.40) may be used to obtain (3.23), but our current
interest lies with the left-hand inequality. Let γ : (0, 1)× [1,∞) be a solution of
the differential equation (α, q).∇γ = 0 subject to

(3.41)
∂γ

∂q
< 0 <

∂γ

∂p
, p ∈ (0, 1), q ∈ (1,∞).

See Figure 3.1 for a sketch of the contours of γ , that is, the curves on which γ is
constant. The contour of γ passing through the point (p, q) has tangent (α, q).
The directional derivative of φp,q(A) in this direction satisfies, by (3.40),

(α, q).∇φp,q(A) = α
∂

∂p
φp,q(A)+ q

∂

∂q
φp,q(A) ≤ 0,

whence φp,q(A) is decreasing as (p, q) moves along the contour of γ in the
direction of increasing q . Therefore,

φp1,q1(A) ≤ φp2,q2(A) if γ (p1, q1) = γ (p2, q2) and 1 ≤ q2 ≤ q1,

and (3.25) follows. �
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p

1

1

direction of
decreasing γ

q

Figure 3.1. A sketch of the contours of the function γ = γ (p, q).

3.5 Exponential steepness

Let φp,q be the random-cluster measure on the graph G, with q assumed to satisfy
q ≥ 1. Let A ∈ F and let HA(ω) denote the Hamming distance from ω to A. We
may apply Theorem 2.56 to obtain the following. A similar inequality holds for
decreasing A.

(3.42) Theorem [153, 163]. Let p ∈ (0, 1) and q ∈ [1,∞). For any non-empty,
increasing event A ∈ F ,

(3.43)
d

dp
logφp,q(A) ≥ φp,q(HA)

p(1 − p)
.

As in (2.59), for increasing A,

(3.44) φr,q (A) ≤ φs,q(A) exp
{−4(s − r)φs,q(HA)

}
, 0 < r ≤ s < 1.

Applications of this inequality are aided by a further relation between φp,q(A) and
φp,q (HA).

(3.45) Theorem [153, 163]. Let q ∈ [1,∞) and 0 < r < s < 1. For any
non-empty, increasing event A ∈ F ,

(3.46) φr,q (HA ≤ k) ≤ Ckφs,q(A), k = 0, 1, 2, . . . ,

where

C = q2(1 − r)

(s − r)[r + q(1 − r)]
.
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This may be used in the following way. By (3.46)

φr,q(HA) =
∞∑

k=0

φr,q (HA > k) ≥
K∑

k=0

[1 − Ckφs,q(A)],

where K = max{k : Ckφs,q(A) ≤ 1}. Since C > 1,

(3.47) φr,q (HA) ≥ − logφs,q(A)

log C
− C − φs,q(A)

C − 1
, 0 < r < s < 1.

Inequalities (3.43) and (3.47) provide a mechanism for bounding below the
gradient of log φp,q(A).

One area of potential application is the study of connection probabilities. Let
S and T be disjoint sets of vertices of G, and let A = {S ↔ T } be the event that
there exists an open path joining some s ∈ S to some t ∈ T . Then HA is the
minimum number of closed edges amongst the family5 of all paths from S to T ,
which is to say that

HA(ω) = min

{∑

e∈π
[1 − ω(e)] : π ∈ 5

}
.

Before proceeding to the proofs, we note that Theorem 3.45 is closely related
to the ‘sprinkling lemma’ of [6], a version of which is valid for random-cluster
models; see also [154]. The argument used to prove Theorem 3.45 may be used
also to prove the following, the proof of which is omitted.

(3.48) Theorem. Let q ∈ [1,∞) and 0 < r < s < 1. For any non-empty,
decreasing event A ∈ F ,

(3.49) φr,q (A) ≥
(

s − r

qs

)k

φs,q(HA ≤ k), k = 0, 1, 2, . . . .

Proof of Theorem 3.45. Let q ∈ [1,∞) and 0 < r < s < 1. We shall employ a
suitable coupling of the measures φr,q and φs,q . Let E = {e1, e2, . . . , em} be the
edges of the graph G, and let U1,U2, . . . ,Um be independent random variables
having the uniform distribution on [0, 1]. We write P for the probability measure
associated with the Uj . We shall examine the edges in turn, to determine whether
they are open or closed for the respective parameters r and s. The outcome will
be a pair (π, ω) of configurations each lying in � = {0, 1}E and such that π ≤ ω.
The configurations π , ω are random in the sense that they are functions of the Uj .
A similar coupling was used in the proof of Theorem 2.31.

First, we declare

π(e1) = 1 if and only if U1 < φr,q (J1),

ω(e1) = 1 if and only if U1 < φs,q(J1),
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where Ji is the event that ei is open. By the comparison inequality (3.22),
φr,q (J1) ≤ φs,q(J1), and therefore π(e1) ≤ ω(e1).

Let M be an integer satisfying 1 ≤ M < m. Having defined π(ei ), ω(ei ) for
1 ≤ i ≤ M such that π(ei ) ≤ ω(ei ), we define π(eM+1) and ω(eM+1) as follows.
We declare

π(eM+1) = 1 if and only if UM+1 < φr,q (JM+1 | �M,π ),

ω(eM+1) = 1 if and only if UM+1 < φs,q(JM+1 | �M,ω),

where �M,γ is the set of configurations ν ∈ � satisfying ν(ei ) = γ (ei ) for
1 ≤ i ≤ M . By the comparison inequalities (Theorem 3.21) and strong positive
association (Theorem 3.8),

φr,q(JM+1 | �M,π ) ≤ φs,q(JM+1 | �M,ω)

since r < s and π(ei ) ≤ ω(ei ) for 1 ≤ i ≤ M . Therefore, π(eM+1) ≤ ω(eM+1).
Continuing likewise, we obtain a pair (π, ω) of configurations satisfying π ≤ ω,
and such that π has law φr,q , and ω has law φs,q .

By Theorem 3.1,

φp,q(Ji | Ki ) = p

p + q(1 − p)
, φp,q(Ji | Ki ) = p,

where Ki is the event that there exists an open path of E\{ei} joining the endvertices
of ei . Using conditional expectations and the assumption q ≥ 1,

(3.50)
p

p + q(1 − p)
≤ φp,q(Ji | D) ≤ p

for any event D defined in terms of the states of edges in E \ {ei }. Therefore2, by
the definition of the π(ei ) and ω(ei ),

P
(
π(eM+1) = 0

∣∣U1,U2, . . . ,UM
)

= 1 − φr,q (JM+1 | �M,π )

≤ q(1 − r)

r + q(1 − r)
.

We claim that

P
(
ω(eM+1) = 1, π(eM+1) = 0

∣∣U1,U2, . . . ,UM
)

(3.51)

= φs,q(JM+1 | �M,ω)− φr,q(JM+1 | �M,π )

≥ s − r

q
,

2Subject to the correct interpretation of the conditional measure in question.
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and the proof of this follows. By Theorem 3.42 with A = Ji (so that HJi = 1−1Ji )
together with (3.50),

d

dp
φp,q(Ji ) ≥ φp,q(Ji )(1 − φp,q(Ji ))

p(1 − p)
≥ 1

p + q(1 − p)
≥ 1

q
.

We integrate over the interval [r, s] to obtain that

(3.52) φs,q(Ji )− φr,q (Ji ) ≥ s − r

q
.

Finally,

φs,q(JM+1 | �M,ω)− φr,q(JM+1 | �M,π )

≥ φs,q(JM+1 | �M,ω)− φr,q(JM+1 | �M,ω),

and (3.51) follows by applying (3.52) with i = M + 1 to the graph obtained
from G by contracting (respectively, deleting) any edge ei (for 1 ≤ i ≤ M) with
ω(ei ) = 1 (respectively, ω(ei ) = 0). See [152, Theorem 2.3].

By the above,
(3.53)

P
(
ω(eM+1) = 1

∣∣π(eM+1) = 0, U1,U2, . . . ,UM
) ≥ s − r

q
· r + q(1 − r)

q(1 − r)
.

Let ξ ∈ �, and let B be a set of edges satisfying ξ(e) = 0 for e ∈ B . We claim
that
(3.54)

P(π = ξ, ω(e) = 1 for e ∈ B) ≥
(

s − r

q
· r + q(1 − r)

q(1 − r)

)|B|
P(π = ξ).

This follows by the recursive construction of π and ω in terms of the family
U1,U2, . . . ,Um , in the light of the bound (3.53).

Inequality (3.54) implies the claim of the theorem, as follows. Let A be an
increasing event and let ξ be a configuration satisfying HA(ξ) ≤ k. There exists
a set B = Bξ of edges such that:

(a) |B| ≤ k,

(b) ξ(e) = 0 for e ∈ B ,

(c) ξ B ∈ A, where ξ B is obtained from ξ by allocating state 1 to all edges in B .

If more than one such set B exists, we pick the earliest in some deterministic
ordering of all subsets of E . By (3.54),

φs,q(A) ≥ P
(
HA(π) ≤ k, ω(e) = 1 for e ∈ Bπ

)

=
∑

ξ : HA(ξ)≤k

P
(
π = ξ, ω(e) = 1 for e ∈ Bξ

)

≥
(

s − r

q
· r + q(1 − r)

q(1 − r)

)k

φr,q (HA ≤ k). �

c©Springer-Verlag 2006



[3.6] Partition functions 53

3.6 Partition functions

The partition function associated with the finite graph G = (V , E) is given by

(3.55) ZG(p, q) =
∑

ω∈�
p|η(ω)|(1 − p)|E\η(ω)|qk(ω).

In the usual approach of classical statistical mechanics, one studies phase trans-
itions via the partition function and its derivatives. We prefer in this work to follow
a more probabilistic approach, but shall nevertheless have recourse to various arg-
uments based on the behaviour of the partition function, of which we note some
basic properties.

The (Whitney) rank-generating function of G = (V , E) is the function

(3.56) WG(u, v) =
∑

E ′⊆E

ur(G ′)vc(G ′), u, v ∈ R,

where r(G′) = |V | − k(G′) is the rank of the subgraph G′ = (V , E ′), and
c(G′) = |E ′| − |V | + k(G′) is its co-rank. Here, k(G′) denotes the number of
components of the graph G′. The rank-generating function has various useful
properties, and it crops up in several contexts in graph theory, see [40, 313]. It
occurs in other forms also. For example, the function

(3.57) TG(u, v) = (u − 1)|V |−k(G)WG
(
(u − 1)−1, v − 1

)

is known as the dichromatic (or Tutte) polynomial, [313]. The partition function
ZG of the graph G is easily seen to satisfy

(3.58) ZG(p, q) = q |V |(1 − p)|E |WG

(
p

q(1 − p)
,

p

1 − p

)
,

a relationship which provides a link with other classical quantities associated with
a graph. See [40, 41, 121, 157, 308, 315] and Chapter 9.

Another way of viewing ZG is as the moment generating function of the number
of clusters in a random graph, that is,

(3.59) ZG(p, q) = φp(q
k(ω)),

where φp denotes product measure. This indicates a link to percolation on G, and
to the large-deviation theory of the number of clusters in the percolation model.
See [62, 298] and Section 10.8.

The partition function ZG does not change a great deal if an edge is removed
from G. Let F ⊆ E , and write G\ F for the graph G with the edges in F removed.
If F is the singleton {e}, we write G \ e for G \ {e}.
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(3.60) Theorem. Let p ∈ [0, 1] and q ∈ (0,∞). Then

(3.61) (1 ∧ q)|F | ≤ ZG\F (p, q)

ZG(p, q)
≤ (1 ∨ q)|F |, F ⊆ E .

We give next an application of these inequalities to be used later. Let Gi =
(Vi , Ei ), i = 1, 2, be finite graphs on disjoint vertex sets V1, V2, and write G1∪G2
for the graph (V1 ∪ V2, E1 ∪ E2). It is immediate from (3.55) that

(3.62) ZG1∪G2 = ZG1 ZG2,

where for clarity we have removed explicit mention of p, q . Taken in conjunction
with (3.61), this leads easily to a pair of inequalities which we state as a theorem.

(3.63) Theorem. Let G = (V , E) be a finite graph, and let F be a set of edges
whose removal breaks G into two disjoint graphs G1 = (V1, E1), G2 = (V2, E2).
Thus, V = V1 ∪ V2 and E = E1 ∪ E2 ∪ F. For p ∈ [0, 1] and q ∈ (0,∞),

ZG1 ZG2(1 ∨ q)−|F | ≤ ZG ≤ ZG1 ZG2(1 ∧ q)−|F |.

Proof of Theorem 3.60. It suffices to prove (3.61) with F a singleton set, that is,
F = {e}. The claim for general F will follow by iteration. For ω ∈ �, we write
ω〈e〉 for the configuration in �〈e〉 = {0, 1}E\{e} that agrees with ω off e. Clearly,

k(ω) ≤ k(ω〈e〉) ≤ k(ω)+ 1,

whence

(3.64) (1 ∧ q)qk(ω) ≤ qk(ω〈e〉) ≤ (1 ∨ q)qk(ω).

Now, since p + (1 − p) = 1,

ZG\e(p, q) =
∑

ω〈e〉∈�〈e〉

p|η(ω〈e〉)|(1 − p)|E\η(ω〈e〉)|−1qk(ω〈e〉)(3.65)

=
∑

ω∈�
p|η(ω)|(1 − p)|E\η(ω)|qk(ω〈e〉).

Equations (3.64) and (3.65) imply (3.61) with F = {e}. �

We develop next an inequality related to (3.61) concerning the addition of a
vertex, and which will be useful later. Let G = (V , E) be a finite graph as usual,
and let v /∈ V and W ⊆ V . We augment G by adding the vertex v together with
edges 〈v,w〉 for w ∈ W . Let us write G + v for the resulting graph.
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(3.66) Theorem. Let p ∈ [0, 1] and q ∈ [1,∞). In the above notation,

ZG+v(p, q)

ZG(p, q)
≥ q(1 − p + pq−1)|W |.

Proof. Let �E = {0, 1}E and �v = {0, 1}W . We identify ν ∈ �v with the
edge-configuration on the edge-neighbourhood {〈v,w〉 : w ∈ W } of v given by
ν(〈v,w〉) = ν(w). Now,

ZG+v(p, q) =
∑

ω∈�E , ν∈�v
p|η(ω)|(1 − p)|E\η(ω)|qk(ω)(3.67)

×
[{∏

w∈W

pν(w)(1 − p)1−ν(w)
}

q1−k(ω,ν)

]

= ZG(p, q)φG,p,q
[
qφp(q

−k(ω,ν))
]
,

where φp is product measure on �v with density p, and k(ω, ν) is the number of
open clusters of ω containing somew ∈ W with ν(w) = 1. Let n1, n2, . . . , nr be
the sizes of the equivalence classes of W under the equivalence relation w1 ∼ w2
if w1 ↔ w2 in ω. For ω ∈ �E ,

φp(q
−k(ω,ν)) =

r∏

i=1

[
(1 − p)ni + 1

q
[1 − (1 − p)ni ]

]
(3.68)

≥
r∏

i=1

[
1

q
+
(

1 − 1

q

)
(1 − p)

]ni

=
[

1

q
+
(

1 − 1

q

)
(1 − p)

]|W |
,

where we have used the elementary (convexity) inequality

α + (1 − α)yn ≥ [α + (1 − α)y]n, α, y ∈ [0, 1], n ∈ {1, 2, . . . }.
We substitute (3.68) into (3.67) to obtain the claim. �

So far in this section we have considered the effect on the partition function
of removing edges or adding vertices. There is a related result in which, instead,
we identify certain vertices. Let G = (V , E) be a finite graph, and let C be
a subset of V separating the vertex-sets A1 and A2. That is, V is partitioned
as V = A1 ∪ A2 ∪ C and, for all a1 ∈ A1, a2 ∈ A2, every path from a1 to
a2 passes through at least one vertex in C . We write c for a composite vertex
formed by identifying all vertices in C , and G1 = (A1 ∪ {c}, E1) (respectively,
G2 = (A2 ∪ {c}, E2)) for the graph on the vertex set A1 ∪ {c} (respectively,
A2 ∪ {c}) and with the edges derived from G. For example, if x, y ∈ A1, then
〈x, y〉 is an edge of G1 if and only if it is an edge of G; for a ∈ A1, the number of
edges of G1 between a and c is exactly the number of edges in G between a and
members of C .
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(3.69) Lemma. For p ∈ [0, 1] and q ∈ [1,∞), ZG ≥ q−1 ZG1 ZG2 .

Since ZG ≥ q for all G when q ≥ 1,

(3.70) ZG ≥ ZG1 .

Proof. Let ω ∈ {0, 1}E , and let ω1 and ω2 be the induced configurations in
�1 = {0, 1}E1 and �2 = {0, 1}E2 , respectively. It is easily seen that

k(ω) ≥ k(ω1)+ k(ω2)− 1,

and the claim follows from the definition (3.55) �

The partition function has a property of convexity which will be useful when
studying random-cluster measures on infinite graphs. Rather than working with
ZG , we work for convenience with the function YG : R2 → R given by

(3.71) YG(π, κ) =
∑

ω∈�
exp

{
π |η(ω)| + κk(ω)

}
,

a function which is related to ZG as follows. We set π = π(p) and κ = κ(q)
where

(3.72) π(p) = log

(
p

1 − p

)
, κ(q) = log q,

and then
ZG(p, q) = (1 − p)|E |YG(π(p), κ(q)).

We write ∇X for the gradient vector of a function X : R2 → R.

(3.73) Theorem. Let the vectors (π, κ) and (p, q) be related by (3.72).

(a) The gradient vector of the function log YG (π, κ) is given by

∇{log YG(π, κ)} = (
φp,q(|η|), φp,q(k)

)
. (3.74)

(b) Let i = (i1, i2) be a unit vector in R2. We have that

d2

dα2

{
log YG

(
(π, κ)+ αi

)}∣∣∣∣
α=0

= varp,q(i1|η| + i2k) (3.75)

where varp,q denotes variance with respect to φp,q . In particular, log YG is
a convex function on R2.

By (3.71),
YG
(
(π, κ)+ αi

)
= YG(π, κ)φp,q(e

αL(i)),
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where L(i) = i1|η| + i2k. Therefore, the j th derivative as in (3.75) equals the j th
cumulant (or semi-invariant3) of L(i).

Proof. (a) It is elementary that

∂

∂π
log YG(π, κ) = 1

YG(π, κ)

∑

ω∈�
|η(ω)| exp

{
π |η(ω)| + κk(ω)

}

= φp,q(|η|),

with a similar relation for the other derivative.

(b) We have that

YG
(
(π, κ)+ αi

)
=
∑

ω∈�
exp

{
α
(
i1|η(ω)| + i2k(ω)

)}
exp

{
π |η(ω)| + κk(ω)

}
,

and (3.75) follows as in part (a). The convexity is a consequence of the fact that
variances are non-negative. �

3.7 Domination by the Ising model

Stochastic domination is an invaluable tool in the study of random-cluster mea-
sures. Since the random-cluster model is an ‘edge-model’, it is usual to make
comparisons with other edge-models. The relationship when q ∈ {2, 3, . . . } to
Potts models suggest the possibility of comparison with a ‘vertex-model’, and a
hint of how to achieve this is provided by the case of integral q .

Consider the random-cluster model with parameters p and q on the finite graph
G = (V , E). If q ∈ {2, 3, . . . }, we may generate a Potts model by assigning a
uniformly chosen spin-value to each open cluster. The spin configuration thus
obtained is governed by the Potts measure with inverse-temperature β satisfying
p = 1−e−β . Evidently, this can work only if q is an integer. A weaker conclusion
may be obtained if q is not an integer, namely the following. Suppose p ∈ [0, 1]
and q ∈ [1,∞). We examine each open cluster of the random-cluster model in
turn, and we declare it to be red with probability 1/q and white otherwise, different
clusters receiving independent colours4. Let R be the set of vertices lying in red
clusters. If q ∈ {2, 3, . . . }, then R has the same distribution as the set of vertices
of the corresponding Potts model that have a pre-determined spin-value. Write
Pp,q for an appropriate probability measure. One has for general q ∈ (1,∞) that,

3See [164, p. 185] and [255, p. 266].
4This construction is related to the so-called fuzzy Potts model, see [35, 170, 172, 245, 328].
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for A ⊆ V ,

Pp,q (R = A) = 1

ZG(p, q)
(1 − p)|1e A|

(3.76)

×
{ ∑

ω∈�A

p|η(ω)|(1 − p)|E A\η(ω)|qk(ω)
(

1

q

)k(ω)}

×
{ ∑

ω′∈�A

p|η(ω′)|(1 − p)|E A\η(ω′)|qk(ω′)
(

1 − 1

q

)k(ω′)}

= 1

ZG(p, q)
(1 − p)|1e A| Z A(p, q − 1)

where A = V \ A, �A = {0, 1}E A with E A the subset of E containing all edges
with both endvertices in A, the ZG , Z A are the appropriate partition functions,
and 1e A is the set of edges of G with exactly one endvertex in A. When q is an
integer, (3.76) reduces to the usual Potts law for the set of vertices with a given
spin-value.

The random set R, with law given in (3.76), is the first element in the proposed
stochastic comparison. The second element is the set of + spins of an Ising model
with external field, and we recall next from Section 1.3 the definition of an Ising
model on the graph G. Let 6 = {−1,+1}V , and let β ∈ (0,∞) and h ∈ R. The
Hamiltonian is the function H : 6 → R given by

(3.77) H (σ ) = −
∑

e=〈u,v〉∈E

σuσv − h
∑

v∈V

σv, σ = (σu : u ∈ V ) ∈ 6,

and the (Ising) probability measure is given by

(3.78) πβ,h(σ ) = 1

ZI
e− 1

2βH(σ ), σ ∈ 6,

where ZI = ZI(β, h) is the required normalizing constant5. We shall be concerned
here with the random set S = S(σ ) = {u ∈ V : σu = 1}, containing all vertices
with spin +1.

Let deg(u) denote the degree of the vertex u in the graph G, and let

1 = max
{
deg(u) : u ∈ V

}
.

5The fraction 1
2 in the exponent is that appearing in (1.7).
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(3.79) Theorem [15]. Let β ∈ (0,∞), p = 1 − e−β , q ∈ [2,∞), and let R be
the random ‘red’ set of the random-cluster model, governed by the law given in
(3.76). Let β ′ ∈ (0,∞) and h′ ∈ (−∞,∞) be given by

(3.80) e2β ′ = eβ
(

q − 2 + eβ

q − 1

)
, eβ

′(1+h′) = 1

q − 1
eβ1,

and let S be the set of vertices with spin +1 under the Ising measure πβ ′,h′ . Then

(3.81) R ≤st S.

Inequality (3.81) is to be interpreted as

Pp,q( f (R)) ≤ πβ ′,h′( f (S))

for all increasing functions f : {0, 1}V → R. Its importance lies in the deduction
that R is small whenever S is small. The Ising model allows a deeper analysis
than do general Potts and random-cluster models (see, for example, the results
of Chapter 9). Particularly relevant facts are known for the set of + spins in the
Ising model when the external field h′ is negative, and thus it becomes important
to obtain conditions under which h′ < 0.

Let q > 2 and assume that G is such that1≥ 3. Setting h′ = 0 and eliminating
β ′ in (3.80), we find that β = β1 where

(3.82) eβ1 = q − 2

(q − 1)1−(2/1) − 1
.

By (3.80) and an elementary argument using monotonicity,

(3.83) h′ < 0 if and only if β < β1.

We make one further note in advance of proving the theorem. By (3.82),
β1 → 0 as1 → ∞; if the maximum vertex degree is large, the field of application
of the theorem is small. In an important application of the theorem, we shall take
G to be a box3 of the lattice Ld with so-called ‘wired boundary conditions’ (see
Section 4.2). This amounts to identifying all vertices in the boundary ∂3, and
thus to the introduction of a single vertex,w say, having large degree. The method
of proof of Theorem 3.79 is valid in this slightly more general setting with

1 = max
{
deg(u) : u ∈ V \ {w}

}
,

under the assumption that the open cluster containing w is automatically desig-
nated red. That is, we let R be the union of the cluster at w together with all other
clusters declared red under the above randomization, and we let S be the set of +
spins in the Ising model with parameters β ′, h′ and with σw = +1. The conclusion
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(3.81) is then valid in this setting, with 1 given as above. An application to the
exponential decay of connectivity in two dimensions will be found in Section 6.3.

Further work on stochastic domination inequalities for the set S of + spins of
the Ising model may be found in [236].

Proof. We present a direct proof based on the Holley inequality, Theorem 2.1.
For A ⊆ V and u, v ∈ V with u 6= v, we write

Au = A ∪ {u}, Av = A \ {v}, Au
v = (Au)v, and so on.

Let µ1 (respectively, µ2) denote the law of R (respectively, S), so that

µ1(A) = Pp,q(R = A), µ2(A) = πβ ′,h′(S = A), A ⊆ V .

We shall apply Theorem 2.6, noting first that the µi are strictly positive. It suffices
to check (2.7), and that one of µ1, µ2 satisfies (2.8).

First, we check (2.7). Let C ⊆ V and u ∈ V \ C . We claim that

(3.84) µ2(C
u)µ1(C) ≥ µ1(C

u)µ2(C).

Let r = |{c ∈ C : c ∼ u}|, the number of neighbours of u in C . By (3.77)–(3.78),

(3.85)
µ2(Cu)

µ2(C)
= exp

(
β ′(2r − δ)+ β ′h′)

where δ = deg(u). Also, by (3.76) and Theorem 3.66,

µ1(C)

µ1(Cu)
= (1 − p)2r−δ ZC (p, q − 1)

ZCu(p, q − 1)
(3.86)

≥ (1 − p)2r−δ(q − 1)
[
1 − p + p(q − 1)−1]δ−r

.

Substituting p = 1 − e−β and setting x = eβ , we obtain by multiplying (3.85)
and (3.86) that

µ2(Cu)µ1(C)

µ1(Cu)µ2(C)
≥ exp

(
β ′(2r − δ)+ β ′h′ − β(2r − δ)

)

× (q − 1)
[
e−β + (1 − e−β)(q − 1)−1]δ−r

= xr−δ/2
(

q − 2 + x

q − 1

)r−δ/2 (q − 2 + x

q − 1

)−1/2 x1/2

q − 1

× xδ−2r (q − 1)

[
q − 2 + x

x(q − 1)

]δ−r

=
(

x(q − 1)

q − 2 + x

)(1−δ)/2
,
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e
u v w

e f
f

Figure 3.2. Two edges e and f in parallel and in series.

by (3.80). Now δ ≤ 1, and x(q − 1)/(q − 2 + x) ≥ 1 for x ≥ 1, and (3.84)
follows.

The measure µ1 satisfies (2.8), see [328] and the references therein. It is
however easier to show that µ2 satisfies (2.8). Let C ⊆ V and u, v ∈ V \ C ,
u 6= v. By (3.85) with C replaced by Cv ,

µ2(Cuv)

µ2(Cv)
= exp

(
β ′(2r ′ − δ)+ β ′h′)

where r ′ = |{c ∈ Cv : c ∼ u}|. Since r ′ ≥ |{c ∈ C : c ∼ u}|, the claim holds. �

3.8 Series and parallel laws

Kasteleyn observed6 in the 1960s that electrical networks, percolation, and the
Ising and Potts models satisfy the series/parallel laws, and this gave inspiration
for the random-cluster model. The series/parallel laws will be used later, and they
are described briefly here in the context of the random-cluster model.

Let G = (V , E) be a finite graph (possibly with parallel edges). Two distinct
edges e, f ∈ E are said to be in parallel if they have the same endvertices. They
are said to be in series if they share exactly one endvertex, v say, and in addition
v is incident to no further edge of E . See Figure 3.2.

Let e, f be in either parallel or series. In either case, we may define another
graph G′ as follows. If e, f are in parallel, let G′ = (V ′, E ′) be obtained from G
by replacing e and f by a single edge g with the same endvertices. If e and f are
in series, say e = 〈u, v〉, f = 〈v,w〉, we obtain G′ = (V ′, E ′) by deleting both e
and f (together with the vertex v) and inserting a new edge g = 〈u, w〉. We have
in either case that E ′ = (E \ {e, f }) ∪ {g}.

Let π : [0, 1]2 → [0, 1] and σ : [0, 1]2 × (0,∞) → [0, 1] be given by

(3.87)
π(x, y) = 1 − (1 − x)(1 − y),

σ (x, y, q) = xy

1 + (q − 1)(1 − x)(1 − y)
.

Let p = (ph : h ∈ E) ∈ [0, 1]E and q ∈ (0,∞). We write φp,q for the
random-cluster measure on � = {0, 1}E in which each edge h has an associated

6See the Appendix.
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parameter-value ph , see (1.20). We shall see that φp,q is invariant (in a manner
to made specific soon) when two edges e, f in parallel (respectively, series) are
replaced as above by a single edge g having the ‘correct’ associated parameter-
value pg given by

(3.88) pg =
{
π(pe, p f ) if e, f are in parallel,

σ (pe, p f , q) if e, f are in series.

Let�′ = {0, 1}E ′
be the configuration space associated with the graph G′ given

above. We define a mapping τ : � → �′ by τω(h) = ω(h) for h 6= g, and

τω(g) =
{

1 − (1 − ω(e))(1 − ω( f )) if e, f are in parallel,

ω(e)ω( f ) if e, f are in series.

When e, f are in parallel (respectively, series), g is open in τω if and only if either
e or f is open (respectively, both e and f are open) in ω. The mapping τ maps
open connections to open connections; in particular, for x, y ∈ V ′, x ↔ y in τω
if and only if x ↔ y in ω.

The measure φp,q on � induces a measure φ′
p,q on �′ defined by

φ′
p,q(ω

′) = φp,q(τ
−1ω′), ω′ ∈ �′,

and it turns out that this new measure is simply a random-cluster measure with an
adapted parameter-value for the new edge g, as in (3.88).

(3.89) Theorem. Let e, f be distinct edges of the finite graph G.

(a) Parallel law. Let e, f be in parallel. The measure φ′
p,q is the random-cluster

measure on G′ with parameters ph for h 6= g, pg = π(pe, p f ).

(b) Series law. Let e, f be in series. The measure φ′
p,q is the random-cluster

measure on G′ with parameters ph for h 6= g, pg = σ(pe, p f , q).

There is a third transformation of value when calculating effective resistances
of electrical networks, namely the ‘star–triangle’ (or ‘star–delta’) transformation.
This plays a part for random-cluster models also, see Section 6.6 and the discussion
leading to Lemma 6.64.

Proof. (a) The edge g is open in τω if and only if either or both of e, f is open in
ω. Therefore, the numbers of open clusters in ω and τω satisfy k(ω) = k(τω). It
is a straightforward calculation to check that, for ω′ ∈ �′,

φ′
p,q(ω

′) ∝
∑

ω: τω=ω′

{ ∏

h: h 6=g

pω
′(h)

h (1 − ph)
1−ω′(h)

}[
πω

′(g)(1 − π)1−ω′(h)]qk(ω′),

where π = pe p f + pe(1 − p f )+ p f (1 − pe) = π(pe, p f ).
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(b) Write e = 〈u, v〉, f = 〈v,w〉, so that g = 〈u, w〉. Recall that ω and τω agree
off the edges e, f , g, and hence the partial configurations (ω(h) : h 6= e, f ) and
(τω(h) : h 6= g) have the same law. Let K be the set of all ω ∈ � such that there
exists an open path from u to w not using e, f ; let K ′ be the corresponding event
in �′ with e, f replaced by g. Note that K ′ = τK .

By the remarks above and Theorem 3.1(b), it suffices to show that

φ′
p,q(ω

′(g) = 1 | K ′) = σ,(3.90)

φ′
p,q(ω

′(g) = 1 | K ′) = σ

σ + q(1 − σ)
,(3.91)

where σ = σ(pe, p f , q). The edge g is open in τω if and only if both e and f are
open in ω. Therefore,

φ′
p,q(ω

′(g) = 1 | K ′) = φp,q
(
ω(e) = ω( f ) = 1

∣∣ K
)
,

which is easily seen to equal

pe p f

pe p f + pe(1 − pe)+ p f (1 − p f )+ q(1 − pe)(1 − p f )
,

in agreement with (3.90). Similarly,

φ′
p,q(ω

′(g) = 1 | K ′) = φp,q
(
ω(e) = ω( f ) = 1

∣∣ K
)
,

which in turn equals

pe p f

pe p f + qpe(1 − p f )+ qp f (1 − pe)+ q2(1 − pe)(1 − p f )
,

in agreement with (3.91). �

3.9 Negative association

This chapter closes with a short discussion of negative association when q ≤ 1.
Let E be a finite set, and let µ be a probability measure on the sample space
� = {0, 1}E . There are four relevant concepts of negative association, of which
we start at the ‘lowest’. The measure µ is said to be edge-negatively-associated if

(3.92) µ(Je ∩ Jf ) ≤ µ(Je)µ(Jf ), e, f ∈ E, e 6= f.

Recall that Je = {ω ∈ � : ω(e) = 1}.
There is a more general notion of negative association, as follows. For ω ∈ �

and F ⊆ E we define the cylinder event �F,ω generated by ω on F by

�F,ω = {ω′ ∈ � : ω′(e) = ω(e) for e ∈ F}.
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For E ′ ⊆ E and an event A ⊆ �, we say that A is defined on E ′ if, for all ω ∈ �,
we have that ω ∈ A if and only if �E ′,ω ⊆ A. We call µ negatively associated if

µ(A ∩ B) ≤ µ(A)µ(B)

for all pairs (A, B) of increasing events with the property that there exists E ′ ⊆ E
such that A is defined on E ′ and B is defined on its complement E \ E ′. An
account of negative association and its inherent problems may be found in [268].

Our third and fourth concepts of negative association involve so-called ‘disjoint
occurrence’ (see [37, 154]). Let A and B be events in �. We define A � B to be
the set of all vectorsω ∈ � for which there exists a set F ⊆ E such that�F,ω ⊆ A
and�F,ω ⊆ B , where F = E \ F . Note that the choice of F is allowed to depend
on the vector ω. We say that µ has the disjoint-occurrence property if

(3.93) µ(A � B) ≤ µ(A)µ(B), A, B ⊆ �,

and has the disjoint-occurrence property on increasing events if (3.93) holds under
the additional assumption that A and B are increasing events.

It is evident that:

µ has the disjoint-occurrence property

⇒ µ has the disjoint-occurrence property on increasing events

⇒ µ is negatively associated

⇒ µ is edge-negatively-associated.

It was proved by van den Berg and Kesten [37] that the product measures φp

on � have the disjoint-occurrence property on increasing events, and further by
Reimer [283] that φp has the more general disjoint-occurrence property. It is easily
seen7 that the random-cluster measure φp,q cannot in general be edge-negatively-
associated when q > 1. It may however be conjectured that φp,q satisfies some
form of negative association when q < 1. Such a property would be useful in
studying random-cluster measures, particularly in the thermodynamic limit (see
Chapter 4), but no such property has yet been proved.

In the absence of a satisfactory approach to the general case of random-cluster
measures with q < 1, we turn next to the issue of negative association of weak
limits of φp,q as q ↓ 0; see Section 1.5 and especially Theorem 1.23. Here is a
mild conjecture, as yet unproven.

(3.94) Conjecture [156, 165, 199, 268]. For any finite graph G = (V , E),
the uniform-spanning-forest measure USF and the uniform-connected-subgraph
measure UCS are edge-negatively-associated.

A stronger version of this conjecture is that USF and UCS are negatively asso-
ciated in one or more of the senses described above.

7Consider the two events Je, J f in the graph G comprising exactly two edges e, f in parallel.
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Since USF and UCS are uniform measures, Conjecture 3.94 may be rewritten
in the form of two questions concerning subgraph counts. For simplicity we shall
consider only graphs with neither loops nor multiple edges. Let V = {1, 2, . . . , n},
and let K be the set of N =

(n
2

)
edges of the complete graph on the vertex set

V . We think of subsets of K as being graphs on V . Let E ⊆ K . For X ⊆ E ,
let M X = M X (E) be the number of subsets E ′ of E with E ′ ⊇ X such that the
graph (V , E ′) is connected. Edge-negative-association for connected subgraphs
amounts to the inequality

(3.95) M{e, f }M∅ ≤ Me M f , e, f ∈ E, e 6= f.

Here and later in this context, singleton sets are denoted without their braces, and
any empty set is suppressed.

In the second such question, we ask if the same inequality is valid with M X

re-defined as the number of subsets E ′ ⊆ E containing X such that (V , E ′) is a
forest. See [199, 268].

With E fixed as above, and with X,Y ⊆ E , let M X
Y = M X

Y (E) denote the
number of subsets E ′ ⊆ E of the required type such that E ′ ⊇ X and E ′ ∩Y = ∅.
Inequality (3.95) is easily seen to be equivalent to the inequality

(3.96) M{e, f }M{e, f } ≤ Me
f M f

e , e, f ∈ E, e 6= f.

The corresponding statement for the uniform spanning tree is known.

(3.97) Theorem. The uniform-spanning-tree measure UST is edge-negatively-
associated.

The stronger property of negative association has been proved for UST, see
[116], but we do not discuss this here. See also the discussions in [31, 241]. The
strongest such conclusion known currently for USF appears to be the following,
the proof is computer-aided and is omitted.

(3.98) Theorem [165]. If G = (V , E) has eight or fewer vertices, or has nine
vertices and eighteen or fewer edges, then the associated uniform-spanning-forest
measure USF has the edge-negative-association property.

Since forests are dual to connected subgraphs for planar graphs, this implies
a property of edge-negative-association for the UCS measure on certain planar
graphs having fewer than ten faces.

The conjectures of this section have been expressed in terms of inequalities
involving counts of connected subgraphs and forests, see the discussion around
(3.95). Such inequalities may be formulated in the following more general way.
Let p = (pe : e ∈ E) be a collection of non-negative numbers indexed by E . For
E ′ ⊆ E , let

fp(E
′) =

∏

e∈E ′
pe.
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We now ask whether (3.95) holds with M X = M X (p) defined by

(3.99) M X (p) =
∑

E ′: X⊆E ′⊆E
(V ,E ′) has property 5

fp(E
′),

where5 is either the property of being connected or the property of containing no
circuits. Note that (3.95) becomes a polynomial inequality in |E | real variables.
Such a formulation is natural when the problem is cast in the context of the Tutte
polynomial, see Section 3.6 and [308].

Proof 8 of Theorem 3.97. Consider an electrical network on the connected graph
G in which each edge corresponds to a unit resistor. The relevant fact from the
theory of electrical networks is that, if a unit current flows from a source vertex s
to a sink vertex t ( 6= s), then the current flowing along the edge e = 〈x, y〉 in the
direction xy equals N(s, x, y, t)/N , where N is the number of spanning trees of
G and N(s, x, y, t) is the number of spanning trees whose unique path from s to
t passes along the edge 〈x, y〉 in the direction xy.

Let e = 〈x, y〉, and letµ be the UST measure on G. By the above,µ(Je) equals
the current flowing along e when a unit current flows through G from source x
to sink y. By Ohm’s Law, this equals the potential difference between x and y,
which in turn equals the effective resistance RG(x, y) of the network between x
and y.

Let f ∈ E , f 6= e, and denote by G. f the graph obtained from G by contracting
the edge f . There is a one–one correspondence between spanning trees of G. f
and spanning trees of G containing f . Therefore, µ(Je | Jf ) equals the effective
resistance RG. f (x, y) of the network G. f between x and y.

The so-called Rayleigh principle states that the effective resistance of a network
is a non-decreasing function of the individual edge-resistances. It follows that
RG. f (x, y) ≤ RG(x, y), and hence µ(Je | Jf ) ≤ µ(Je). �

The usual proof of the Rayleigh principle makes use of the Thomson/Dirichlet
variational principle, which in turn asserts that, amongst all unit flows from source
to sink, the true flow of unit size is that which minimizes the dissipated energy. A
good account of the Kirchhoff theorem on electrical networks and spanning trees
may be found in [59]. Further accounts of the mathematics of electrical networks
include [106] and [241, 329], the latter containing also much material about the
uniform spanning tree.

8When re-stated in terms of counts of spanning trees with certain properties, this is a con-
sequence of the 1847 work of Kirchhoff [215] on electrical networks, as elaborated by Brooks,
Smith, Stone, and Tutte in their famous paper [71] on the dissection of rectangles. Indeed, the
difference µ(Je ∩ J f ) − µ(Je)µ(Jf ) may be expressed in terms of a certain ‘transfer current
matrix’. See [74] for an extension to more than two edges, and [31, 241] for related discussion.
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Chapter 4

Infinite-Volume Measures

Summary. Random-cluster measures on infinite graphs may be defined
either by passing to infinite-volume limits or by using the approach of
Dobrushin, Lanford, and Ruelle. The problem of the uniqueness of infinite-
volume measures is answered in part by way of an argument using the
convexity of ‘pressure’. The random-cluster and Potts measures in infinite
volume may be coupled, thereby permitting a study of the Potts model on
the lattice Ld .

4.1 Infinite graphs

Although there is interesting theory associated with random-cluster measures on
finite graphs, the real action, seen from the point of view of statistical mechanics,
takes place in the context of infinite graphs. On a finite graph, all probabilities are
polynomials in p and q , and are therefore smooth functions, whereas singularities
and ‘phase transitions’ occur when the graph is infinite. These singularities provide
most of the mathematical and physical motivation for the study of the random-
cluster model.

While one may define random-cluster measures on a broad class of infinite
graphs using the methods of this chapter, we shall concentrate here on finite-
dimensional lattice-graphs. We shall, almost without exception, consider the
(hyper)cubic lattice Ld = (Zd ,Ed) in some number d of dimensions satisfying
d ≥ 2. This restriction enables a clear exposition of the theory and open problems
without suffering the complications that arise through allowing greater generality.
We note however that many of the basic properties of random-cluster measures on
lattices are valid on a much larger class of graphs. Interesting further questions
arise in the non-finite-dimensional setting of non-amenable graphs, to which we
return in Section 10.12.

There are two ways of defining random-cluster measures on an infinite graph
G = (V , E). The first is to consider weak limits of measures on finite subgraphs
3, in the limit as 3 ↑ V . This will be discussed in Section 4.3, following the
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68 Infinite-Volume Measures [4.1]

introduction in Section 4.2 of the notion of boundary conditions. The second way
is to restrict oneself to infinite-volume measures whose conditional marginal on
any given finite sub-domain 3 is the finite-volume random-cluster measure on
3 with the correct boundary condition. This latter route is inspired by work of
Dobrushin [102] and Lanford–Ruelle [226] for Gibbs states, and will be discussed
in Section 4.4. In preparation for the required arguments, we summarize next the
stochastic ordering and positive association of probability measures on Ld .

Let � = {0, 1}E
d
, and let F be the σ -field generated by the cylinder subsets

of �. Since � is a partially ordered set, we may speak of ‘increasing’ events and
random variables. Given two probability measures µ1, µ2 on (�,F ), we write
µ1 ≤st µ2 if

(4.1) µ1(X) ≤ µ2(X) for all increasing continuous X : � → R.

See Section 2.1. Note that any increasing random variable X with range R satisfies
X (0) ≤ X (ω) ≤ X (1) for all ω ∈ �, and is therefore bounded.

One sometimes wishes to apply (4.1) to increasing random variables X that
are semicontinuous rather than continuous1. This may be done as follows. For
ω, ξ ∈ � and a box3, we write ωξ3 for the configuration given by

(4.2) ω
ξ
3(e) =

{
ω(e) if e ∈ E3,

ξ(e) otherwise.

For X : � → R, we define X0
3 and X1

3 by

(4.3) Xb
3(ω) = X (ωb

3), ω ∈ �, b = 0, 1.

Assume that X is increasing. It is easily checked that, as 3 ↑ Zd ,

(4.4)
X0
3 ↑ X if and only if X is lower-semicontinuous,

X1
3 ↓ X if and only if X is upper-semicontinuous,

where the convergence is pointwise on �. The functions X0
3, X1

3 are continuous.
Therefore, by the monotone convergence theorem, µ1 ≤st µ2 if and only if

(4.5) µ1(X) ≤ µ2(X) for all increasing semicontinuous X .

It is a useful fact that, whenµ1 ≤st µ2, thenµ1 = µ2 whenever their marginals
are equal. We state this as a theorem for future use, see also [235, Section II.2].
Recall that Je is the event that e is open.

1An important example of an upper-semicontinuous function is the indicator function X = 1A
of an increasing closed event A.
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(4.6) Proposition. Let E be a countable set, let � = {0, 1}E , and let F be the
σ -field generated by the cylinder subsets of �. Letµ1,µ2 be probability measures
on (�,F ) such that µ1 ≤st µ2. Then µ1 = µ2 if and only if

(4.7) µ1(Je) = µ2(Je) for all e ∈ E .

We say that a probability measure µ on (�,F ) is positively associated if

(4.8) µ(XY ) ≥ µ(X)µ(Y ) for all increasing continuous X , Y .

Note from the arguments above that µ is positively associated if and only if

(4.9) µ(XY ) ≥ µ(X)µ(Y ) for all increasing semicontinuous X , Y .

Stochastic inequalities and positive association are conserved by weak conver-
gence, in the following sense.

(4.10) Proposition. Let E be a countable set, let � = {0, 1}E , and let F be the
σ -field generated by the cylinder subsets of �.

(a) Let (µn,i : n = 1, 2, . . . ), i = 1, 2, be two sequences of probability mea-
sures on (�,F ) satisfying: µn,i ⇒ µi as n → ∞, for i = 1, 2, and
µn,1 ≤st µn,2 for all n. Then µ1 ≤st µ2.

(b) Let (µn : n = 1, 2, . . . ) be a sequence of probability measures on (�,F )
satisfying µn ⇒ µ as n → ∞. If each µn is positively associated, then so
is µ.

Proof of Proposition 4.6. If µ1 = µ2 then (4.7) holds. Suppose conversely that
(4.7) holds. By [235, Thm 2.4] or [237, Thm II.2.4], there exists a ‘coupled’
measure µ on (�,F )× (�,F ) with marginals µ1 and µ2, and such that

µ
(
{(π, ω) ∈ �2 : π ≤ ω}

)
= 1.

For any increasing cylinder event A,

µ2(A)− µ1(A) = µ
(
{(π, ω) : π /∈ A, ω ∈ A}

)

≤
∑

e∈E

µ
(
π(e) = 0, ω(e) = 1

)

=
∑

e∈E

[
µ(ω(e) = 1)− µ(π(e) = 1)

]

=
∑

e∈E

[
µ2(Je)− µ1(Je)

] = 0.

Since F is generated by the increasing cylinders A, the claim is proved. �

Proof of Proposition 4.10. (a) We have thatµn,1(X) ≤ µn,2(X) for any increasing
continuous random variable X , and the conclusion follows by letting n → ∞. Part
(b) is proved similarly. �
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4.2 Boundary conditions

An important part of statistical mechanics is directed at understanding the way in
which assumptions on the boundary of a region affect what happens in its interior.
In order to make precise such a discussion for random-cluster models,we introduce
next the concept of a ‘boundary condition’.

Let 3 be a finite subset of Zd . We shall later take 3 to be a box, but we retain
the extra generality at this point. For ξ ∈ �, let�ξ3 denote the (finite) subset of�
containing all configurations ω satisfying ω(e) = ξ(e) for e ∈ Ed \ E3; these are
the configurations that ‘agree with ξ off3’. For ξ ∈ � and p ∈ [0, 1], q ∈ (0,∞),
we shall write φξ3,p,q for the random-cluster measure on the finite graph (3,E3)
‘with boundary condition ξ ’; this is the equivalent of a ‘specification’ for Gibbs
states, see [134]. More precisely, let φξ3,p,q be the probability measure on the pair
(�,F ) given by
(4.11)

φ
ξ
3,p,q(ω) =





1

Z ξ3(p, q)

{ ∏

e∈E3

pω(e)(1 − p)1−ω(e)
}

qk(ω,3) if ω ∈ �ξ3,

0 otherwise,

where k(ω,3) is the number of components of the graph (Zd , η(ω)) that intersect
3, and Z ξ3(p, q) is the appropriate normalizing constant,

(4.12) Z ξ3(p, q) =
∑

ω∈�ξ3

{ ∏

e∈E3

pω(e)(1 − p)1−ω(e)
}

qk(ω,3).

Note that φξ3,p,q(�
ξ
3) = 1.

The boundary condition ξ influences the measure φξ3,p,q through the way in
which the term k(ω,3) in (4.11) counts the number of ω-open clusters of 3
intersecting the boundary ∂3. Let x, y ∈ ∂3, and suppose there exists a path
of ξ -open edges of Ed \ E3 from x to y. Then any two ω-open clusters of 3
containing x and y, respectively, will contribute only 1 to the count k(ω,3).

Random-cluster measures have an important ‘nesting’ property which is best
expressed in terms of conditional probabilities. For any finite subset 3 of Zd ,
we write as usual F3 (respectively, T3) for the σ -field generated by the states of
edges in E3 (respectively, Ed \ E3).

(4.13) Lemma. Let p ∈ [0, 1] and q ∈ (0,∞). If 3, 1 are finite sets of vertices
with 3 ⊆ 1, then for every ξ ∈ � and every event A ∈ F ,

φ
ξ
1,p,q(A | T3)(ω) = φω3,p,q(A), ω ∈ �ξ1.

Two extremal boundary conditions of special importance are the configura-
tions 0 and 1, comprising ‘all edges closed’ and ‘all edges open’ respectively.
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One speaks of configurations in �0
3 as having ‘free’ boundary conditions, and

configurations in �1
3 as having ‘wired’ boundary conditions. The word ‘wired’

refers to the fact that, with boundary condition 1, the set of open clusters of
ω ∈ �1

3 that intersect ∂3 are ‘wired together’ and contribute only 1 in all to the
count k(ω,3) of clusters2. This terminology originated in the study of electrical
networks. ‘Free’ is understood as the converse: such clusters are counted in their
actual number when the boundary condition is 0.

The free and wired boundary conditions provide random-cluster measures
which are extremal (for q ≥ 1) in the sense of stochastic ordering.

(4.14) Lemma. Let p ∈ [0, 1] and q ∈ [1,∞), and let 3 ⊆ Zd be a finite set.

(a) For every ξ ∈ �, the probability measure φξ3,p,q is positively associated.

(b) For ψ, ξ ∈ �, we have that φψ3,p,q ≤st φ
ξ
3,p,q whenever ψ ≤ ξ . In

particular,
φ0
3,p,q ≤st φ

ξ
3,p,q ≤st φ

1
3,p,q , ξ ∈ �.

Proof of Lemma 4.13. We apply Theorem 3.1(a) repeatedly, once for each edge
in E1 \ E3. �

Proof of Lemma 4.14. The key to the proof is positive association, which is valid
by Theorem 3.8 when q ∈ [1,∞). The proof is straightforward, if slightly tedious
when written out in detail. Since p and q will be held constant, we omit them
from future subscripts. Let q ∈ [1,∞) and let 3 be a finite subset of Zd . For
ξ ∈ � and for any increasing continuous function X : � → R, we define the
increasing random variable X ξ3 : � → R by

X ξ3(ω) = X (ωξ3)

whereωξ3 is given in (4.2). We may view X ξ3 as an increasing function on {0, 1}E3.

We augment the graph (3,E3) by adding some extra edges as follows around
the boundary ∂3. For every distinct unordered pair x, y ∈ ∂3, we add a new edge,
denoted [x, y], between x and y. If the edge 〈x, y〉 exists already in3, we simply
add another in parallel. We write F for the set of new edges,�3 = {0, 1}E3∪F for
the augmented configuration space, and let φ3 be the random-cluster measure on
the augmented graph (3,E3∪F). The key point is thatφ3 satisfies the statements
in Theorem 2.27.

For ξ ∈ �, let
ξ∼ be the equivalence relation on ∂3 given by: x

ξ∼ y if and
only if there exists a ξ -open path of Ed \ E3 joining x to y. Let Fξ be the set of

all edges [x, y] ∈ F such that x
ξ∼ y.

2Alternatively, one may omit from the cluster-count all clusters that intersect ∂3. This under-
cuts k(ω,3) by 1 for the wired measure φ1

3,p,q , and the difference, being constant, has no effect
on the measure. See also Section 10.9.
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(a) Let X , Y be increasing and continuous on �. Then

φ
ξ
3(XY ) = φ

ξ
3(X

ξ
3Y ξ3)

= φ3(X
ξ
3Y ξ3 | Fξ open, F \ Fξ closed)

≥ φ3(X
ξ
3 | Fξ open, F \ Fξ closed)φ3(Y

ξ
3 | Fξ open, F \ Fξ closed)

by strong positive-association

= φ
ξ
3(X

ξ
3)φ

ξ
3(Y

ξ
3) = φ

ξ
3(X)φ

ξ
3(Y ),

whence φξ3 is positively associated.

(b) In broad terms, the ‘greater’ the connections off 3, the larger is the induced
measure within 3. Let ψ ≤ ξ , whence Fψ ⊆ Fξ , and let X be an increasing
random variable. Then

φ
ψ
3(X) = φ

ψ
3(X

ψ
3)

= φ3(X
ψ

3 | Fψ open, F \ Fψ closed)

≤ φ3(X
ψ

3 | Fξ open, F \ Fξ closed) by monotonicity

≤ φ3(X
ξ
3 | Fξ open, F \ Fξ closed) since Xψ3 ≤ X ξ3

= φ
ξ
3(X

ξ
3) = φ

ξ
3(X),

and the claim follows. �

4.3 Infinite-volume weak limits

We begin with a definition of a ‘weak-limit’ random-cluster measure on Ld . The
use of the letter 3 is restricted throughout this section to boxes of Zd .

(4.15) Definition. Let p ∈ [0, 1] and q ∈ (0,∞). A probability measure φ on
(�,F ) is called a limit-random-cluster measure with parameters p and q if, for
some ξ ∈ �, φ is an accumulation point of the family {φξ3,p,q : 3 ⊆ Zd}, that is,

there exists a sequence 3 = (3n : n = 1, 2, . . . ) of boxes satisfying 3n ↑ Zd as
n → ∞ such that

φ
ξ
3n ,p,q

⇒ φ as n → ∞.

The set of all such measures φ is denoted by Wp,q , and the closed convex hull of
Wp,q is denoted by co Wp,q .

One might at first sight consider instead the class of all weak limits of the form

(4.16) φ = lim
n→∞ φ

ξn
3n ,p,q
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for sequences 3 = (3n) of boxes and (ξn) of configurations. This provides no
extra generality over Definition 4.15, as we explain next in two paragraphs which
the reader may choose to omit, [152].

The measure φξ3,p,q is influenced by ξ through the connections it provides
between vertices in the boundary ∂3. By arranging for the same connections (and
no others) to be provided in a manner which is ‘more economical in the use of
space’ one discovers the following. Let3 be a box and ξ ∈ �. There exists a box
3′ ⊇ 3 and a configuration ζ such that: φζ3,p,q(A) = φ

ψ
3,p,q(A) for any event

A ∈ F3 and any configuration ψ that agrees with ζ on E3′ \ E3.

Assume now that (4.16) holds for some 3, ξ . Let A be a cylinder event,
and assume that 31 is such that A ∈ F31 . Define the increasing subsequence
(1n : n = 1, 2, . . . ) of 3 and the configuration ξ as follows. We set 11 = 31
and ξ(e) = ξ1(e) for e ∈ E11 . Having constructed 1r = 3nr and the partial
configuration (ξ(e) : e ∈ E1r ) for r < R, we construct 1R and the additional
configuration (ξ(e) : e ∈ E1R \ E1R−1) by the following rule. By the remark
above, there exists a box 3′ ⊇ 1R−1 and a configuration ζ such that

φ
ξnR−1
1R−1,p,q

(A) = φ
ψ
1R−1,p,q

(A)

for anyψ that agrees with ζ on E3′ \E1R−1 . We find m = nR such that m > nR−1
and 3m ⊇ 3′, and we set 1R = 3m and ξ(e) = ζ(e) for e ∈ E1R \ E1R−1 . By

(4.16), φξ1r ,p,q
(A) → φ(A) as r → ∞, whence φξ1r ,p,q

⇒ φ.

The following claim is standard of its type. Part (b) is related to the so-called
‘finite-energy property’ to be discussed in the next section.

(4.17) Theorem. Let p ∈ [0, 1] and q ∈ (0,∞).

(a) Existence. The set Wp,q of limit-random-cluster measures is non-empty.

(b) Finite-energy property. Let φ ∈ co Wp,q and e ∈ Ed . We have that

min

{
p,

p

p + q(1 − p)

}
≤ φ(Je | Te) ≤ max

{
p,

p

p + q(1 − p)

}
,

φ-almost-surely, where Je is the event that e is open.

(c) Positive association. If q ∈ [1,∞), any member of Wp,q is positively
associated.

Proof. (a) The metric space � is the product of discrete spaces, and is therefore
compact. Any infinite family of probability measures on � is therefore tight, and
hence relatively compact (by Prohorov’s theorem, see [42]), which is to say that
any infinite subsequence contains a weakly convergent subsubsequence. We apply
this to the family {φξ3n ,p,q

: n = 1, 2, . . . } for any given ξ ∈ � and any given

sequence 3 = (3n : n = 1, 2, . . . ) with 3n ↑ Zd as n → ∞.

(b) Let φ ∈ Wp,q , so that

(4.18) φ = lim
3↑Zd

φ
ξ
3,p,q
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for some ξ ∈ � and some sequence of boxes3. For6 ⊆ Zd and e ∈ Ed , let F6\e

denote the σ -field generated by {ω( f ) : f ∈ E6, f 6= e}. By the martingale
convergence theorem [164, eqn (12.3.10)] and weak convergence,

φ(Je | Te) = lim
6↑Zd

φ(Je | F6\e) φ-a.s.

= lim
6↑Zd

lim
3↑Zd

φ
ξ
3,p,q(Je | F6\e) φ-a.s.

The claim follows by Theorem 3.1(a). It is evident that any convex combination
of measures in Wp,q satisfies the same inequalities. A similar argument yields the
claim for weak limits of such combinations.

(c) Let q ∈ [1,∞), and let φ be expressed as in (4.18). By Lemma 4.14(a), each
φ
ξ
3,p,q is positively associated, and the claim follows by Proposition 4.10(b). �

Let 3 = (3n : n = 1, 2, . . . ) be an increasing sequence of boxes such that
3n ↑ Zd as n → ∞. When does the limit limn→∞ φ

ξ
3n,p,q

exist, and is it
independent of the choice of the sequence 3? Only a limited amount is known
when q < 1, and the reader is referred to Section 5.8 for this case. When q ≥ 1, we
may use positive association to prove the existence of the limit in the extremal cases
with ξ = 0, 1. The next theorem comprises the basic existence result, together
with some properties of the limit measures. It is preceded by some important
definitions.

Let G = (V , E) be a countable, locally finite3 graph, and write �E = {0, 1}E ,
and FE for the σ -field generated by the cylinder subsets of�E . An automorphism
of G is a bijection τ : V → V such that, for all u, v ∈ V , 〈u, v〉 ∈ E if and only if
〈τ (u), τ (v)〉 ∈ E . We write Aut(G) for the group of all such automorphisms. The
domain of an automorphism τ may be extended to the edge-set E by τ (〈u, v〉) =
〈τ (u), τ (v)〉. An automorphism τ generates an operator on �E , denoted also by
τ : �E → �E and given by τω(e) = ω(τ−1e) for e ∈ E . A random variable
X : �E → R is called τ -invariant if X (ω) = X (τω) for all ω ∈ �E . A
probability measure µ on (�E ,FE ) is called τ -invariant if µ(A) = µ(τ A) for
all A ∈ FE .

Let Ŵ be a subgroup of Aut(G). A random variable X : � → R is called
Ŵ-invariant if it is τ -invariant for all τ ∈ Ŵ, and a similar definition holds for
a probability measure µ on (�E ,FE ). The measure µ is called automorphism-
invariant if it is Aut(G)-invariant. A probability measure µ on (�E ,FE ) is called
Ŵ-ergodic if every Ŵ-invariant random variable is µ-almost-surely constant, see
[241, Chapter 6]. It is clear that, if Ŵ′ ⊆ Ŵ, then µ is Ŵ-ergodic whenever it is
Ŵ′-ergodic. In the case when Ŵ is the group generated by a single automorphism
τ , we use the term τ -ergodic rather than Ŵ-ergodic.

We turn now to the graph G = Ld , and to a class of automorphisms termed
translations. Let x ∈ Zd , and define the function τx : Zd → Zd by τx(y) = x + y.

3A graph is called locally finite if every vertex has finite degree.
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The automorphism τx is referred to as a translation. We denote the group of
translations by Zd , noting that τ0 is the identity map. A random variable X : � →
R (respectively, a probability measureµ on (�,F )) is called translation-invariant
if it is Zd -invariant.

The probability measure µ on (�,F ) is said to be tail-trivial if, for any tail
event A ∈ T , µ(A) equals either 0 or 1. The property of tail-triviality is important
and useful for two reasons. First, tail-triviality implies mixing, see (4.22) and
Corollary 4.23. Secondly, in statistical mechanics, for a given specification, tail-
triviality is equivalent to extremality within the convex set of Gibbs states, see
[134, Thm 7.7].

(4.19) Theorem (Thermodynamic limit) [8, 63, 122, 149, 150, 152].
Let p ∈ [0, 1] and q ∈ [1,∞).

(a) Existence. Let 3 = (3n : n = 1, 2, . . . ) be an increasing sequence of
boxes satisfying 3n ↑ Zd as n → ∞. The weak limits

φb
p,q = lim

n→∞ φb
3n ,p,q, b = 0, 1, (4.20)

exist and are independent of the choice of 3.

(b) Automorphism-invariance. The probability measure φb
p,q is automorphism-

invariant, for b = 0, 1.

(c) Extremality. The φb
p,q , b = 0, 1, are extremal in that

φ0
p,q ≤st φ ≤st φ

1
p,q , φ ∈ Wp,q . (4.21)

(d) Tail-triviality. The measures φ0
p,q and φ1

p,q are tail-trivial.

A probability measure µ on (�,F ) is said to be mixing if, for all A, B ∈ F ,

(4.22) lim
|x |→∞

µ(A ∩ τx B) = µ(A)µ(B),

which is to say that, for ǫ > 0, there exists N = N(ǫ) such that

∣∣µ(A ∩ τx B)− µ(A)µ(B)
∣∣ < ǫ if |x | ≥ N.

(4.23) Corollary. Let p ∈ [0, 1], q ∈ [1,∞), and b ∈ {0, 1}. The probability
measure φb

p,q is mixing, and is τ -ergodic for every translation τ of Ld other than
the identity.

Proof of Theorem 4.19. (a) Suppose first that b = 0. Let 3 and 1 be boxes
satisfying3 ⊆ 1, and let A be the event that all edges in E1 \E3 have state 0. By
Theorem 3.1(a), φ0

3,p,q may be viewed as the marginal measure on E3 of φ0
1,p,q

conditioned on the event A. Since A is a decreasing event, by positive association,

(4.24) φ0
3,p,q(B) = φ0

1,p,q(B | A) ≤ φ0
1,p,q(B)
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for any increasing B ∈ F3. Therefore, the increasing limit

φ0
p,q(B) = lim

3↑Zd
φ0
3,p,q(B)

exists for all increasing cylinder events B , and the value of the limit does not
depend on the way that3 ↑ Zd . The collection of all such events B is convergence-
determining, [42, pp. 14–19], whence the limit probability measure φ0

p,q exists.
For the case b = 1, we let A be the event that all edges in E1 \ E3 are open, and
we reverse the inequality in (4.24).

(b) The translation-invariance of φ0
p,q is obtained as follows. Let F be a finite

subset of Ed , and let B ∈ FF be increasing. Let τ be a translation of Ld . For any
box3 containing all endvertices of all edges in F , we have by positive association
as in (4.24) that

φ0
p,q(B) ≥ φ0

3,p,q(B) = φ0
τ3,p,q(τ

−1 B) → φ0
p,q(τ

−1 B) as3 ↑ Zd .

Applying the same argument with B and τ replaced by τ−1 B and τ−1, we obtain
that φ0

p,q(B) = φ0
p,q(τ B). Similar arguments are valid for φ1

p,q .

Let C be the set of automorphisms that fix the origin. Each automorphism of
Ld is a combination of a translation τ and an element σ ∈ C. Every element of C

preserves boxes of the form 3n = [−n, n]d , and it follows by (4.20) that the φb
p,q

are automorphism-invariant.

(c) By Lemma 4.14,

φ0
3,p,q ≤st φ

ξ
3,p,q ≤st φ

1
3,p,q , ξ ∈ �,

and (4.21) follows by Proposition 4.10(a).

(d) We develop the proof of [31, 240] rather than the earlier approach of [152].
Let b = 0, an exactly analogous proof is valid for b = 1. Let 3, 1 be boxes
with 3 ⊆ 1, and let A ∈ F3 be increasing, and let B ∈ F1\3. By strong
positive-association4, Theorem 3.8(b),

φ0
1,p,q(A ∩ B) = φ0

1,p,q(A | B)φ0
1,p,q(B)

≥ φ0
3,p,q(A)φ

0
1,p,q(B).

Let 1 ↑ Zd to obtain that

φ0
p,q(A ∩ B) ≥ φ0

3,p,q(A)φ
0
p,q(B).

Since this holds for B ∈ F1\3, it holds for B ∈ T3, and hence for B ∈ T . Let
3 ↑ Zd to deduce that

(4.25) φ0
p,q(A ∩ B) ≥ φ0

p,q(A)φ
0
p,q(B), B ∈ T .

4The case φ0
1,p,q (B) = 0 should be handled separately.
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Applying (4.25) to the complement B, we have that

(4.26) φ0
p,q(A ∩ B) ≥ φ0

p,q(A)φ
0
p,q(B), B ∈ T .

Since the sum of (4.25) and (4.26) holds with equality,

(4.27) φ0
p,q(A ∩ B) = φ0

p,q(A)φ
0
p,q(B), B ∈ T .

Since this holds for all increasing A ∈ F3, it holds (as in the proof of part (a)) for
all A ∈ F . Setting A = B yields that φ0

p,q(B) equals 0 or 1, which is to say that

T is trivial. The same proof with several inequalities reversed is valid for φ1
p,q . �

Proof of Corollary 4.23. It is a general fact that tail-triviality implies mixing, see
[134, Prop. 7.9] and the related discussion at [134, Remark 7.13, Prop. 14.9]. The
τ -ergodicity of the φb

p,q is a standard application of mixing, as follows. Let y 6= 0
and τ = τy . Let B be a τ -invariant event, and apply (4.22) with x = ny and
A = B to obtain, on letting n → ∞, that φb

p,q(B) = φb
p,q(B)

2. Alternatively,
note that the σ -field of τ -invariant events is contained in the completion of the tail
σ -field T , see the proof for d = 1 in [222, Prop. 4.5]. �

We close this section with the infinite-volume comparison inequalities and
certain semicontinuity properties of the mean φb

p,q(X) of a random variable X .

(4.28) Proposition. Let p ∈ [0, 1] and q ∈ [1,∞).

(a) Comparison inequalities. For b = 0, 1, the measures φb
p,q satisfy the com-

parison inequalities:

φb
p1,q1

≤st φ
b
p2,q2

if q1 ≥ q2 ≥ 1, and p1 ≤ p2,

φb
p1,q1

≥st φ
b
p2,q2

if q1 ≥ q2 ≥ 1, and
p1

q1(1 − p1)
≥ p2

q2(1 − p2)
.

(b) Upper-semicontinuity. Let X be an increasing upper-semicontinuous ran-
dom variable. Then φ1

p,q(X) is an upper-semicontinuous function of the
vector (p, q), and is therefore a right-continuous function of p and a left-
continuous function of q.

(c) Lower-semicontinuity. Let X be an increasing lower-semicontinuous ran-
dom variable. Then φ0

p,q(X) is a lower-semicontinuous function of the
vector (p, q), and is therefore a left-continuous function of p and a right-
continuous function of q.

Conditions for the semicontinuity of an increasing random varable are given
at (4.4). An important class of increasing upper-semicontinuous functions is pro-
vided by the indicator functions X = 1A of increasing closed events A. It is easily
seen by (4.4) that such an indicator function is indeed upper-semicontinuous,and it
follows by part (b) above that φ1

p,q(A) is right-continuous in p and left-continuous

c©Springer-Verlag 2006



78 Infinite-Volume Measures [4.4]

in q . As an important example of such an event A, consider the event {0 ↔ ∞},
that there exists an infinite open path in Ld with endvertex 0.

Similarly, the indicator function of any increasing open event A is an increasing
lower-semicontinuous random variable, and thus part (c) may be applied. We note
that (b) and (c) apply to all increasing continuous random variables, and therefore
to the indicator function X = 1B of any increasing cylinder B .

Proof of Proposition 4.28. (a) This is a consequence of Theorems 3.21 and 4.10(a).

(b) Let 3n = [−n, n]d . Suppose X satisfies the given condition, and define Xb
n

by Xb
n(ω) = X (ωb

3n
) for b = 0, 1, where ωb

3 is given in (4.2). Using stochastic
orderings of measures and (4.5), we have for m ≤ n that

φ1
p,q (X) ≤ φ1

3n,p,q(X) ≤ φ1
3n ,p,q(X

1
m) since X ≤ X1

m

→ φ1
p,q(X

1
m) as n → ∞

→ φ1
p,q(X) as m → ∞,

where we have used (4.4) and the monotone convergence theorem. Also,

φ1
3n,p,q(X

1
n) ≥ φ1

3n+1,p,q(X
1
n) since 3n ⊆ 3n+1

≥ φ1
3n+1,p,q(X

1
n+1) since X1

n ≥ X1
n+1.

By the two inequalities above, the sequence φ1
3n ,p,q

(X1
n), n = 1, 2, . . . , is non-

increasing with limit φ1
p,q(X). Each φ1

3n,p,q
(X1

n) is a continuous function of p

and q , whence φ1
p,q(X) is upper-semicontinuous.

(c) The argument of part (b) is valid with X1
n replaced by X0

n , the boundary con-
dition 1 replaced by 0, and with the inequalities reversed. �

4.4 Infinite-volume random-cluster measures

There is a second way to construct infinite-volume measures, this avoids weak
limits and works directly on the infinite lattice. The following definition is based
upon the well known Dobrushin–Lanford–Ruelle (DLR) definition of a Gibbs
state, [102, 134, 226]. It was introduced in [111, 149, 150, 272] and discussed
further in [63, 152].

(4.29) Definition. Let p ∈ [0, 1] and q ∈ (0,∞). A probability measure φ on
(�,F ) is called a DLR-random-cluster measure with parameters p and q if:
(4.30)

for all A ∈ F and boxes3, φ(A | T3)(ξ) = φ
ξ
3,p,q(A) for φ-a.e. ξ .

The set of such measures is denoted by Rp,q .
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The condition of this definition amounts to the following. Suppose we are given
that the configuration off the finite box3 is that of ξ ∈ �. Then, for almost every
ξ , the (conditional) measure on 3 is the finite-volume random-cluster measure
φ
ξ
3,p,q . It is not difficult to see, by a calculation of conditional probabilities, that

no further generality may be gained by replacing the finite box 3 by a general
finite subset of Zd . Indeed, we shall see in Proposition 4.37(b) that it suffices to
have (4.30) for all pairs 3 = {x, y} with x ∼ y.

The structure of Rp,q relative to the set Wp,q remains somewhat obscure. It
is not known, for example, whether or not Wp,q ⊆ Rp,q , and indeed one needs
some work even to demonstrate that Rp,q is non-empty. The best result in this
direction to date is restricted to probability measures having a certain additional
property. For ω ∈ �, let I (ω) be the number of infinite open clusters of ω. We
say that a probability measure φ on (�,F ) has the 0/1-infinite-cluster property5

if φ(I ∈ {0, 1}) = 1.

(4.31) Theorem [152, 153, 156, 272]. Let p ∈ [0, 1] and q ∈ (0,∞). If φ ∈
co Wp,q and φ has the 0/1-infinite-cluster property, then φ ∈ Rp,q .

A sufficient condition for the 0/1-infinite-cluster property is provided by the
uniqueness theorem of Burton–Keane, [72], namely translation-invariance6 and
so-called ‘finite energy’. A probability measure φ on (�,F ) is said to have the
finite-energy property if

(4.32) 0 < φ(Je | Te) < 1 φ-a.s., for all e ∈ Ed ,

where, as before, Je is the event that e is open.

(4.33) Theorem [152, 153, 156]. Let p ∈ [0, 1] and q ∈ (0,∞).

(a) The closed convex hull co Wp,q contains some translation-invariant proba-
bility measure φ.

(b) Let p ∈ (0, 1). Every φ ∈ co Wp,q has the finite-energy property.

(c) If φ ∈ co Wp,q is translation-invariant, then φ has the 0/1-infinite-cluster
property.

Theorems 4.31 and 4.33 imply jointly that |Rp,q | 6= ∅ when p ∈ (0, 1) and
q ∈ (0,∞). [The cases p = 0, 1 are trivial.] We now present some of the basic
properties of the set Rp,q .

5The 0/1-infinite-cluster property is linked to the property of so-called ‘almost-sure quasilo-
cality’, see Lemma 4.39 and [272].

6Rather less than full translation-invariance is in fact required. The proof in [72] uses ergodicity
of the probability measure, rather than simply translation-invariance. Further comments about
the extension to translation-invariant measures may be found in [73] and [136, p. 42]. See [158]
for a general account of Burton–Keane uniqueness.
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(4.34) Theorem [152]. Let p ∈ [0, 1] and q ∈ (0,∞).

(a) Existence. The set Rp,q is non-empty and contains at least one translation-
invariant member of co Wp,q . Furthermore, Rp,q is a convex set of mea-
sures.

(b) Stochastic ordering. If q ∈ [1,∞), then φb
p,q ∈ Rp,q for b = 0, 1, and

φ0
p,q ≤st φ ≤st φ

1
p,q , φ ∈ Rp,q . (4.35)

(c) Extremality. The φb
p,q , b = 0, 1, are extremal elements of Rp,q .

It is an important open problem to identify all pairs (p, q) under which φ0
p,q =

φ1
p,q . By (4.21) and (4.35), for q ∈ [1,∞),

(4.36) |Wp,q | = |Rp,q | = 1 if and only if φ0
p,q = φ1

p,q ,

so this amounts to asking for which pairs (p, q) there exist (simultaneously) a
unique DLR-random-cluster measure and a unique limit-random-cluster measure.
Various partial answers are known, see Theorems 4.63 and 5.33, and a conjecture
appears at (5.34).

Let q ∈ [1,∞). Since the extremal measures φb
p,q are translation-invariant,

they have the 0/1-infinite-cluster property, see Theorems 4.19(b) and 4.33(c). The
ergodicity of the φb

p,q was proved in Corollary 4.23. We note two further properties
of DLR-random-cluster measures, namely the finite-energy property, and positive
association when q ∈ [1,∞). Let e = 〈x, y〉 be an edge, and let Ke be the event
that x and y are joined by an open path of Ed \ {e}.

(4.37) Proposition. Let p ∈ [0, 1] and q ∈ (0,∞).

(a) Finite-energy property. Let φ ∈ Rp,q . For φ-almost-every ω,

φ(Je | Te)(ω) =
{

p if ω ∈ Ke,
p

p + q(1 − p)
if ω /∈ Ke.

(4.38)

(b) Conversely, if φ is a probability measure on (�,F ) satisfying (4.38) for all
e ∈ Ed and φ-almost-every ω, then φ ∈ Rp,q .

(c) Positive association. If q ∈ [1,∞) and φ ∈ Rp,q is tail-trivial, then φ is
positively associated.

We shall use the following technical result in the proof of Theorem 4.31.
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(4.39) Lemma [152]. Let φ be a probability measure on (�,F ) with the finite-
energy property (4.32) and the 0/1-infinite-cluster property. For any box 3 and
any cylinder event A ∈ F3, the random variable g(ω) = φω3,p,q(A) is φ-almost-
surely continuous.

Proof. Let 3 be a finite box and A ∈ F3. The set Dg of discontinuities of the
random variable g(ω) = φω3,p,q(A) is a subset of the set

(4.40) Dg(3) =
⋂

1:1⊇3

{
ω : sup

ζ : ζ=ω on 1
|g(ζ )− g(ω)| > 0

}

where the intersection is over all boxes 1 containing3, and we write ‘ζ = ω on
1’ if ζ(e) = ω(e) for e ∈ E1. Let D3,1 be the set of allω ∈ �with the property:
there exist two points u, v ∈ ∂3 such that both u and v are joined to ∂1 by paths
using ω-open edges of E1 \ E3, but u is not joined to v by such a path. If D3,1
does not occur, then k(ζ,3) = k(ω,3) for all ζ ∈ � such that ζ = ω on 1,
implying that g(ζ ) = g(ω). It follows that

Dg(3) ⊆
⋂

1:1⊇3
D3,1.

It easily seen that
⋂
1 D3,1 = {I3 ≥ 2}, where I3 is the number of infinite open

clusters of Ed \ E3 intersecting ∂3. Therefore,

(4.41) φ(Dg) ≤ φ(Dg(3)) ≤ φ(I3 ≥ 2).

By the finite-energy property (4.32),

(4.42) φ(I ≥ 2) > 0 if φ(I3 ≥ 2) > 0.

By the 0/1-infinite-cluster property, φ(I ≥ 2) = 0, and therefore φ(Dg) = 0 as
required. �

Proof of Theorem 4.33. (a) Since φ0
p,q ∈ Wp,q for q ∈ [1,∞), we shall consider

the case when q ∈ (0, 1) only. By Theorem 4.17(a), we may find φ ∈ Wp,q . Let

(4.43) ψm = 1

|1m |
∑

x∈1m

τx ◦ φ

where 1m = [−m,m]d , and τx ◦ φ is the probability measure on (�,F ) given
by τx ◦ φ(A) = φ(τx A) for the translation τx(y) = x + y of the lattice. Clearly,
τx ◦ φ ∈ Wp,q for all x , whenceψm belongs to the convex hull of Wp,q . Let ψ be
an accumulation point of the family (ψm : m = 1, 2, . . . ) of measures.

Let e be a unit vector of Zd . By (4.43), for any event A,

(4.44)
∣∣ψm(A)− τe ◦ ψm(A)

∣∣ ≤ |∂1m |
|1m | → 0 as m → ∞,
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whenceψ is τe-invariant. Certainlyψ ∈ coWp,q , and the proof of (a) is complete.

(b) This follows by Theorem 4.17(b).

(c) If p = 0 (respectively, p = 1), then φ is concentrated on the configuration 0
(respectively, 1), and the claim holds trivially. If p ∈ (0, 1), it follows from (b)
and the main theorem of [72]. See also the footnote on page 79. �

Proof of Theorem 4.31. The claim is trivial when p = 0, 1, and we assume that
p ∈ (0, 1). The proof is straightforward under the stronger hypothesis that φ ∈
Wp,q , and we begin with this special case. Suppose that 3 = (3n : n = 1, 2, . . . ),
ξ ∈ �, and φ ∈ Wp,q are such that

φ = lim
n→∞ φ

ξ
3n,p,q

,

and assume that φ has the 0/1-infinite-cluster property. Let 3 be a box and let
A ∈ F3. By Lemma 4.13,

(4.45) if 3 ⊆ 3n , φω3,p,q(A) = φ
ξ
3n,p,q

(A | T3)(ω) for φξ3n,p,q
-a.e. ω.

Let B be a cylinder event in T3. By Theorem 4.33(b) and Lemma 4.39 applied
to the measure φ, the function 1B(ω)φ

ω
3,p,q(A) is φ-almost-surely continuous,

whence

φ
(
1B(·)φ·

3,p,q(A)
)

= lim
n→∞ φ

ξ
3n ,p,q

(
1B(·)φ·

3,p,q(A)
)

= lim
n→∞ φ

ξ
3n ,p,q

(
1B(·)φξ3n,p,q

(A | T3)
)

by (4.45)

= lim
n→∞ φ

ξ
3n ,p,q

(A ∩ B)

= φ(A ∩ B).

Since T3 is generated by its cylinder events, we deduce that

(4.46) φ(A | T3) = φ·
3,p,q(A) φ-a.s.,

whence φ ∈ Rp,q .

We require a further lemma for the general case. Let X : � → R be a bounded
random variable, set

v(X) = sup
ω,ω′∈�

|X (ω)− X (ω′)|,

and let DX be the discontinuity set of X , that is,

(4.47) DX =
{
ω ∈ � : X is discontinuous at ω

}
.
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(4.48) Lemma. Let µn , µ be probability measures on (�,F ) such that µn ⇒ µ

as n → ∞. For any bounded random variable X : � → R,

lim sup
n→∞

|µn(X)− µ(X)| ≤ v(X)µ(DX ).

Proof. By [107, Thm 11.7.2], there exists a probability space (6,G,P) and ran-
dom variables ρn, ρ : 6 → � such that: ρn has lawµn , ρ has lawµ, and ρn → ρ

almost surely. Therefore,

X (ρn)1C(ρ) → X (ρ)1C(ρ) P-a.s.,

where C = � \ DX . By the bounded convergence theorem,

|µn(X)− µ(X)| = |P(X (ρn)− X (ρ))|
≤ P|X (ρn)− X (ρ)|
= P

(|X (ρn)− X (ρ)|1C(ρ)
)+ P

(|X (ρn)− X (ρ)|1C(ρ)
)

≤ P
(
|X (ρn)− X (ρ)|1C(ρ)

)
+ v(X)P(1C (ρ))

→ 0 + v(X)µ(C) = v(X)µ(DX ) as n → ∞. �

Let φ ∈ co Wp,q have the 0/1-infinite-cluster property, and write φ as φ =
limn→∞ φn where

(4.49) φn = 1

Kn

Kn∑

i=1

φn,i , φn,i = lim
1↑Zd

φ
ξn,i
1,p,q .

The latter is actually a shorthand, since1will in general approach Zd along some
sequence of boxes which depends on the values of n and i , but this will not be
important in what follows.

Let 3 be a box, and let A ∈ F3. Let B be a cylinder event in T3. Since F3
are T3 are generated by the classes of such cylinders, it is enough to prove that

(4.50) φ
(
1B(·)φ·

3,p,q(A)
)

= φ(A ∩ B).

Let D3,1 be the event given after (4.40), noting as before that

(4.51) D3,1 ↓ {I3 ≥ 2} as 1 ↑ Zd ,

where I3 is the number of infinite open clusters of Ed \ E3 that intersect ∂3.

By (4.49) and Lemma 4.48,

(4.52) lim sup
1↑Zd

∣∣φn,i (1Bφ
·
3,p,q(A))− φ

ξn,i
1,p,q(1Bφ

·
3,p,q(A))

∣∣ ≤ φn,i (I3 ≥ 2),
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as in (4.41). By Lemma 4.13,

φ
ξn,i
1,p,q(1Bφ

·
3,p,q(A)) = φ

ξn,i
1,p,q(A ∩ B) for all large 1,

and therefore, on taking the limit as 1 ↑ Zd ,

(4.53)
∣∣φn,i (1Bφ

·
3,p,q(A))− φn,i (A ∩ B)

∣∣ ≤ φn,i (I3 ≥ 2).

By (4.49) and Lemma 4.39,

φ(1Bφ
·
3,p,q(A)) = lim

n→∞
1

Kn

Kn∑

i=1

φn,i (1Bφ
·
3,p,q(A)),

φ(A ∩ B) = lim
n→∞

1

Kn

Kn∑

i=1

φn,i (A ∩ B),

whence

∣∣φ(1Bφ
·
3,p,q(A))− φ(A ∩ B)

∣∣

≤ lim sup
n→∞

1

Kn

Kn∑

i=1

∣∣φn,i (1Bφ
·
3,p,q(A))− φn,i (A ∩ B)

∣∣

≤ lim sup
n→∞

1

Kn

Kn∑

i=1

φn,i (I3 ≥ 2) by (4.53)

≤ lim sup
n→∞

1

Kn

Kn∑

i=1

φn,i (D3,1) if 1 ⊇ 3, by (4.51)

= lim sup
n→∞

φn(D3,1)

= φ(D3,1)

→ φ(I3 ≥ 2) as 1 → Zd .

The final probability equals 0 as in (4.42), and therefore (4.50) holds. �

Proof of Theorem 4.34. (a) By Theorem 4.33, there exists φ ∈ co Wp,q with the
0/1-infinite-cluster property. By Theorem 4.31, φ ∈ Rp,q . Convexity follows
immediately from Definition 4.29: for φ,ψ ∈ Rp,q and α ∈ [0, 1], the measure
αφ + (1 − α)ψ satisfies the condition of the definition.

(b) Assume q ∈ [1,∞). By Theorem 4.19(b) the φb
p,q are translation-invariant,

whence by Theorem 4.33(c) they have the 0/1-infinite-cluster property. By The-
orem 4.31, each belongs to Rp,q . Inequality (4.35) follows from Lemma 4.14(b)
and Definition 4.29, on taking the limit as 3 → Zd .
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(c) The φb
p,q are tail-trivial by Theorem 4.19(d), and tail-triviality is equivalent to

extremality, see [134, Thm 7.7]. There is a more direct proof using the stochastic
ordering of part (b). If φ0

p,q is not extremal, it may be written in the form φ0
p,q =

αφ1 + (1 − α)φ2 for some α ∈ (0, 1) and φ1, φ2 ∈ Rp,q . For any increasing
cylinder event A, φ0

p,q(A) ≤ min{φ1(A), φ2(A)} by (4.35), in contradiction of the

above. A similar argument holds for φ1
p,q . �

Proof of Proposition 4.37. (a) This is a consequence of Definition 4.29 in con-
junction with (3.3).

(b) Let φ satisfy (4.38) for all e ∈ E , and let3 be a finite box. For φ-almost-every
ξ ∈ �, the conditional measure µξ (·) = φ(· | T3)(ξ) may be thought of as a
probability measure on the finite set�3 = {0, 1}E3 with an appropriate boundary
condition. By (4.38) and Theorem 3.1(b), µξ = φ

ξ
3,p,q for φ-almost-every ξ ,

whence (4.30) holds and the claim follows.

(c) Let q ∈ [1,∞), and let X,Y : � → R be increasing, continuous random
variables. For φ ∈ Rp,q ,

φ(XY ) = φ
(
φ(XY | T3)

)

= φ
(
φ·
3,p,q(XY )

)

≥ φ
(
φ·
3,p,q(X)φ

·
3,p,q(Y )

)
by positive association

= φ
(
φ(X | T3)φ(Y | T3)

)

→ φ
(
φ(X | T )φ(Y | T )

)
as 3 ↑ Zd ,

by the bounded convergence theorem and the backward martingale convergence
theorem [107, Thm 10.6.1]. If φ is tail-trivial,

φ(X | T ) = φ(X), φ(Y | T ) = φ(Y ), φ-a.s.,

and the required positive-association inequality follows. �

4.5 Uniqueness via convexity of pressure

We address next the question of the uniqueness of limit- and DLR-random-cluster
measures on Ld for given p and q . The main result of this section is the following.
There exists a (possibly empty) countable subset Dq of the interval [0, 1] such
that φ0

p,q = φ1
p,q , and hence there exists a unique random-cluster measure in that

|Wp,q | = |Rp,q | = 1, if and only if p /∈ Dq . Further results concerning the
uniqueness of measures may be found at Theorems 5.33, 6.17, and 7.33.

The ‘almost everywhere’ uniqueness of random-cluster measures will be proved
by showing that the asymptotic behaviour of the logarithm of the partition func-
tion does not depend on the choice of boundary condition, and then by relating
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the differentiability of the limit function to the uniqueness of measures. A certain
convexity property of the limit function will play a role in studying its differentia-
bility. Rather than working with the usual partition function Z ξ3(p, q) of (4.12),

we shall use the function Y ξ3 : R2 → R given by

(4.54) Y ξ3(π, κ) =
∑

ω∈�ξ3

exp
{
π |E3 ∩ η(ω)| + κk(ω,3)

}
,

and satisfying

(4.55) Z ξ3(p, q) = (1 − p)|E3|Y ξ3(π, κ),

where π = π(p) and κ = κ(q) are given by

(4.56) π(p) = log

(
p

1 − p

)
, κ(q) = log q.

Note that

(4.57) Z ξ3(p, 1) = 1, Y3(π, 0) = (1 − p)−|E3|.

We introduce next a function G(π, κ) which describes the exponential asymp-
totics of Y ξ3(π, κ) as3 ↑ Zd . In line with the terminology of statistical mechanics,
we call this function the pressure. All logarithms will for convenience be natural
logarithms.

(4.58) Theorem [145, 150, 152]. Let 3 be a box of Ld . The finite limits

(4.59) G(π, κ) = lim
3↑Zd

{
1

|E3| log Y ξ3(π, κ)

}
, (π, κ) ∈ R2,

exist and are independent of ξ ∈ � and of the way in which 3 ↑ Zd . The
‘pressure’ function G is a convex function on its domain R2.

In the proof, we shall see that G may be approximated from below and above to
any required degree of accuracy by smooth functions of (π, κ), see (4.68)–(4.70).

We shall identify the setDq mentioned at the start of this section as Dq = D ′
κ(q),

a set given in the next theorem with κ(q) = log q . This set corresponds to the
points of non-differentiability of the convex function G. Recall that, by convexity,
G is differentiable at (π, κ) if and only if G has both its partial derivatives at this
point.

Let D ′ be the set of all (π, κ) at which G is not differentiable when viewed as a
function from R2 to R. Since G is convex, D ′ has Lebesgue measure 0, and indeed
D ′ may be covered by a countable collection of rectifiable curves (see [115, Thm
8.18], [291, Thm 2.2.4]). For any line l of R2, the restriction of G to l is convex,
whence G restricted to l is differentiable along l except at countably many points.
Each such point of non-differentiability on l lies in D ′, but the converse may not
generally be true.

The two partial derivatives of G have special physical significance for the
random-cluster model, and one may show when q > 1 (that is, κ > 0) that G has
one partial derivative at any given point (π, κ) if and only if it has both.
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(4.60) Theorem.
(a) For each κ ∈ R, there exists a (possibly empty) countable subset D ′

κ of reals
such that G(π, κ) is a differentiable function of π if and only if π /∈ D ′

κ .

(b) For eachπ ∈ R, there exists a (possibly empty) countable subset D ′′
π of reals

such that G(π, κ) is a differentiable function of κ if and only if κ /∈ D ′′
π .

(c) For (π, κ) ∈ R × (0,∞), exactly one of the following holds:

(i) (π, κ) ∈ D ′, and G has neither partial derivative at (π, κ),

(ii) (π, κ) /∈ D ′, and G has both partial derivatives at (π, κ).

Parts (a) and (b) follow from the remarks prior to the theorem. The proof of
part (c) is deferred until later in this section. With D ′

κ given in (a), we write
Dq = D ′

κ(q).

For given q ∈ (0,∞), one thinks of Dq = D ′
κ(q) as the set of ‘bad’ values

of p. The situation when q ∈ (0, 1) is obscure. When q ∈ (1,∞), the set Dq

is exactly the set of singularities of the random-cluster model in the sense of the
next theorem. Here is some further notation. Let q ∈ [1,∞), and

(4.61) hb(p, q) = φb
p,q(Je), b = 0, 1,

where Je is the event that e is open. Since the φb
p,q are automorphism-invariant7,

hb(p, q) does not depend on the choice of e, and therefore equals the edge-density
under φb

p,q . We write

(4.62) F(p, q) = G(π, κ)

where (p, q) and (π, κ) are related by (4.56), and G is given in (4.59). We shall
use the word ‘pressure’ for both F and G.

(4.63) Theorem. Let p ∈ (0, 1) and q ∈ (1,∞). The following five statements
are equivalent.

(a) p /∈ Dq .

(i)(b) h0(x, q) is a continuous function of x at the point x = p.

(ii) h1(x, q) is a continuous function of x at the point x = p.

(c) It is the case that h0(p, q) = h1(p, q).

(d) There is a unique random-cluster measure with parameters p and q, that is,
|Wp,q | = |Rp,q | = 1.

What is the set Dq? We shall return to this question in Section 5.3, but in
the meantime we summarize the anticipated situation. Let d ≥ 2 be given, and
assume q ∈ [1,∞). It is thought to be the case that Dq is empty when q − 1 is

7There is an error in [152, Thm 4.5] in the case q ∈ (0, 1). The correct condition there is that
the measure φ be automorphism-invariant rather than translation-invariant.
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small, and is a singleton point (that is, the critical value pc(q), see Section 5.1)
when q is large. It is conjectured that there exists Q = Q(d) > 1 such that

(4.64) Dq =
{

∅ if q ≤ Q,

{pc(q)} if q > Q.

This would imply in particular that |Rp,q | = 1 unless q > Q and p = pc(q).
A further issue concerns the structure of Rp,q in situations where |Rp,q | > 1.
For further information about the non-uniqueness of random-cluster measures, the
reader is directed to Sections 6.4 and 7.5.

Proof of Theorem 4.58. Let p ∈ (0, 1) and q ∈ (0,∞), and let (π, κ) be given
by (4.56). We shall use a standard argument of statistical mechanics, namely the
near-multiplicativity of Y ξ3(π, κ) viewed as a function of 3. The irrelevance to
the limit of the boundary condition ξ hinges on the fact that |∂3|/|3| → ∞ as
3 ↑ Zd .

We show first that the limit (4.59) exists with ξ = 0, and shall for the moment
suppress explicit reference to the boundary condition. Let n = (n1, n2, . . . , nd ) ∈
Nd , write |n| = n1n2 · · · nd , and let3n be the box

∏d
i=1[1, ni ]. By the translation-

invariance of Z3(p, q), we may restrict ourselves to boxes of this type.

We fix k ∈ Nd , and write

(n,k) =
(

ki

⌊
ni

ki

⌋
: i = 1, 2, . . . , d

)
,

⌊n
k

⌋
=

d∏

i=1

⌊
ni

ki

⌋
.

By Theorem 3.63, for n ≥ k,

⌊n
k

⌋[
log Z3k − d

( d∑

i=1

|k|
ki

)
log(1 ∨ q)

]
+ log Z3n\3(n,k)(4.65)

≤ log Z3n

≤
⌊n

k

⌋[
log Z3k − d

( d∑

i=1

|k|
ki

)
log(1 ∧ q)

]
+ log Z3n\3(n,k),

and furthermore,

(
|n| − |k| · ⌊n/k⌋) log

(
q

(1 ∨ q)d

)
≤ log Z3n\3(n,k)

≤
(
|n| − |k| · ⌊n/k⌋) log

(
q

(1 ∧ q)d

)
.
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Divide by |n| and let the ni tend to ∞ to find that, for all k,

1

|k| log Z3k − d

( d∑

i=1

1

ki

)
log(1 ∨ q)(4.66)

≤ lim inf
n→∞

{
1

|n| log Z3n

}
≤ lim sup

n→∞

{
1

|n| log Z3n

}

≤ 1

|k| log Z3k − d

( d∑

i=1

1

ki

)
log(1 ∧ q).

Assume that q ≥ 1, a similar argument is valid when q < 1. Therefore, the limit

(4.67) H (p, q) = lim
n→∞

{
1

|n| log Z3n

}

exists, and furthermore

H (p, q) = sup
k

{
1

|k| log Z3k − d

( d∑

i=1

1

ki

)
log(1 ∨ q)

}
(4.68)

= inf
k

{
1

|k| log Z3k − d

( d∑

i=1

1

ki

)
log(1 ∧ q)

}
.

Since Z3k is a continuous function of p and q , these equations imply that H (p, q)
may be approximated from below and above to any degree of accuracy by con-
tinuous functions, and is therefore continuous. We will obtain greater regularity
from the claim of convexity to be proved soon. Evidently, as 3 ↑ Zd ,

(4.69)
1

|E3| log Z3 → 1

d
H (p, q),

and, by (4.55) and (4.62),

1

|E3| log Y3(π, κ) → − log(1 − p)+ 1

d
H (p, q)(4.70)

= F(p, q) = G(π, κ).

We show next that the same limit is valid with a general boundary condition.
Let 3 be a finite box, and let

(4.71) Gξ
3(π, κ) = 1

|E3| log Y ξ3(π, κ).

For ω, ξ ∈ �, let ωξ3 ∈ �ξ3 be as in (4.2). Clearly,

k(ω0
3,3)− |∂3| ≤ k(ω1

3,3) ≤ k(ωξ3,3) ≤ k(ω0
3,3),
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whence

Y 0
3(π, κ)e

−κ|∂3| ≤ Y ξ3(π, κ) ≤ Y 0
3(π, κ), κ ∈ [0,∞),

and the same holds with the inequalities reversed when κ ∈ (−∞, 0). Therefore,

G0
3(π, κ)− κ

|∂3|
|E3| ≤ Gξ

3(π, κ) ≤ G0
3(π, κ), κ ∈ [0,∞),

and with the inequalities reversed if κ ∈ (−∞, 0). Since |∂3|/|E3| → 0 as
3 ↑ Zd , the limit of Gξ

3 exists by (4.70), and is independent of the choice of ξ .

It is clear from its form that Gξ
3(π, κ) is a convex function on its domain R2.

Indeed, Theorem 3.73(b) includes a representation of its second derivative in an
arbitrary given direction as the variance of a random variable. We note from
Theorem 3.73(a) for later use that

(4.72) ∇Gξ
3(π, κ) = 1

|E3|
(
φ
ξ
3,p,q(|η(ω) ∩ E3|), φξ3,p,q(k(ω,3))

)
.

Since, for any ξ ∈ �, the Gξ
3(π, κ) are convex functions of (π, κ) which

converge to the finite limit function G(π, κ) as 3 ↑ Zd , G is convex on R2. �

Proof of Theorem 4.63.

(c) ⇐⇒ (d). By (4.36), |Wp,q | = |Rp,q | = 1 if and only if φ0
p,q = φ1

p,q .

By Proposition 4.6 and the fact that φ0
p,q ≤st φ

1
p,q , φ0

p,q = φ1
p,q if and only if

h0(p, q) = h1(p, q). Therefore, (c) and (d) are equivalent.

(a) ⇐⇒ (b) ⇐⇒ (c). This is inspired by a related computation for the Ising
model, [233]. Let p ∈ (0, 1), q ∈ (1,∞), and let (π, κ) satisfy (4.56). Recall the
functions Gξ

3 given in (4.71), and note from (4.72) that

(4.73)
dGξ

3

dπ
= 1

|E3|φ
ξ
3,p,q(|η(ω) ∩ E3|).

Since G is convex, Dq is countable. By the convexity of the Gξ
3,

(4.74)
dGξ

3

dπ
→ dG

dπ
as 3 ↑ Zd , ξ ∈ �, p /∈ Dq .

For any box 3 and any edge e ∈ E3,

1

|E3|φ
0
3,p,q(|η(ω) ∩ E3|) ≤ φ0

p,q(Je)(4.75)

≤ φ1
p,q(Je)

≤ 1

|E3|φ
1
3,p,q(|η(ω) ∩ E3|),
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where we have used the automorphism-invariance of φ0
p,q and φ1

p,q , together with
the stochastic ordering of measures. We deduce on passing to the limit as3 ↑ Zd

that

(4.76)
dG

dπ
= φ0

p,q (Je) = φ1
p,q(Je), e ∈ Ed , p /∈ Dq .

In particular, (a) implies (c).

Since G(π, κ) is a convex function of π , it has right and left derivatives
with respect to π , denoted respectively by dG/dπ±. Furthermore, dG/dπ+

(respectively, dG/dπ−) is right-continuous (respectively, left-continuous) and
non-decreasing. We shall prove that

(4.77)
dG

dπ+ − dG

dπ− = φ1
p,q (Je)− φ0

p,q(Je),

and that

(4.78) φ1
p,q(Je) = lim

p′↓p
φ0

p′,q(Je), φ0
p,q(Je) = lim

p′↑p
φ1

p′,q(Je).

In advance of proving (4.77) and (4.78), we note the following. By (4.77),
(a) and (c) are equivalent. By (4.77)–(4.78), the following three statements are
equivalent for any given π :

1. p /∈ Dq ,

2. h0(x, q) is right-continuous at x = p,

3. h1(x, q) is left-continuous at x = p.

By Proposition 4.28, h0(·, q) (respectively, h1(·, q)) is left-continuous (respec-
tively, right-continuous), and therefore (a) is equivalent to each of (b)(i) and (b)(ii).

It remains to prove (4.77) and (4.78). We concentrate first on the first equation
of (4.78). By Proposition 4.28(b), h1(·, q) is right-continuous, whence

h1(p, q) = lim
p′↓p

h1(p′, q).

Now Dq is countable, whence φ0
p′,q = φ1

p′,q , and in particular h0(p′, q) =
h1(p′, q), for almost every p′. By the monotonicity of h0(·, q),

h1(p, q) = lim
p′↓p

h0(p′, q).

as required. The second equation of (4.78) holds by a similar argument.

By the semicontinuity of the dG/dπ±, (4.76), and Proposition 4.28,

dG

dπ+ = lim
x↓π

x /∈D′
κ

d

dx
G(x, κ) = φ1

p,q(Je),

dG

dπ− = lim
x↑π

x /∈D′
κ

d

dx
G(x, κ) = φ0

p,q(Je),

c©Springer-Verlag 2006



92 Infinite-Volume Measures [4.5]

and (4.77) follows. �

Proof of Theorem 4.60. Parts (a) and (b) follow by the remarks prior to the state-
ment of the theorem, and we turn to part (c). Recall first that G is differentiable
at (π, κ), that is (π, κ) /∈ D ′, if and only if G possesses both partial derivatives
at (π, κ). It remains to show therefore that, for κ ∈ (0,∞), π ∈ D ′

κ if and only
if κ ∈ D ′′

π . Let κ ∈ (0,∞). Since, by Theorem 4.63, D ′
κ is exactly the set of

π = π(p) such that φ0
p,q 6= φ1

p,q , it suffices to show the following.

(4.79) Lemma. Let p ∈ (0, 1), q ∈ (1,∞), and let (π, κ) satisfy (4.56). Then
κ ∈ D ′′

π if and only if φ0
p,q 6= φ1

p,q .

Proof. The function Gξ
3 of (4.71) is convex in κ , whence

(4.80)
dGξ

3

dκ
→ dG

dκ
as 3 ↑ Zd , ξ ∈ �, κ /∈ D ′′

π ,

as in (4.74). Inequalities (4.75) become

1

|E3|φ
0
3,p,q(k(ω,3)) ≥ 1

|E3|φ
0
p,q(k(ω,3))(4.81)

≥ 1

|E3|φ
1
p,q(k(ω,3))

≥ 1

|E3|φ
1
3,p,q(k(ω,3)),

since k(ω,3) is decreasing in ω. Therefore, by Theorem 3.73(a),

dG0
3

dκ
≥ φ0

p,q

(
k(ω,3)

|E3|

)
(4.82)

≥ φ1
p,q

(
k(ω,3)

|E3|

)
≥ dG1

3

dκ
, κ /∈ D ′′

π .

For ω ∈ � and x ∈ Zd , let Cx = Cx (ω) be the ω-open cluster at x , and |Cx |
the number of its vertices. As in [154, Section 4.1],

k(ω,3) =
∑

x∈3

1

|Cx ∩3| ≥
∑

x∈3

1

|Cx |
,

and

k(ω,3) −
∑

x∈3

1

|Cx |
=
∑

x∈3

(
1

|Cx ∩3| − 1

|Cx |

)

≤
∑

x∈3:
x↔∂3

1

|Cx ∩3| ≤ |∂3|.
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The φb
p,q are τ -ergodic for all translations τ other than the identity. By the ergodic

theorem applied to the family {|Cx |−1 : x ∈ Zd} of bounded random variables,

(4.83) φb
p,q

(
k(ω,3)

|3|

)
→ φb

p,q(|C0|−1) φb
p,q -a.s. and in L1, as 3 ↑ Zd .

By (4.80), (4.82), and (4.83),

(4.84)
dG

dκ
= 1

d
φ0

p,q(|C0|−1) = 1

d
φ1

p,q (|C0|−1), κ /∈ D ′′
π .

This implies by the next proposition that φ0
p,q = φ1

p,q for κ /∈ D ′′
π .

(4.85) Proposition. Let p ∈ (0, 1) and q ∈ [1,∞). If

(4.86) φ0
p,q(|C0|−1) = φ1

p,q (|C0|−1)

then φ0
p,q = φ1

p,q .

Proof. Suppose that (4.86) holds. There are two steps, in the first of which we
show that the law of the vertex-set of C0 is the same underφ0

p,q and φ1
p,q . As in the

proof of Proposition 4.6, there exists a probability measureµ on (�,F )×(�,F ),
with marginals φ0

p,q and φ1
p,q , and such that

(4.87) µ
(
{(ω0, ω1) ∈ �2 : ω0 ≤ ω1}

)
= 1.

By (4.87), Cx (ω0) ⊆ Cx (ω1) for all x ∈ Zd , µ-almost-surely. Let

E =
⋂

x∈Zd

{
(ω0, ω1) ∈ �2 : |Cx (ω0)|−1 = |Cx(ω1)|−1}.

By (4.86),
µ(E) ≤

∑

x∈Zd

µ
(|Cx(ω0)|−1 > |Cx (ω1)|−1) = 0,

whence µ(E) = 1.

If the vertex-set of C0(ω0) is a strict subset of that of C0(ω1), one of the two
statements following must hold:

(i) C0(ω0) is finite and |C0(ω0)|−1 > |C0(ω1)|−1,

(ii) C0(ω0) is infinite, |C0(ω0)|−1 = |C0(ω1)|−1 = 0, and there exists x ∈
C0(ω1) \ C0(ω0).

By (4.86), theµ-probability of (i) is zero. By considering the two sub-cases of (ii)
depending on whether Cx (ω0) is finite or infinite, we find that the µ-probabiltiy
of (ii) is no larger than

µ(E)+ µ(I (ω0) ≥ 2),
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where I (ω) is the number of infinite open clusters of ω. By Theorem 4.33(c),
µ(I (ω0) ≥ 2) = φ0

p,q (I ≥ 2) = 0. We conclude as required that the vertex-sets
of C0(ω0) and C0(ω1) are equal, µ-almost-surely. Therefore, by the translation-
invariance of the φb

p,q ,

(4.88) φ0
p,q(x /↔ y) = φ1

p,q(x /↔ y), x, y ∈ Zd .

We turn now to the second step. Let Je be the event that edge e = 〈x, y〉 is
open, and let Ke be the event that x and y are joined by an open path of Ed \ {e}.
By Proposition 4.37(a),

φb
p,q(Je) = pφb

p,q(Ke)+ p

p + q(1 − p)
φb

p,q(Ke)

= p +
(

p

p + q(1 − p)
− p

)
φb

p,q (Ke),

and

φb
p,q(Ke) =

φb
p,q (Je ∩ Ke)

φb
p,q (Je | Ke)

=
φb

p,q(x /↔ y)

q(1 − p)/[p + q(1 − p)]
.

Hence, by (4.88),

φ0
p,q(Je) = φ1

p,q(Je), e ∈ Ed ,

whence, by Proposition 4.6, φ0
p,q = φ1

p,q . �

We return now to the proof of Lemma 4.79. Suppose conversely that φ0
p,q =

φ1
p,q , and let q ′ < q < q ′′. By Proposition 4.28(a) applied to the decreasing

function |C|−1,

φ1
p,q ′(|C|−1) ≤ φ1

p,q(|C|−1) = φ0
p,q(|C|−1) ≤ φ0

p,q ′′(|C|−1).

Take the limits as q ′ ↑ q and q ′′ ↓ q along sequences satisfying κ(q ′), κ(q ′′) /∈
D ′′
π , and use the monotonicity of these functions to find from (4.84) and Proposition

4.28 that
dG

dκ+ − dG

dκ− = 1

d

[
φ0

p,q(|C|−1)− φ1
p,q(|C|−1)

]
= 0.

Therefore, G has the appropriate partial derivative at the point (π, κ), which is to
say that κ /∈ D ′′

π as required. � �

c©Springer-Verlag 2006



[4.6] Potts and random-cluster models on infinite graphs 95

4.6 Potts and random-cluster models on infinite graphs

The random-cluster model provides a way to study the Potts model on finite graphs,
as explained in Section 1.4. The method is valid for infinite graphs also, as
summarized in this section in the context of the lattice Ld = (Zd ,Ed).

Let p ∈ [0, 1), q ∈ {2, 3, . . . }, and p = 1 − e−β as usual, and consider
the free and wired random-cluster measures, φ0

p,q and φ1
p,q , respectively. The

corresponding Potts measures on Ld are the free and ‘1’ measures,

πβ,q = lim
3↑Zd

π3,β,q ,(4.89)

π1
β,q = lim

3↑Zd
π1
3,β,q .(4.90)

The measure π3,β,q is the Potts measure on3 given in (1.5). The measure π1
3,β,q

is the corresponding measure with ‘1’ boundary conditions, given as in (1.5) but
subject to the constraint that σx = 1 for all x ∈ ∂3. It is standard that the limits
in (4.89)–(4.90) exist. Probably the easiest proof of this is to couple the Potts
model with a random-cluster model on the same graph, and to use the stochastic
monotonicity of the latter to prove the existence of the infinite-volume limit.

We explain this in the wired case, and a similar argument holds in the free case.
Part (a) of the next theorem may be taken as the definition of the infinite-volume
Potts measure π1

β,q .

(4.91) Theorem [8].
(a) Let ω be sampled from � with law φ1

p,q . Conditional on ω, each vertex

x ∈ Zd is assigned a random spin σx ∈ {1, 2, . . . , q} in such a way that:

(i) σx = 1 if x ↔ ∞,

(ii) σx is uniformly distributed on {1, 2, . . . , q} if x /↔ ∞,

(iii) σx = σy if x ↔ y,

(iv) σx1, σx2 , . . . , σxn are independent whenever x1, x2, . . . , xn are in diff-
erent finite open clusters of ω.

The law of the spin vector σ = (σx : x ∈ Zd) is denoted byπ1
β,q and satisfies

(4.90).

(b) Let σ be sampled from 6 = {1, 2, . . . , q}Z
d

with law π1
β,q . Conditional on

σ , each edge e = 〈x, y〉 ∈ Ed is assigned a random state ω(e) ∈ {0, 1} in
such a way that:

(i) the states of different edges are independent,

(ii) ω(e) = 0 if σx 6= σy ,

(iii) if σx = σy , then ω(e) = 1 with probability p,

The edge-configurationω = (ω(e) : e ∈ Ed) has law φ1
p,q .

A similar theorem is valid for the pair φ0
p,q,πβ,q , with the difference that infinite

open clusters are treated in the same way as finite clusters in part (a).
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The Potts model has a useful property called ‘reflection-positivity’. It is natural
to ask whether a similar property is satisfied by general random-cluster measures.
It was shown in [43] that the answer is negative for non-integer values of the
parameter q .

Proof of Theorem 4.91. (a) Of the possible proofs we select one using coupling,
another approach may be found in [142]. Let3n = [−n, n]d and write�n = �1

3n

and φ1
n = φ1

3n ,p,q
. Let � be the set of all vectors ω = (ω1, ω2, . . . ) such that:

ωn ∈ �n andωn ≥ ωn+1 for n ≥ 1. Recall from the proof of Theorem 4.19(a) that
φn ≥st φn+1 for n ≥ 1, and that φn ⇒ φ1

p,q as n → ∞. By [237, Thm 6.1], there
exists a measure µ on � such that, for each n ≥ 1, the law of the nth component
ωn is φn . For ω ∈ �, the limit ω∞ = limn→∞ ωn exists by monotonicity and,
by the weak convergence of the sequence (φ1

n : n = 1, 2, . . . ), ω∞ has law φ1
p,q .

Note that

(4.92) for e ∈ Ed , ωn(e) = ω∞(e) for all large n.

Let S = (Sx : x ∈ Zd) be independent random variables with the uniform
distribution on the spin set {1, 2, . . . , q}. The Sx are chosen independently of the
ω, and we abuse notation by writing µ for the required product measure on the
product space � ×6.

Let ω ∈ �, and let the vector τ (ω) = (τw(ω) : w ∈ Zd) be given by

τw(ω) =
{

1 if w ↔ ∞ in the configuration ω,

Szw otherwise,

where zw = zw(ω) is the earliest vertex in the lexicographic ordering of Zd that
belongs to the (finite) ω-open cluster at w.

Let us check that:

(4.93) for w ∈ Zd , τw(ωn) = τw(ω∞) for all large n.

If w ↔ ∞ in ω∞, then w ↔ ∞ in ωn for all large n, whence τw(ωn) =
1 = τw(ω∞) for all n. If, on the other hand, w /↔ ∞ in ω∞ then, by (4.92),
Cw(ωn) = Cw(ω∞) for all large n. Therefore, τw(ωn) = τw(ω∞) for all large n,
and (4.93) is proved.

Let W be a finite subset of Zd and, for ω ∈ �, define the vector τW (ω) =
(τw(ω) : w ∈ W ). By Theorem 1.13(a), for n sufficiently large that W ⊆ 3n ,
(4.94)
µ(τW (ωn) = α) = π1

3n ,β,q(σw = αw for w ∈ W ), α ∈ {1, 2, . . . , q}W .

By (4.93), the vector τW (ωn) is constant for all large (random) n. Therefore,

τW (ωn) → τW (ω∞) as n → ∞,
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and so, for α ∈ {1, 2, . . . , q}W ,

µ(τW (ωn) = α) → µ(τW (ω∞) = α) as n → ∞,

by the bounded convergence theorem. By (4.94), the vector τW (ω∞) has as law
the infinite-volume limit of the finite-volume measure π1

3,β,q , and the claim is
proved.

(b) We continue to employ the notation of the proof of part (a), where it was proved
that the vector τ (ω∞) = (τx(ω∞) : x ∈ Zd) has law π1

β,q . Since ω∞ has law

φ1
p,q , it suffices to show that the conditional law of ω∞ given τ (ω∞) is that of the

given recipe.

By the definition of τ (ω∞), the edge e = 〈x, y〉 satisfies ω∞(e) = 0 whenever
τx (ω∞) 6= τy(ω∞). Let ei = 〈xi , yi 〉, i = 1, 2, . . . , n, be a finite collection of
distinct edges, and let D be the subset of �×6 given by

D =
{
(ω, S) : τxi (ω) = τyi (ω) for i = 1, 2, . . . , n

}
.

For any event A defined in terms of the states of the edges ei , we have by (4.92)–
(4.93) that

µ
(
ω∞ ∈ A

∣∣ (ω∞, S) ∈ D
)

= lim
n→∞µ

(
ωn ∈ A

∣∣ (ωn, S) ∈ D
)
.

The law of ωn is φn and, by Theorem 1.13(a), the vector (τx (ωn) : x ∈ 3n) has
law π1

3n,β,q
. By Theorem 1.13(b), the last probability equals ψp(A) where ψp is

product measure on {0, 1}n with density p. The claim follows. �
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Chapter 5

Phase Transition

Summary. When q ∈ [1,∞), there exists a critical value pc(q) of the edge-
parameter p, separating the phase with no infinite cluster from the phase
with one or more infinite clusters. Partial results are known for both phases,
but important open problems remain. In the subcritical phase, exponential
decay is proved for sufficiently small p, and is conjectured to hold for
all p < pc(q). Much is known for the supercritical phase subject to the
assumption that p exceeds a certain ‘slab critical point’ p̂c(q), conjectured
to equal pc(q). The Wulff construction is a high point of the theory of the
random-cluster model.

5.1 The critical point

The random-cluster model possesses an infinite open cluster if and only if p is
sufficiently large. There is a critical value of p separating the regime in which all
open clusters are finite from that in which infinite clusters exist. We explore this
phase transition in this chapter. With the exception of the final Section 5.8,we shall
assume for the entirety of the chapter that q ∈ [1,∞), and we shall concentrate on
the extremal random-cluster measures φ0

p,q and φ1
p,q . The quantities of principal

interest are the φb
p,q -percolation-probabilities,

(5.1) θb(p, q) = φb
p,q(0 ↔ ∞), b = 0, 1.

We define the critical points

(5.2) pb
c (q) = sup

{
p : θb(p, q) = 0

}
, b = 0, 1.

By Proposition 4.28(a), the θb(·, q) are non-decreasing functions, and therefore

(5.3) θb(p, q)

{ = 0 if p < pb
c (q),

> 0 if p > pb
c (q).
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By Theorem 4.63, φ0
p,q = φ1

p,q for almost every p ∈ [0, 1]. Therefore,

θ0(p, q) = θ1(p, q) for almost every p, and hence p0
c (q) = p1

c(q). Hence-
forth, we use the abbreviated notation

(5.4) pc(q) = p0
c (q) = p1

c(q),

and we refer to pc(q) as the critical point of the random-cluster model.

It is almost trivial to prove that pc(q) = 1 in the very special case when
the number d of dimensions satisfies d = 1. In contrast, it is fundamental that
0 < pc(q) < 1 when d ≥ 2. Not a great deal is known in general1 about the
way in which pc(q) behaves when viewed as a function of q . The following basic
inequalities are consequences of the comparison inequalities of Proposition 4.28.

(5.5) Theorem [8]. We have that

(5.6)
1

pc(q)
≤ 1

pc(q ′)
≤ q/q ′

pc(q)
− q

q ′ + 1, 1 ≤ q ′ ≤ q.

From (5.6) we obtain that

(5.7) 0 ≤ pc(q)− pc(q
′) ≤ (q − q ′)pc(q ′)(1 − pc(q ′))

q ′ + (q − q ′)pc(q ′)
, 1 ≤ q ′ ≤ q,

whence, on setting q ′ = 1,

(5.8) 0 ≤ pc(q)− pc(1) ≤ (q − 1)pc(1)(1 − pc(1))

1 + (q − 1)pc(1)
, q ≥ 1.

Since 0 < pc(1) < 1 for d ≥ 2, [154, Thm 1.10], we deduce the important fact
that

(5.9) 0 < pc(q) < 1, q ≥ 1.

By (5.7), pc(q) is a continuous non-decreasing function of q . Strict mono-
tonicity2 requires the further comparison inequality of Theorem 3.24.

(5.10) Theorem [151]. Let d ≥ 2. When viewed as a function of q, the critical
value pc(q) is Lipschitz-continuous and strictly increasing on the interval [1,∞).

In advance of proving Theorems 5.5 and 5.10, we state and prove two facts of
independent interest.

1Except for its behaviour for large q, see Theorem 7.34.
2The strict monotonicity of pc(q) as a function of the underlying lattice was proved in [39],

see also [148].

c©Springer-Verlag 2006



100 Phase Transition [5.1]

(5.11) Proposition [8]. For p ∈ [0, 1] and q ∈ [1,∞),

φ1
3,p,q(0 ↔ ∂3) → θ1(p, q) as 3 ↑ Zd .

There is no ‘elementary’ proof of the corresponding fact for the 0-boundary-
condition measure φ0

3,p,q , and indeed this is unproven for general pairs (p, q).

(5.12) Proposition. Let φ3,3 ⊆ Zd , be probability measures on (�,F ) indexed
by boxes 3 and satisfying φ3 ⇒ φ as 3 ↑ Zd . If φ has the 0/1-infinite-cluster
property, then

φ3(x ↔ y) → φ(x ↔ y), x, y ∈ Zd .

Proof of Proposition 5.11. It is clear that

φ1
p,q(0 ↔ ∂3) ≤ φ1

3,p,q(0 ↔ ∂3) ≤ φ1
3,p,q(0 ↔ ∂1) for1 ⊆ 3,

by positive association and the fact that {0 ↔ ∂3} ⊆ {0 ↔ ∂1} when 1 ⊆ 3.
We take the limits as 3 ↑ Zd and 1 ↑ Zd in that order to obtain the claim. �

Proof of Proposition 5.12. Let x and y be vertices in a box 1. Then,

φ3(x ↔ y) ≥ φ3(x ↔ y in 1)

→ φ(x ↔ y in 1) as 3 ↑ Zd

→ φ(x ↔ y) as 1 ↑ Zd .

Furthermore,

φ3(x ↔ y, x /↔ y in 1) ≤ φ3(x, y ↔ ∂1, x /↔ y in 1)

→ φ(x, y ↔ ∂1, x /↔ y in 1) as3 ↑ Zd

→ φ(x, y ↔ ∞, x /↔ y) as1 ↑ Zd .

The last probability equals 0 since φ has the 0/1-infinite-cluster property. �

Proof of Theorem 5.5. Let 1 ≤ q ′ ≤ q and

(5.13)
p′

q ′(1 − p′)
= p

q(1 − p)
.

We apply Theorem 3.21 to the probability φ1
3,p,q(0 ↔ ∂3). By Proposition 5.11,

on letting 3 ↑ Zd ,

θ1(p′, q) ≤ θ1(p′, q ′) ≤ θ1(p, q).
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If p′ < pc(q ′), then θ1(p′, q ′) = 0, so that θ1(p′, q) = 0 and therefore p′ ≤
pc(q). This implies that pc(q ′) ≤ pc(q), the first inequality of (5.6). Similarly, if
p < pc(q) then p′ ≤ pc(q ′), whence

pc(q)

q(1 − pc(q))
≤ pc(q ′)

q ′(1 − pc(q ′))
,

and hence the second inequality of (5.6). �

Proof of Theorem 5.10. By (5.7),

0 ≤ pc(q)− pc(q ′)
q − q ′ ≤ 1

4q ′ , 1 ≤ q ′ < q,

whence pc(q) is Lipschitz-continuous on the interval [1,∞). Turning to strict
monotonicity, let γ be given as in Theorem 3.24 with 1 = 2d , and let
1 ≤ q2 < q1. Recall that γ (p, q) is continuous, and is strictly increasing in
p and strictly decreasing in q . We apply Theorem 3.24 to the graph obtained from
3 by identifying all vertices of ∂3, with spanning set W = 3 \ ∂3 satisfying
deg(W ) = 2d , to obtain that

φ1
3,p1,q1

(0 ↔ ∂3) ≤ φ1
3,p2,q2

(0 ↔ ∂3) if γ (p1, q1) ≤ γ (p2, q2).

Let 3 ↑ Zd and deduce by Proposition 5.11 that

(5.14) θ1(p1, q1) ≤ θ1(p2, q2) if γ (p1, q1) ≤ γ (p2, q2).

We claim that

(5.15) γ (pc(q1), q1) ≥ γ (pc(q2), q2).

Suppose on the contrary that γ (pc(q1), q1) < γ (pc(q2), q2). By the continuity
of γ , there exist p1 > pc(q1) and p2 < pc(q2) such that γ (p1, q1) < γ (p2, q2).
By (5.14),

θ1(p1, q1) ≤ θ1(p2, q2).

However, θ1(p1, q1) > 0 and θ1(p2, q2) = 0, a contradiction, and thus (5.15)
holds. If pc(q1) = pc(q2), then the strict monotonicity of γ (·, ·) and the fact that
q2 < q1 are in contradiction of (5.15). Therefore pc(q2) < pc(q1) as claimed. �
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5.2 Percolation probabilities

The continuity of the percolation probabilities θb(p, q) is related to the uniqueness
of random-cluster measures, in the sense that the θb(·, q) are continuous at p if
and only if there is a unique random-cluster measure at this value.

(5.16) Theorem. Let d ≥ 2 and q ∈ [1,∞).

(a) The function θ0(·, q) is left-continuous on (0, 1] \ {pc(q)}.
(b) The function θ1(·, q) is right-continuous on [0, 1).

(c) θ0(p, q) = θ1(p, q) if and only if p /∈ Dq , where Dq is that of Theorem
4.63.

(d) Let p 6= pc(q). The functions θ0(·, q) and θ1(·, q) are continuous at the
point p if and only if p /∈ Dq .

Clearly, θ0(p, q) = θ1(p, q) = 0 if q ∈ [1,∞) and p < pc(q), and hence
Dq ∩[0, pc(q)) = ∅, by part (c). It is presumably the case that θ0(·, q) and θ1(·, q)
are continuous except possibly at p = pc(q). In addition it may be conjectured
that θ0(·, q) is left-continuous on the entire interval (0, 1]. A verification of this
conjecture would include a proof that

θ0(pc(q), q) = lim
p↑pc(q)

θ0(p, q) = 0.

This would in particular solve one of the famous open problems of percolation
theory, namely to show that θ(pc(1), 1) = 0, see [154, 161].

The functions θ0(p, q) and θ1(p, q) play, respectively, the roles of the mag-
netizations for Potts measures with free and constant-spin boundary conditions.
We state this more fully as a theorem. As in Section 1.3, we write σu for the
spin at vertex u of a Potts model with q local states (where q is now assumed to
be integral). We denote by πβ,q (respectively, π1

β,q) the ‘free’ (respectively, ‘1’)

q-state Potts measure on Ld with parameter β, see (4.89)–(4.90).

(5.17) Theorem. Let d ≥ 2, p ∈ (0, 1), q ∈ {2, 3, . . . }, and let β satisfy
p = 1 − e−β . We have that:

(1 − q−1)θ0(p, q)2 = lim
|u|→∞

{
πβ,q(σ0 = σu)− q−1},(5.18)

(1 − q−1)θ1(p, q) = π1
β,q(σ0 = 1)− q−1.(5.19)

Equation (5.19) is standard (see [8, 108, 150]). Equation (5.18) is valid also
with θ0(p, q) and πβ,q replaced, respectively, by θ1(p, q) and π1

β,q , and the proof
is similar.

Proof of Theorem 5.16. We shall prove part (a) at the end of Section 8.8. Part (b)
is a consequence of Proposition 4.28(b) applied to the indicator function of the
increasing closed event {0 ↔ ∞}. Part (d) follows from (a)–(c) and Theorem 4.63,
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on noting that the θb(·, q) are non-decreasing. It remains to prove (c). Certainly
φ0

p,q = φ1
p,q if p /∈ Dq (by Theorem 4.63), whence θ0(p, q) = θ1(p, q) for

p /∈ Dq . Suppose conversely that q > 1 and

(5.20) θ0(p, q) = θ1(p, q).

We shall now give the main steps in a proof that

(5.21) h0(p, q) = h1(p, q).

This will imply by Theorem 4.63 that p /∈ Dq .

Let e = 〈u, v〉 be an edge, and Je the event that e is open. For w ∈ Zd , let
Iw = {w ↔ ∞}, and let Hw be the event that w is in an infinite open path of
Ed \ {e}. As in the proof of Proposition 4.6, there exists a probability measure ψ
on (�,F )2 with marginals φ0

p,q and φ1
p,q , and assigning probability 1 to the set

of pairs (ω0, ω1) ∈ �2 satisfying ω0 ≤ ω1. Let F(ω) be the set of vertices that
are joined to infinity by open paths of the configuration ω ∈ �. We have that

(5.22) 0 ≤ ψ
(
F(ω0) 6= F(ω1)

)
≤
∑

w∈Zd

{
φ1

p,q(Iw)− φ0
p,q(Iw)

}
= 0,

by (5.20). The event Je ∩ Iu ∩ Iv is increasing, whence

(5.23) φ0
p,q(Je ∩ Iu ∩ Iv) ≤ φ1

p,q(Je ∩ Iu ∩ Iv).

Also,

φ0
p,q(Je ∩ Iu ∩ Iv) = φ0

p,q(Je ∩ Hu ∩ Hv)(5.24)

= φ0
p,q(Je | Hu ∩ Hv)φ

0
p,q (Hu ∩ Hv).

However,
φ0

p,q(Je | Hu ∩ Hv) = φ1
p,q (Je | Hu ∩ Hv)

by Proposition 4.37(a) and the fact (Theorem 4.34) that φ0
p,q , φ

1
p,q ∈ Rp,q . In

addition, φ0
p,q(Hu ∩ Hv) ≤ φ1

p,q(Hu ∩ Hv) since Hu ∩ Hv is an increasing event.
Therefore (5.24) implies that

φ0
p,q(Je ∩ Iu ∩ Iv) ≤ φ1

p,q(Je | Hu ∩ Hv)φ
1
p,q(Hu ∩ Hv)(5.25)

= φ1
p,q(Je ∩ Hu ∩ Hv) = φ1

p,q(Je ∩ Iu ∩ Iv).

Adding (5.23) and (5.25), we obtain that

φ0
p,q (Iu ∩ Iv) ≤ φ1

p,q(Iu ∩ Iv).
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Equality holds here by (5.22), and therefore equality holds in (5.23), which is to
say that

(5.26) φ0
p,q(Je ∩ Iu ∩ Iv) = φ1

p,q(Je ∩ Iu ∩ Iv).

It is obvious that

(5.27) φ0
p,q(Je ∩ Iu ∩ Iv) = φ1

p,q (Je ∩ Iu ∩ Iv)

since both sides equal 0; the same equation holds with Iu ∩ Iv replaced by Iu ∩ Iv .

Finally, we prove that

(5.28) φ0
p,q(Je ∩ Iu ∩ Iv) = φ1

p,q (Je ∩ Iu ∩ Iv)

which, in conjunction with (5.26), (5.27), and the subsequent remark, implies the
required (5.21) by addition. Let ǫ > 0. Let 3 be a box containing u and v, and
let A3 = {u /↔ ∂3, v /↔ ∂3}. We have that

0 ≤ φ0
p,q(A3)− φ1

p,q(A3)

→ φ0
p,q(Iu ∩ Iv)− φ1

p,q (Iu ∩ Iv) as 3 ↑ Zd

≤ ψ
(
F(ω0) 6= F(ω1)

)
= 0,

by (5.22). Therefore,

0 ≤ φ0
p,q(A3)− φ1

p,q(A3) < ǫ for all large 3,

and we pick 3 accordingly. The events {u /↔ ∂3} and {v /↔ ∂3} are cylinder
events, whence

(5.29) 0 ≤ φ0
1,p,q(A3)− φ1

1,p,q(A3) < 2ǫ for all large 1,

and we pick 1 ⊇ 3 accordingly. We now employ a certain coupling of φ0
1,p,q

and φ1
1,p,q . Similar couplings will be encountered later.

(5.30) Proposition. Let p ∈ (0, 1) and q ∈ [1,∞), and let 3, 1 be finite boxes
of Zd satisfying 3 ⊆ 1. For ω ∈ �, let G = G(ω) = {x ∈ 3 : x /↔ ∂3}.
There exists a probability measure ψ1 on �0

1 ×�1
1, with marginals φ0

1,p,q and

φ1
1,p,q , that assigns probability 1 to pairs (ω0, ω1) satisfying ω0 ≤ ω1, and with

the additional property that, conditional on the set G = G(ω1), both marginals
of ψ1 on EG equal the free random-cluster measure φG,p,q .
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Writing G for the class of all subsets of 3 that contain both u and v, we have
by the proposition that

φ1
1,p,q(Je ∩ A3) =

∑

g∈G

φ1
1,p,q(Je, G = g) =

∑

g∈G

ψ1
(
ω1 ∈ Je, G(ω1) = g

)

=
∑

g∈G

ψ1
(
ω1 ∈ Je

∣∣G(ω1) = g
)
ψ1(G(ω1) = g)

=
∑

g∈G

ψ1
(
ω0 ∈ Je

∣∣G(ω1) = g
)
ψ1(G(ω1) = g)

= ψ1(ω0 ∈ Je, ω1 ∈ A3)

≤ ψ1(ω0 ∈ Je, ω0 ∈ A3) = φ0
1,p,q(Je ∩ A3).

Therefore,

0 ≤ φ0
1,p,q(Je ∩ A3)− φ1

1,p,q(Je ∩ A3)

= ψ1(ω0 ∈ Je, ω0 ∈ A3, ω1 /∈ A3)

≤ ψ1(ω0 ∈ A3, ω1 /∈ A3) ≤ 2ǫ,

by (5.29). Let 1 ↑ Zd , 3 ↑ Zd , and ǫ ↓ 0 in that order, to obtain (5.28). �

Proof of Proposition 5.30. Let φb = φb
1,p,q . Since φ0 ≤st φ

1, there exists

a coupled probability measure on �0
1 × �1

1 with marginals φ0, φ1, and that
allocates probability 1 to the set of pairs (ω0, ω1) with ω0 ≤ ω1. This fact is
immediate from the stochastic ordering, but we require in addition the special
property stated in the proposition, and to this end we shall develop a special
coupling not dissimilar to those used in [38] and [259, p. 254]. We do this by
building a random configuration (ω0, ω1) ∈ �0

1 × �1
1 in a sequential manner,

and we shall speak of ω0 (respectively, ω1) as the lower (respectively, upper)
configuration. We shall proceed edge by edge, and shall check the (conditional)
stochastic ordering at each stage.

After stage n we will have found the (paired) states of edges belonging to some
subset Sn of E1. We begin with S0 = ∅, and we build inwards starting at the
boundary of1. Let (el : l = 1, 2, . . . , L) be a deterministic ordering of the edges
in E1. Let ej1 be the earliest edge in this ordering that is incident to some vertex
in ∂1, and let

I b
0 = {every edge outside E1 has state b}, b = 0, 1.

By the usual stochastic ordering,

(5.31) φ0(ej1 is open | I 0
0 ) ≤ φ1(ej1 is open | I 1

0 ).

Therefore, we may find {0, 1}-valued random variablesω0(ej1),ω1(ej1)with mean
values as in (5.31) and satisfying ω0(ej1) ≤ ω1(ej1). We set S1 = {ej1} and

I b
1 = I b

0 ∩ {ej1 has state ωb(ej1)}, b = 0, 1.
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We iterate this process. After stage r , we will have gathered the information I 0
r

(respectively, I 1
r ) relevant to the lower (respectively, upper) process, and we will

proceed to consider the state of some further edge ejr+1 . The analogue of (5.31),
namely

φ0(ejr+1 is open | I 0
r ) ≤ φ1(ejr+1 is open | I 1

r ),

is valid since, by construction, ω0(ejs ) ≤ ω1(ejs ) for s = 1, 2, . . . , r . Thus we
may pick a pair of random states ω0(ejr+1), ω1(ejr+1) for the new edge, these
having the correct marginals and satisfying ω0(ejr+1) ≤ ω1(ejr+1).

Next is described how we choose the edges ej2, ej3, . . . . Suppose the first r
stages of the above process are complete, and write Sr = {ejs : s = 1, 2, . . . , r}.
Let Kr be the set of vertices x ∈ 1 such that there exists a path π joining x to
some z ∈ ∂1, with the property that ω1(e) = 1 for all e ∈ π . (This requires that
every edge e in π has been considered in the first r stages, and that the ω1-value
of each such e was found to be 1.) We let ejr+1 be the earliest edge in the given
ordering of E1 that does not belong to Sr but possesses an endvertex in Kr .

Let us call a temporary halt at the stage when no new edge can be found. At
this stage, R say, we have revealed the states of edges in a certain (random) set
SR . Let FR be the set of edges in E1 that are closed in the upper configuration.
By construction, FR contains exactly those edges of E1 that have at least one
endvertex in K R and that have been determined to be closed in the upper configu-
ration. By the ordering, the edges in FR are closed in the lower configuration also.
By construction, the lower (respectively, upper) configuration so far revealed is
governed by the measure φ0 (respectively, φ1).

Suppose for the moment that 3 = 1, in which case G(ω1) = 1 \ K R . When
extending the upper and lower configurations to edges in EG , the only relevant
information gathered to date is that all edges in the edge-boundary1eG are closed
in both configurations. We may therefore complete ω0, ω1 at one stroke by taking
them to be equal, with (common) law φ0

G,p,q . This proves the proposition in the
special case when 3 = 1. Consider now the general case 3 ⊆ 1.

We explain next how to re-start the process at stage R. We began above with the
‘seed’ ∂1 and we built a set of edges connected to ∂1 by paths of open edges in
the upper configuration, together with its closed edge-boundary. Having reached
stage R, we choose a vertex x ∈ 1 satisfying x /∈ K R ∪ (3 \ ∂3) that is incident
to some edge of FR . We then re-start the process with x as seed, and we continue
until we have revealed the open cluster Cx (ω1) at x in the upper configuration.
We add the vertex-set of Cx (ω1) to K R to obtain a larger set K ′. To FR , we add all
edges incident to vertices in this cluster that are closed in the upper configuration,
obtaining thus a larger set F ′. Next, we find another seed y /∈ K ′ ∪ (3 \ ∂3)
incident to some edge in F ′. This process is iterated until no new seed may be
found.

At the end of all this, we have revealed the paired states of all edges in some
set S. Let T be the union of the vertex-sets of the open clusters of all seeds. Since
no further seed may be found, it is the case that G(ω1) = 1 \ T . As before, the
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lower and upper configurations may be completed at one stroke by sampling the
states of edges in EG according to the free measure φG,p,q . �

Proof of Theorem 5.17. Let µ be the (coupled) probability measure on � × 6

given by the recipe of Theorem 4.91(a). We have that

π1
β,q(σ0 = 1) = µ(σ0 = 1 | 0 ↔ ∞)θ1(p, q)

+ µ(σ0 = 1 | 0 /↔ ∞)[1 − θ1(p, q)]

= θ1(p, q)+ 1

q
[1 − θ1(p, q)],

and (5.19) follows.

Turning to (5.18), we have similarly to the above that

(1 − q−1)φ0
p,q(0 ↔ u) = πβ,q(σ0 = σu)− 1

q
, u ∈ Zd .

The claim is proven once we have shown that

(5.32) φ0
p,q(0 ↔ u) → θ0(p, q)2 as |u| → ∞.

By the 0/1-infinite-cluster property of φ0
p,q , see the remark after (4.36),

φ0
p,q (0 ↔ u) = φ0

p,q(0 ↔ ∞, u ↔ ∞)+ φ0
p,q(u ∈ C, |C| < ∞).

The last probability tends to zero as |u| → ∞. Also,

φ0
p,q(0 ↔ ∞, u ↔ ∞) → φ0

p,q(0 ↔ ∞)2 as |u| → ∞,

since φ0
p,q is mixing, see Corollary 4.23. �

5.3 Uniqueness of random-cluster measures

We record in this section some information about the set of values of p at which
there exists a unique random-cluster measure.

(5.33) Theorem [8, 152]. Let q ∈ [1,∞) and d ≥ 2. There exists a unique
random-cluster measure, in that |Wp,q | = |Rp,q | = 1, if either of the following
holds:

(a) θ0(p, q) = θ1(p, q), which is to say that p /∈ Dq ,

(b) p > p′, where p′ = p′(q, d) ∈ [pc(q), 1) is a certain real number.

By part (a), there is a unique random-cluster measure for any p such that
θ1(p, q) = 0, [8, Thm A.2]. In particular, there exists a unique random-cluster
measure throughout the subcritical phase, that is, when 0 ≤ p < pc(q). It is an
important open problem to establish the same conclusion when p > pc(q).
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(5.34) Conjecture. Let q ∈ [1,∞) and d ≥ 2. We have that φ0
p,q = φ1

p,q , and
therefore |Wp,q | = |Rp,q | = 1, if and only if either of the following holds:

(i) either p < pc(q) or p > pc(q),

(ii) p = pc(q) and θ1(pc(q), q) = 0.

Slightly more is known in the case of two dimensions. It is proved in Theorem
6.17 that there is a unique random-cluster measure when d = 2 and p 6= psd(q),
where psd(q) = √

q/(1 + √
q) is the ‘self-dual’ value of p. It is conjectured that

pc(q) = psd(q) for q ∈ [1,∞).

Proof of Theorem 5.33. The sufficiency of (a) was proved in Theorem 5.16(c).

We sketch a proof that φ0
p,q = φ1

p,q if p is sufficiently close to 1. There

are certain topological complications in this3, and we refrain from giving all the
relevant details, most of which may be found in a closely related passage of [211,
Section 2]. We begin by defining a lattice L with the same vertex set as Ld but
with edge-relation

x ∼ y if |xi − yi | ≤ 1 for 1 ≤ i ≤ d.

For ω ∈ �, we call a vertex x white if ω(e) = 1 for all e incident with x in Ld , and
black otherwise. For any set V of vertices of L, we define its black cluster B(V ) as
the union of V together with the set of all vertices x0 of L for which the following
holds: there exists a path x0, e0, x1, e1, . . . , en−1, xn of alternating vertices and
edges of L such that x0, x1, . . . , xn−1 /∈ V , xn ∈ V , and x0, x1, . . . , xn−1 are
black. Note that the colours of vertices in V have no effect on B(V ), and that
V ⊆ B(V ). Let

‖B(V )‖ = sup

{
d∑

i=1

|xi − yi | : x ∈ V , y ∈ B(V )

}
.

When V is a singleton, V = {x} say, we abbreviate B(V ) to B(x).

For an integer n and a vertex x , the event {‖B(x)‖ ≥ n} is a decreasing event,
whence

φ0
p,q(‖B(x)‖ ≥ n) ≤ φ0

3,p,q(‖B(x)‖ ≥ n) for any box 3(5.35)

≤ φ3,π (‖B(x)‖ ≥ n),

where φ3,π is product measure on E3 with density π = p/[p + q(1 − p)],
and we have used the comparison inequality of Proposition 4.28(a). By a Peierls
argument (see [211, pp. 151–152]) there exists α(p) such that: the percolation
(product) measure φπ = lim3↑Zd φ3,π satisfies

(5.36) φπ (‖B(x)‖ ≥ n) ≤ e−nα(p), n ≥ 1,

3An alternative approach may be based on the methods of Section 7.2.
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and furthermore α(p) > 0 if p is sufficiently large, say p > p′ for some
p′ ∈ [pc(q), 1).

Let A be an increasing cylinder event, and find a finite box3 such that A ∈ F3.
Let 1 be a box satisfying 3 ⊆ 1. For any subset S of 3 = Zd \ 3 containing
∂1, we define the ‘internal boundary’ D(S) of S to be the set of all vertices x of
L satisfying:

(a) x /∈ S,

(b) x is adjacent in L to some vertex of S,

(c) there exists a path of Ld from x to some vertex in 3, this path using no
vertex of S.

Let S̃ = S ∪ D(S), and denote by I (S) the set of vertices x0 for which there exists
a path x0, e0, x1, e1, . . . , en−1, xn of Ld with xn ∈ 3, xi /∈ S̃ for all i . Note that
every vertex of ∂ I (S) is adjacent to some vertex in D(S). We shall concentrate
on the case S = B(∂1).

Let ǫ > 0 and p > p′, where p′ is given after (5.36). By (5.35)–(5.36), there
exists a box1′ sufficiently large that

(5.37) φ0
p,q(K3,1) ≥ 1 − ǫ, 1 ⊇ 1′,

where K3,1 = {
B̃(∂1) ∩3 = ∅

}
. We pick1′ accordingly, and let 1 ⊇ 1′.

Assume that K3,1 occurs, so that I = I (B(∂1)) satisfies I ⊇ 3. Let H3 be
the set of all subsets h of 3 such that h̃ ⊆ 3. We note three facts about B(∂1)
and D(B(∂1)):

(a) D(B(∂1)) is Ld -connected in that, for all pairs x, y ∈ D(B(∂1)), there
exists a path of Ld joining x to y using vertices of D(B(∂1)) only,

(b) every vertex in D(B(∂1)) is white,

(c) D(B(∂1)) is measurable with respect to the colours of vertices in I =
Zd \ I , in the following sense: for any h ∈ H3, the event {B(∂1) = h,
D(B(∂1)) = D(h)} lies in the σ -field generated by the colours of vertices
in I (h).

Claim (a) may be proved by adapting the argument used to prove [211, Lemma
2.23]; claim (b) is a consequence of the definition of D(B(∂1)); claim (c) holds
since D(B(∂1)) is part of the boundary of the black cluster of L generated by
∂1. Full proofs of (a) and (c) are not given here. They would be rather long, and
would have much in common with [211, Section 2].

Let h ∈ H3. The φ0
p,q -probability of A, conditional on {B(∂1) = h}, is given

by the wired measure φ1
I (h),p,q . This holds since: (a) every vertex in ∂ I (h) is

adjacent to some vertex of D(h), and (b) D(h) is Ld -connected and all vertices in
D(h) are white. Therefore, by conditional probability and positive association,

φ0
p,q(A) ≥ φ0

p,q

(
φ1

I,p,q (A)1K3,1

)
(5.38)

≥ φ0
p,q

(
φ1
1,p,q(A)1K3,1

)
since I ⊆ 1

≥ φ1
1,p,q(A)− ǫ by (5.37).
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Let 1 ↑ Zd and ǫ ↓ 0 in that order, and deduce that φ0
p,q ≥st φ

1
p,q . Since

φ0
p,q ≤st φ

1
p,q , we conclude that φ0

p,q = φ1
p,q . �

5.4 The subcritical phase

The random-cluster model is said to be in the subcritical phase when p < pc(q),
and this phase is the subject of the next three sections. Let q ∈ [1,∞), d ≥ 2, and
p < pc(q). By Theorem 5.33(a), φ0

p,q = φ1
p,q , and hence |Wp,q | = |Rp,q | = 1.

We shall denote the unique random-cluster measure by φ0
p,q .

The subcritical phase is characterized by the (almost-sure) absence of an infi-
nite open cluster. Thus all open clusters are almost-surely finite, and one seeks
estimates on the tail of the size of such a cluster. As described in [154, Chapter 6],
one may study both the ‘radius’ and the ‘volume’ of a cluster C . We concentrate
here on the cluster C = C0 at the origin, and we define its radius4 by

(5.39) rad(C) = max{‖y‖ : y ∈ C} = max{‖y‖ : 0 ↔ y}.

It is immediate that rad(C) ≥ n if and only if 0 ↔ ∂3n , where 3n = [−n, n]d .
We note for later use that there exists a positive constant β = β(d) such that

(5.40) β|C|1/d ≤ rad(C)+ 1 ≤ |C|.

It is believed that the tails of both rad(C) and |C| decay exponentially when
p < pc(q), but this is currently unproven. It is easy to prove that the appropriate
limits exist, but the non-triviality of the limiting values remains open. That is, one
may use subadditivity to show the existence of the constants

ψ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q(0 ↔ ∂3n)

}
,(5.41)

ζ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q(|C| ≥ n)

}
.(5.42)

It is quite another matter to show as expected that

(5.43) ψ(p, q) > 0, ζ(p, q) > 0 for p < pc(q).

We confine ourselves in this section to ‘soft’ arguments concerning the existence
of ψ and ζ ; the ‘harder’ arguments relevant to strict positivity are deferred to the
next two sections. We begin by considering the radius of the cluster at the origin.
The existence of the limit in (5.41) relies essentially on positive association. We
write en = (n, 0, 0, . . . , 0).

4Note the use of the distance function ‖ · ‖ rather than the function | · | of [154].
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(5.44) Theorem. Let µ be an automorphism-invariant probability measure on
(�,F ) which is positively associated. The limits

ν(µ) = lim
n→∞

{
− 1

n
logµ(0 ↔ en)

}
,

ψ(µ) = lim
n→∞

{
− 1

n
logµ(0 ↔ ∂3n)

}
,

exist and satisfy 0 ≤ ν(µ) = ψ(µ) ≤ ∞, and

µ(0 ↔ en) ≤ e−nν(µ), µ(0 ↔ ∂3n) ≤ (2d26d)nd−1e−nψ(µ), n ≥ 1.

(5.45) Corollary. Let p ∈ (0, 1] and q ∈ [1,∞). The limit

ψ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q(0 ↔ en)

}
= lim

n→∞

{
− 1

n
logφ0

p,q(0 ↔ ∂3n)

}

exists and satisfies 0 ≤ ψ = ψ(p, q) < ∞. There exists a constant σ = σ(d)
such that

(5.46) φ0
p,q(0 ↔ en) ≤ e−nψ , φ0

p,q(0 ↔ ∂3n) ≤ σnd−1e−nψ , n ≥ 1.

Proofs of Theorem 5.44 and Corollary 5.45. The proof of Theorem 5.44 follows
exactly that of the corresponding parts of [154,Thms 6.10, 6.44], and the details are
omitted. For the second proof, it suffices to check that φ0

p,q satisfies the conditions
of Theorem 5.44. �

We turn next to the volume |C| of the open cluster at the origin. A probability
measureµ on (�,F ) is said to satisfy the ‘uniform insertion-tolerance condition’
if, for some α, β ∈ (0, 1),

α ≤ µ(Je | Te) ≤ β, µ-almost-surely, for e ∈ Ed ,

where Je is the event that e is open. Let E be a finite set of edges, and let
K1, K2, . . . , K I be the components of the graph (Zd ,Ed \ E). We say that µ has
the ‘empty-boundary Markov property’ if: for all such sets E , given that every
edge in E is closed, the configurations on the Ki , i = 1, 2, . . . , I , are independent.

(5.47) Theorem. Let µ be a translation-invariant, positively associated proba-
bility measure on (�,F ) with the uniform insertion-tolerance property for some
α, β ∈ (0, 1), and also the empty-boundary Markov property. The limit

(5.48) ζ(µ) = lim
n→∞

{
− 1

n
logµ(|C| = n)

}

exists and satisfies

(5.49) µ(|C| = n) ≤ (1 − α)2

α
ne−nζ(µ), n ≥ 1.

Furthermore, 0 ≤ ζ(µ) ≤ − log[α(1 − β)2(d−1)].

It is an easy consequence of (5.48)–(5.49) that

(5.50) − 1

n
logµ(n ≤ |C| < ∞) → ζ(µ) as n → ∞.
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(5.51) Corollary. Let p ∈ (0, 1) and q ∈ [1,∞). The limit

ζ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q (|C| = n)

}

exists and satisfies

φ0
p,q(|C| = n) ≤ q2(1 − p)2

p[p + q(1 − p)]
ne−nζ .

Proofs of Theorem 5.47 and Corollary 5.51. These are obtained by following the
proof of [154, Thm 6.78], and the details are omitted. �

Since φ0
p,q(0 ↔ ∞) > 0 when p > pc(q), it is elementary that

(5.52) ψ(p, q) = 0 for p > pc(q).

It is rather less obvious that

(5.53) ζ(p, q) = 0 for p > pc(q),

and this is implied (for sufficiently large p) by Theorem 5.108. It is an important
open problem to prove that ψ(p, q) > 0 and ζ(p, q) > 0 when p < pc(q).

(5.54) Conjecture (Exponential decay). Let q ∈ [1,∞). Thenψ(p, q) > 0 and
ζ(p, q) > 0 whenever p < pc(q).

A partial result in this direction is the following rather weak statement; related
results may be obtained via Theorem 3.79 as in Theorem 6.30.

(5.55) Theorem. Let q ∈ [1,∞) and 0 < p < pc(1). Then ψ(p, q) > 0 and
ζ(p, q) > 0.

Proof. Let q ∈ [1,∞), while noting in passing that the method of proof is valid
even when q ∈ (0, 1), using the comparison inequalities of Theorem 3.21 as in
(5.118). By Proposition 4.28(a), φ0

p,q ≤st φp . Therefore,

φ0
p,q(0 ↔ ∂3n) ≤ φp(0 ↔ ∂3n),

whence ψ(p, q) ≥ ψ(p, 1), and the strict positivity of ψ follows by the corre-
sponding statement for percolation, [154, Thm 6.14].

Similarly,

φ0
p,q (|C| = n) ≤ φ0

p,q(|C| ≥ n) ≤ φp(|C| ≥ n).

By [154, eqn (6.82)],

− 1

n
logφp(|C| ≥ n) → ζ(p, 1) as n → ∞.

Furthermore, ζ(p, 1) > 0 when p < pc(1), by [154, Thm 6.78]. �
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5.5 Exponential decay of radius

We address next the exponential decay of the radius of an open cluster. The
existence of the limit

(5.56) ψ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q (0 ↔ ∂3n)

}

follows from Corollary 5.45, and the problem is to determine for which p, q it is
the case that ψ(p, q) > 0. See Conjecture 5.54.

In the case of percolation, a useful intermediate step was the proof by Ham-
mersley [177] that ψ(p, 1) > 0 whenever the two-point connectivity function is
summable, that is,

φp(|C|) =
∑

x∈Zd

φp(0 ↔ x) < ∞.

Similarly, Simon [300] and Lieb [234] proved the exponential decay of the two-
point function of Ising and other models under a summability assumption on this
function, see Section 9.3. Such conclusions provoke the following question in the
current context: if φ0

p,q(0 ↔ ∂3n) decays at some polynomial rate as n → ∞,
then must it necessarily decay at an exponential rate? An affirmative answer is
provided in the discussion that follows.

We concentrate here on the quantity

(5.57) L(p, q) = lim sup
n→∞

{
nd−1φ0

p,q(0 ↔ ∂3n)
}
.

By the comparison inequality, Proposition 4.28, L(p, q) is non-decreasing in p,
and therefore,

L(p, q)

{
< ∞ if p < p̃c(q),

= ∞ if p > p̃c(q),

where

(5.58) p̃c(q) = sup
{

p : L(p, q) < ∞
}
.

Clearly p̃c(q) ≤ pc(q), and equality is believed to hold.

(5.59) Conjecture [163]. If q ∈ [1,∞), then p̃c(q) = pc(q).

Certainly p̃c(q) = pc(q) when q = 1, see [154], and we shall see at Theorem
7.33 that this holds also when q is sufficiently large. It is in addition valid for
q = 2, see Theorem 9.53 and the remarks thereafter.

The condition L(p, q) < ∞ amounts to the statement that the radius R =
rad(C)has a tail decaying at least as fast as n−(d−1). This is slightly weaker than the
moment condition φ0

p,q(R
d−1) < ∞. In fact, L(p, q) = 0 if φ0

p,q(R
d−1) < ∞,

since

nd−1φ0
p,q(0 ↔ ∂3n) = nd−1φ0

p,q(R ≥ n) ≤
∞∑

k=n

kd−1φ0
p,q(R = k).
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There is a converse statement. If p < p̃c(q) then L(p, q) < ∞, implying that

ncφ0
p,q (0 ↔ ∂3n) → 0 for all c satisfying c < d − 1.

This in turn implies, as in [164, Exercise 5.6.4], that φ0
p,q(R

c) < ∞ for all
c < d − 1.

We state next the main conclusion of this section. A related result is to be found
at Theorem 5.86.

(5.60) Theorem. Let q ∈ [1,∞). The function ψ in (5.56) satisfies ψ(p, q) > 0
whenever 0 < p < p̃c(q).

The proof, which is delayed until later in the section, uses the method of ex-
ponential steepness described in Section 3.5. Let A be an event, and recall from
(2.54) the definition of the random variable HA,

HA(ω) = inf

{∑

e

|ω′(e)− ω(e)| : ω′ ∈ A

}
, ω ∈ �.

We shall consider the event An = {0 ↔ ∂3n}, and we write Hn for HAn . The
question of ascertaining the asymptotics of Hn may be viewed as a first-passage
problem. Imagine you are travelling from 0 to ∂3n ; travel along open edges
is instantaneous, but along each closed edge requires time 1. The fastest route
requires time Hn, and one is interested in the time-constant η, defined as η =
limn→∞{n−1 Hn}.
(5.61) Theorem (Existence of time-constant). Letµ be a probability measure on
(�,F ) that is automorphism-invariant and Zd -ergodic. The deterministic limit

η(µ) = lim
n→∞

{
1

n
Hn

}

exists µ-almost-surely and in L1(µ).

The constant η(µ) is called the time-constant associated with µ.

Proof. See the comments in [119, 211], and the later paper [58]. The existence
of the limit η is a consequence of a theorem attributed in [119, p. 748, Erratum]
and [211, p. 259] to Derrienic. �

We apply this to the measure µ = φ0
p,q to deduce the existence, φ0

p,q -almost-
surely, of the associated (deterministic) time-constant

(5.62) η(p, q) = lim
n→∞

{
1

n
Hn

}
.

By Proposition 4.28, η(p, q) is non-increasing in p, and we define

(5.63) ptc(q) = sup
{

p : η(p, q) > 0
}
.

We seek a condition under which η(p, q) > 0. As usual, C denotes the vertex set
of the open cluster at the origin.
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(5.64) Theorem (Positivity of time-constant) [163]. Let p ∈ (0, 1) and q ∈
[1,∞). If φ0

p,q(|C|2d+ǫ) < ∞ for some ǫ > 0, then η(p, q) > 0.

We define the further critical point

(5.65) pg(q) = sup
{

p : ψ(p, q) > 0
}
,

with ψ(p, q) as in (5.56). The correlation length ξ(p, q) is defined by

ξ(p, q) = ψ(p, q)−1,

subject to the convention that 0−1 = ∞. Note that ξ(p, q) is non-decreasing in p.
Thusφ0

p,q(0 ↔ ∂3n) decays exponentially as n → ∞ if and only if ξ(p, q) < ∞.

(5.66) Theorem. Let q ∈ [1,∞). It is the case that ptc(q) = pg(q).

By this theorem and the prior observations,

(5.67) ptc(q) = pg(q) = p̃c(q) ≤ pc(q),

with equality conjectured. From the next section onwards, we shall use the ex-
pression p̃c(q) for the common value of ptc(q), pg(q), p̃c(q).

In the percolation case (when q = 1), the above first-passage problem and
the associated time-constant η(p, q) have been studied in detail; see [208, 211].
Several authors have given serious attention to a closely related question when
q = 2 and d = 2, namely, the corresponding question for the two-dimensional
Ising model with the ‘passage time’ Hn replaced by the minimum number of
changes of spin along paths from the origin to ∂3n , see [1, 90, 119]. The time-
constant in the Ising case cannot exceed the corresponding random-cluster time-
constantη(p, 2), since each edge of the Ising model having endvertices with unlike
spins gives rise to a closed edge in the (coupled) random-cluster model.

We turn now to the proofs of Theorems 5.60 and 5.66, and shall use the
‘exponential-steepness’ Theorems 3.42 and 3.45. Let A be an increasing cylinder
event. We apply (3.44) and (3.47) to the random-cluster measure φ0

3m ,p,q
, noting

that
q(1 − r)

s − r
< C <

q

s − r
.

Let m → ∞ to obtain that, for 0 < r < s < 1,

φ0
r,q(A) ≤ φ0

s,q(A) exp
{−4(s − r)φ0

s,q(HA)
}
,(5.68)

φ0
r,q(HA) ≥

− logφ0
s,q(A)

log[q/(s − r)]
− C

C − 1
.(5.69)

Note in passing that inequalities (5.68) and (5.69),with A = An = {0 ↔ ∂3n},
imply that the correlation length ξ(p, q) is strictly increasing in p whenever it is
finite, cf. [154, Thm 6.14].
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Proof of Theorem 5.66. Let r < s < ptc(q). Since s < ptc(q), there exists
γ = γ (s, q) > 0 such that

(5.70) φs,q(Hn) ≥ nγ, n ≥ 1.

Let A = An = {0 ↔ ∂3n}. In conjunction with (5.70), (5.68) implies the
exponential decay of φr,q(An), whence r ≤ pg(q). Therefore ptc(q) ≤ pg(q).

Conversely, suppose that r < s < pg(q). There exists α = α(s, q) > 0 such
that φ0

s,q(An) ≤ e−αn. By (5.69) with A = An and some β = β(r, s, q) > 0,

φ0
r,q(Hn) ≥ − log(e−αn)

log[q/(s − r)]
− β = αn

log[q/(s − r)]
− β,

whence r ≤ ptc(q). Therefore pg(q) ≤ ptc(q). �

There are two stages in the proof of Theorem 5.60. In the first, we apply
(5.68)–(5.69) with A = An , and we utilize an iterative scheme to prove that
φ0

p,q (An) decays ‘near-exponentially’ when p < p̃c(q). In the second stage, we
use Theorems 5.64 and 5.66 to deduce full exponential decay. The conclusion of
the first stage may be summarized as follows.

(5.71) Lemma. Let q ∈ [1,∞), and let 0 < p < p̃c(q). There exist constants
c = c(p, q) ∈ (0,∞), 1 = 1(p, q) ∈ (0, 1) such that

(5.72) φ0
p,q(An) ≤ exp(−cn1), n ≥ 1.

Lemma 5.71 will be proved by an iterative scheme which may be contin-
ued further. If this is done, one obtains that φ0

p,q(An) decays at least as fast as

exp(−αkn/ logk n) for any k ≥ 1, where αk = αk(p, q) > 0 and logk n is the kth
iterate of logarithm, that is,

log1 x = log x, logk x = log(1 ∨ logk−1 x), k ≥ 2.

Proof of Lemma 5.71. We shall use (5.68) and (5.69) in an iterative scheme. In
the following, we shall sometimes use real quantities when integers are required.
All terms of the form o(1) or O(1) are to be interpreted in the limit as n → ∞.

Fix q ∈ [1,∞). For p < p̃c(q), there exists c1(p) > 0 such that

(5.73) φ0
p,q(An) ≤ c1(p)

nd−1 , n ≥ 1.

Let 0 < r < s < t < p̃c(q). By (5.69),

φ0
s,q(Hn) ≥

− logφ0
t,q(An)

log D
+ O(1) ≥ (d − 1) log n

log D
+ O(1)
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where 1 < D = q/(t − s) < ∞. We substitute this into (5.68) to obtain that

(5.74) φ0
r,q (An) ≤ c2(r)

nd−1+12(r)
, n ≥ 1,

for some strictly positive and finite c2(r) and12(r). This holds for all r < p̃c(q),
and is an improvement in order of magnitude over (5.73).

We obtain next an improvement of (5.74). Let m be a positive integer, and let
Ri = im for i = 0, 1, . . . , K , where K = ⌊n/m⌋. Let L i = {∂3Ri ↔ ∂3Ri+1},
and let Fi = HL i , the minimal number of extra edges needed for L i to occur.
Clearly,

(5.75) Hn ≥
K−1∑

i=0

Fi ,

since every path from 0 to ∂3n traverses each annulus 3Ri+1 \3Ri . There exists
a constant ρ ∈ [1,∞) such that |∂3R | ≤ ρRd−1 for all R. By the translation-
invariance of φ0

p,q ,

(5.76) φ0
p,q (L i ) ≤ |∂3Ri |φ0

p,q(Am) ≤ ρnd−1φ0
p,q(Am).

Let 0 < r < s < p̃c(q), and let c2 = c2(s), 12 = 12(s) where the functions
c2(p) and12(p) are chosen as in (5.74). By (5.74) and (5.76),

(5.77) φ0
s,q(L i ) ≤ ρnd−1 c2

md−1+12
≤ 1

2

if

(5.78) m = [(3ρc2)n
d−1]1/(d−1+12),

and we choose m accordingly (here and later, we take n to be large). Now Fi ≥ 1
if L i does not occur, whence

(5.79) φ0
s,q(Hn) ≥

K−1∑

i=0

[1 − φ0
s,q(L i )] ≥ 1

2 K

by (5.75) and (5.77). Also,

(5.80) K = ⌊n/m⌋ ≥ an13

by (5.78), for appropriate constants a ∈ (0,∞) and 13 ∈ (0, 1). By (5.68) and
(5.79),

(5.81) φ0
r,q(An) ≤ exp(−c3n13), n ≥ 1,
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where c3 = c3(r) ∈ (0,∞) and 13 = 13(r) ∈ (0, 1). �

Proof of Theorem 5.64. Assume the given hypothesis. We shall use an extension
of an argument taken from [119]. Let 5n be the set of all paths of Ld joining the
origin to ∂3n . With T (π) denoting the number of closed edges in a path π , we
have that

T (π)+ 1 ≥
∑

x∈π

1

|Cx ∩ π |

where the summation is over all vertices x of π , Cx is the open cluster at x , and
|Cx ∩ π | is the number of vertices common to Cx and π . By Jensen’s inequality,

T (π)+ 1

|π | ≥ 1

|π |
∑

x∈π

1

|Cx |
≥
{

1

|π |
∑

x∈π
|Cx |

}−1

.

Therefore,
Hn + 1

n
≥ inf
π∈5n

{
T (π)+ 1

|π |

}
≥ 1

Kn
,

where

Kn = sup
π∈5n

{
1

|π |
∑

x∈π
|Cx |

}
.

By (5.62), φ0
p,q(η ≥ K −1) = 1, where

(5.82) K = lim sup
m→∞

[
sup

{
1

|π |
∑

x∈π
|Cx | : |π | = m

}]
.

The (inner) supremum is over all paths from the origin containing m vertices. We
propose to show that φ0

p,q(K < ∞) = 1, whence η > 0 as required.

Let {C̃x : x ∈ Zd} be a collection of independent subsets of Zd with the
property that C̃x has the same law as Cx . We claim, as in [119], that the family
{|Cx | : x ∈ Zd} is dominated stochastically by {Mx : x ∈ Zd}, where

Mx = sup
{
|C̃y | : y ∈ Zd , x ∈ C̃y

}
,

and we shall prove this inductively. Let v1, v2, . . . be a deterministic ordering
of Zd . Given the random variables {C̃x : x ∈ Zd}, we shall construct a family
{Dx : x ∈ Zd} having the same joint law as {Cx : x ∈ Zd} and satisfying: for
each x , there exists y such that Dx ⊆ C̃y . First, we set Dv1 = C̃v1 . Given
Dv1 , Dv2 , . . . , Dvn , we define E = ⋃n

i=1 Dvi . If vn+1 ∈ E , we set Dvn+1 = Dvj

for some j such that vn+1 ∈ Dvj . If vn+1 /∈ E , we proceed as follows. Let
1e E be the set of edges of Zd having exactly one endvertex in E . We may find
a (random) subset F of C̃vn+1 such that F has the conditional law of Cvn+1 given
that all edges in 1e E are closed; we now set Dvn+1 = F . We are using two
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properties of φ0
p,q here. Firstly, the law of Cvn+1 given Cv1,Cv2 , . . . ,Cvn depends

only on 1e E , and secondly, φ0
p,q is positively associated. We obtain the required

stochastic domination accordingly.

By (5.82) (and subject to K and the C̃x being defined on the same probability
space),

K ≤ lim sup
m→∞

[
sup

{
1

|π |
∑

x∈π
Mx : |π | = m

}]
a.s.

By [119, Lemma 2],

K ≤ 2 lim sup
m→∞

[
sup

{
1

|Ŵ|
∑

x∈Ŵ
|C̃x |2 : |Ŵ| = m

}]
a.s.

where the (inner) supremum is over all animals Ŵ of Ld having m vertices and
containing the origin. By the main result of [97], the right side is almost-surely
finite so long as each |C̃x |2 has finite (d + ǫ)th moment for some ǫ > 0. The
required conclusion follows. �

Proof of Theorem 5.60. Let q ∈ [1,∞) and p < p̃c(q). Find r such that p <
r < p̃c(q). By Lemma 5.71, there exist c,1 > 0 such that

φ0
r,q (An) ≤ exp(−cn1), n ≥ 1.

This implies that φ0
r,q (|C|2d+1) < ∞. By Theorem 5.64, η(r, q) > 0, and so

r ≤ ptc(q). By Theorem 5.66, r ≤ pg(q), and the claim follows. �

5.6 Exponential decay of volume

For percolation, there is a beautiful proof of the exponential decay of volume
using only that of radius. This proof hinges on the independence of the states of
different edges, and may therefore not be extended at present to general random-
cluster models, see [154, Thm 6.78]. We shall instead make use here of the block
arguments of [209], obtaining thereby the exponential decay of volume subject to
a condition on p believed but not known to hold throughout the subcritical phase.
This condition differs slightly from that of the last section in that it involves the
decay rate of certain finite-volume probabilities.

Let a ≥ 1, and let

(5.83) La(p, q) = lim sup
n→∞

{
nd−1φ1

3an,p,q(0 ↔ ∂3n)
}
.

As at (5.57), La(p, q) is non-decreasing in p, and therefore,

La(p, q)

{ = 0 if p < p̃a
c (q),

∈ (0,∞] if p > p̃a
c (q),
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where

(5.84) p̃a
c (q) = sup

{
p : La(p, q) = 0

}
.

Clearly p̃a
c (q) is non-decreasing in a, and furthermore p̃a

c (q) ≤ p̃c(q) for all
a ≥ 1. We set

p̃∞
c (q) = lim

a→∞ p̃a
c (q).

It is elementary that p̃∞
c (q) ≤ p̃c(q), and we conjecture that equality holds.

(5.85) Conjecture. If q ∈ [1,∞), then p̃∞
c (q) = p̃c(q).

Here is the main result of this section.

(5.86) Theorem. Let q ∈ [1,∞). There exists ρ(p, q), satisfying ρ(p, q) > 0
when p < p̃∞

c (q), such that

φ0
p,q(|C| ≥ n) ≤ e−nρ, n ≥ 1.

The hypothesis p < p̃∞
c (q) is slightly stronger than that of Theorem 5.60, and

so is the conclusion, since φ0
p,q(rad(C) ≥ n) ≤ φ0

p,q(|C| ≥ n).

Proof. We adapt the arguments of [209, Section 2], from which we extract the
main steps. For N ≥ 1 and i = 1, 2, . . . , d , we define the box

TN (i) = [0, 3N]i−1 × [0, N] × [0, 3N]d−i .

For ω ∈ �, an i -crossing of TN (i) is an open path x0, e0, x1, e1, . . . , em of alter-
nating vertices and edges of TN (i) such that the i th coordinate of x0 (respectively,
xm) is 0 (respectively, N). Such crossings are in the short direction. For b > 3,
we define

(5.87) τ b
N = φ1

3bN ,p,q

(
TN (i) has an i -crossing

)
,

noting by rotation-invariance that τ b
N does not depend on the value of i .

Let N be a fixed positive integer. From Ld we construct a new lattice L as
follows. First, Lhas vertex set Zd . Two vertices x, y of L are deemed adjacent in L

if and only if |xi − yi | ≤ 3 for all i = 1, 2, . . . , d . The better to distinguish vertices
of Ld and L, we shall use bold letters to indicate the latter. Let ω ∈ �. Vertex x of
L is coloured white if there exists i ∈ {1, 2, . . . , d} such that Nx + TN (i) has an
i -crossing, and is coloured black otherwise. The event {x is white} is increasing,
and is defined in terms of the states of edges in the box 1(x) = Nx + [0, 3N]d .

The following lemma relates the size of the open cluster C at the origin of Ld

to the sizes of white clusters of L. For x ∈ Zd , we write Wx for the connected
cluster of white vertices of L containing x.
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(5.88) Lemma [209]. Let ω ∈ �. Assume that C contains some vertex v with

v ∈
d∏

j=1

[
x j N, (x j + 1)N − 1

]
,

for some x = (x1, x2, . . . , xd ) ∈ Zd satisfying

(5.89) |x j | ≥ 2 for some j ∈ {1, 2, . . . , d}.

There exists a neighbour y of the origin 0 of L such that

(5.90) |Wy| ≥ 7−2d
( |C| − (4N)d

Nd

)
.

Proof. This may be derived from that of [209, Lemma 2]. �

Since 0 has fewer than 7d neighbours on L,

(5.91) φ0
p,q(|C| ≥ n) ≤ 7dφ0

p,q(|W0| ≥ An − 1),

where A = 7−2d N−d . Therefore,

(5.92) φ0
p,q(|C| ≥ n) ≤ 7d

∑

m≥An−1

am Mp,q (m),

where am is the number of connected sets w of m vertices of L containing 0, and

Mp,q (m) = max
{
φ0

p,q(all vertices in w are white) : |w| = m
}
.

By the final display of the proof of [209, Lemma 3],

(5.93) am ≤ 72d(7de)m,

and it remains to bound φ0
p,q(all vertices in w are white).

Fix b > 3, to be chosen later. Let w be as above with |w| = m. There exists a
constant c = c(b) > 0 such that: w contains at least t vertices y(1), y(2), . . . , y(t)
such that t ≥ cm and the boxes Ny(r)+3bN , r = 1, 2, . . . , t , of Ld are disjoint.
We may choose such a set {y(r) : r = 1, 2, . . . , t} in a way which depends only
on the set w. Then

(5.94) φ0
p,q(all vertices in w are white) ≤ φ0

p,q

(
y(r) is white, r = 1, 2, . . . , t

)
.

The events {y(r) is white}, r = 1, 2, . . . , t , are dependent under φ0
p,q . However,

by positive association,
(5.95)
φ0

p,q

(
y(r) is white, r = 1, 2, . . . , t

) ≤ φ0
p,q

(
y(r) is white, r = 1, 2, . . . , t

∣∣ E
)
,
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where E is the event that every edge e having both endvertices in Ny(r)+∂3bN, for
any given r ∈ {1, 2, . . . , t}, is open. Under the conditional measure φ0

p,q(· | E),
the events {y(r) is white}, r = 1, 2, . . . , t , are independent, whence by symmetry

φ0
p,q

(
y(r) is white, r = 1, 2, . . . , t

)
≤
{
φ1
3bN ,p,q(0 is white)

}t(5.96)

≤ (dτ b
N )

t .

By (5.92)–(5.96),

(5.97) φ0
p,q(|C| ≥ n) ≤ 7d

∑

m≥An−1

72d(7de)m(dτ b
N )

⌊cm⌋.

Let a > 1 and choose b > 3 + a, noting that x +3aN ⊆ 3bN for all x ∈ Zd

lying in the region R = [0, 3N]d−1 × {0}. If TN (d) has a d-crossing, there exists
x ∈ R such that x ↔ x + ∂3N . Since φ1

3bN ,p,q
≤st φ

1
3aN ,p,q

,

τ b
N ≤

∑

x∈R

φ1
3bN ,p,q(x ↔ x + ∂3N )(5.98)

≤ |R|φ1
3aN ,p,q(0 ↔ ∂3N )

= (3N + 1)d−1φ1
3aN ,p,q(0 ↔ ∂3N ).

Let p < p̃∞
c (q), and choose a > 1 such that p < p̃a

c (q). With b > 3 + a, the
right side of (5.98) may be made as small as required by a suitably large choice
of N , and we choose N in such a way that 7de(dτ b

N )
c < 1

2 . Inequality (5.97)
provides the required exponential bound. �

5.7 The supercritical phase and the Wulff crystal

Percolation theory is a source of intuition for the more general random-cluster
model, but it has not always been possible to make such intuition rigorous. This
is certainly so in the supercritical phase, where several of the basic questions
remain unanswered to date. We shall work in this section with the free and wired
measures, φ0

p,q and φ1
p,q , and we assume throughout that q ∈ [1,∞).

The first property of note is the almost-sure uniqueness of the infinite open
cluster. A probability measure φ on (�,F ) is said to have the 0/1-infinite-cluster
property if the number I of infinite open clusters satisfies φ(I ∈ {0, 1}) = 1.
We recall from Theorem 4.33(c) that every translation-invariant member of the
closed convex hull of Wp,q has the 0/1-infinite-cluster property. By ergodicity,
see Corollary 4.23, we arrive at the following.
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(5.99) Theorem (Uniqueness of infinite open cluster). Let p ∈ [0, 1] and q ∈
[1,∞). We have for b = 0, 1 that

(5.100) φb
p,q(I = 1) = 1 whenever θb(p, q) > 0.

Let q ∈ [1,∞) and p > pc(q). There exists (φb
p,q -almost-surely) a unique

infinite open cluster. What may be said about the shapes and sizes of finite open
clusters? One expects finite clusters to have properties broadly similar to those
of supercritical percolation. Much progress has been made in recent years to-
wards proofs of such statements, but a vital step remains unresolved. As was true
formerly for percolation, the results in question are proved only for p exceeding
a certain ‘slab critical point’ p̂c(q), and it is an important open problem to prove
that p̂c(q) = pc(q) for all q ∈ [1,∞).

Here is an illustration. It is fundamental for supercritical percolation that the
tails of the radius and volume of a finite open cluster decay exponentially in n and
n(d−1)/d respectively, see [154, Thms 8.18, 8.65]. This provokes an important
problem for the random-cluster model whose full resolution remains open. Partial
results are known when p > p̂c(q), see Theorems 5.104 and 5.108.

(5.101) Conjecture. Let p ∈ [0, 1] and q ∈ [1,∞). There exist σ = σ(p, q),
γ = γ (p, q), satisfying σ(p, q), γ (p, q) > 0 when p > pc(q), such that

φ1
p,q(n ≤ rad(C) < ∞) ≤ e−nσ ,

φ1
p,q (n ≤ |C| < ∞) ≤ e−γ n(d−1)/d

, n ≥ 1.

We turn next to a discussion of the so-called ‘Wulff construction’. Much atten-
tion has been paid to the sizes and shapes of clusters formed in models of statistical
mechanics. When a cluster C is infinite with a strictly positive probability, but
is constrained to have some large finite size N , then C is said to form a large
‘droplet’. The asymptotic shape of such a droplet, in the limit of large N , is pre-
scribed in general terms by the theory of the so-called Wulff crystal5. In the case
of the random-cluster model, we ask for properties of the open cluster C at the
origin, conditional on the event {N ≤ |C| < ∞} for large N . The rigorous picture
is not yet complete, but techniques have emerged through the work of Cerf and
Pisztora, [83, 84, 276], which may be expected to reveal in due course a complete
account of the Wulff theory of large finite clusters in the random-cluster model. A
full account of this work would be too lengthy for inclusion here, and we content
ourselves with a brief summary.

The study of the Wulff crystal is bound up with the law of the volume of a finite
cluster, see Conjecture 5.101. It is straightforward to adapt the corresponding
percolation proof (see [154, Thm 8.61]) to obtain that

φ1
p,q(|C| = n) ≥ e−γ n(d−1)/d

,

5Such shapes are named after the author of [325]. The first mathematical results on Wulff
shapes were proved for the two-dimensional Ising model in [104], see the review [55].
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for some γ satisfying γ < ∞ when pc(q) < p < 1. It is believed as noted
above that this is the correct order for the rate of decay of φ1

p,q(|C| = n) when
p > pc(q).

Before continuing, we make a comment concerning the number of dimensions.
The case d = 2 is special (see Chapter 6). By the duality theory for planar
graphs, the dual of a supercritical random-cluster measure is a subcritical random-
cluster measure, and this permits the use of special arguments. We shall therefore
suppose for the majority of the rest of this section that d ≥ 3; some remarks about
the two-dimensional case are made after Theorem 5.108.

A partial account of the Wulff construction and the decay of volume of a finite
cluster is provided in [83], where the asymptotic shape of droplets is studied in
the special case of the Ising model. The proofs to date rely on two assumptions on
the value of p, namely that p is such that φ0

p,q = φ1
p,q , cf. Conjecture 5.34, and

secondly that p exceeds a certain ‘slab critical point’ p̂c(q) which we introduce
next.

Fix q ∈ [1,∞) and let d ≥ 3. Let S(L, n) be the slab given as

S(L, n) = [0, L − 1] × [−n, n]d−1,

and letψ L ,n
p,q = φ0

S(L ,n),p,q be the random-cluster measure on S(L, n)with param-
eters p, q , and with free boundary conditions. We denote by5(p, L) the property
that:

there exists α > 0 such that, for all n and all x ∈ S(L, n), ψ L ,n
p,q (0 ↔ x) > α.

It is not hard to see that 5(p, L) ⇒ 5(p′, L ′) if p ≤ p′ and L ≤ L ′, and it is
thus natural to define the quantities

(5.102) p̂c(q, L) = inf
{

p : 5(p, L) occurs
}
, p̂c(q) = lim

L→∞
p̂c(q, L).

Clearly, pc(q) ≤ p̂c(q) < 1. It is believed that equality holds in that p̂c(q) =
pc(q), and it is a major open problem to prove this6.

(5.103) Conjecture [276]. Let q ∈ [1,∞) and d ≥ 3. Then p̂c(q) = pc(q).

The case q = 1 of Conjecture 5.103 is special, since percolation enjoys a spatial
independence not shared with general random-cluster models. This additional
property has been used in the formulation of a type of ‘dynamic renormalization’,
which has in turn yielded a proof that p̂c(1) = pc(1) for percolation in three or
more dimensions, see [24], [154, Chapter 7], [161]. Such arguments have been
adapted by Bodineau to the Ising model, resulting in proofs that p̂c(2) = pc(2)
and that the pure phases are the unique extremal Gibbs states when p 6= pc(2), see

6One may expect the methods of Section 7.5 to yield a proof that p̂c(q) = pc(q) for sufficiently
large q.
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[53, 54]. Such arguments do not to date have a full random-cluster counterpart.
Instead, in the random-cluster setting, one exploits what might be termed ‘static
renormalization’ methods, or ‘block arguments’, see [83, 276]. One divides space
into blocks, constructs events of an appropriate nature on such blocks, having
large probabilities, and then allows these events to combine across space. There
have been substantial successes using this technique, of which the most striking is
the resolution (subject to side conditions) of the Wulff construction for the Ising
model.

We state next an exponential-decay theorem for the radius of a finite cluster;
the proof is given at the end of this section. It is an immediate corollary that
the ‘truncated two-point connectivity function’ φ1

p,q(x ↔ y, x /↔ ∞) decays
exponentially in the distance ‖x − y‖, whenever p > p̂c(q).

(5.104) Theorem. Let q ∈ [1,∞), d ≥ 3, and p > p̂c(q). There exists σ =
σ(p, q) > 0 such that

φ1
p,q(n ≤ rad(C) < ∞) ≤ e−nσ , n ≥ 1.

We turn now to the Wulff construction. Subject to a verification of Conjecture
5.103, and of a positive answer to the question of the uniqueness of random-cluster
measures when p > pc(q), the block arguments of Cerf and Pisztora yield a largely
complete picture of the Wulff theory of random-cluster models with q ∈ [1,∞),
see [83, 276] and also [84]. Paper [81] is a fine review of Wulff constructions for
percolation, Ising, and random-cluster models.

The reader is referred to [81] for an introductory discussion to the physical
background of the Wulff construction. It may be summarized as follows for
random-cluster models. Let 3n = [−n, n]d , and consider the wired random-
cluster measure φ1

3n ,p,q
with p > pc(q). The larger an open cluster, the more

likely it is to be joined to the boundary ∂3n . Suppose that we condition on the
event that there exists in3n an open cluster C that does not intersect ∂3n and that
has volume of the order of the volume nd of the box. What can be said about the
shape of C? Since p > pc(q), there is little cost in having large volume, and the
price of such a cluster accumulates around its external boundary. It turns out that
the price may be expressed as a surface integral of an appropriate function termed
‘surface tension’. This ‘surface tension’ may be specified as the exponential rate
of decay of a certain probability. The Wulff prediction for the shape of C is that,
when re-scaled in the limit of large n, it converges to the solution of a certain
variational problem, that is, the limit shape is obtained by minimizing a certain
surface integral subject to a constraint on its volume.

For A ⊆ Zd , let ρ(A) be the number of vertices x ∈ A such that x ↔ ∂A.
When p > pc(q), ρ(3n) has order |3n|. Let C be the open cluster at the origin,
and suppose we condition on the event {|C| ≥ αnd , C ∩ ∂3n = ∅} where α > 0.
This conditioning implies a change in value of ρ(3n)/|3n | amounting to a large
deviation. The link between Wulff theory and large deviations is made more
concrete in the next theorem. The set Dq is given in Theorem 4.63 as the (at most
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Figure 5.1. Images of the Wulff crystal for the two-dimensional Ising model at two distinct
temperatures, produced by simulation in time, and reproduced by courtesy of Raphaël Cerf.
The simulations were for finite time, and the images are therefore only approximations to the
true crystals. The pictures are 1024 pixels square, and the inverse-temperatures are β = 4

3 ,
10
11 .

The corresponding random-cluster models have q = 2 and p = 1 − e−4/3, 1 − e−10/11.

countable) set of values of p at which there is non-uniqueness of random-cluster
measures with cluster-weighting factor q .

(5.105) Theorem [81, 83]. Let q ∈ [1,∞) and d ≥ 3. Let p ∈ ( p̂c(q), 1) be
such that p /∈ Dq . There exists a bounded, closed, convex set W of Rd containing
the origin in its interior such that the following holds. Let θ = θ1(p, q), and let
α ∈ (0, θ) be sufficiently close to θ that the re-scaled crystal

W(α) =
(

1 − α

θ

)1/d W

|W |1/d

is a subset of the unit cube [− 1
2 ,

1
2 ]d . Then, as n → ∞,

1

nd−1
logφ1

3n ,p,q

(
ρ(3n) ≤ α|3n |) → −d

(
1 − α

θ

)(d−1)/d
|W |1/d .

The set W is termed the ‘Wulff crystal’, and |W | denotes its d-dimensional
Lebesgue measure. For proofs of this and later theorems, the reader is referred
to the original papers. The Wulff crystal for the closely related Ising model is
illustrated in Figure 5.1.

Theorem 5.105 may be stated without explicit reference to the set W . The
geometry of W becomes important in the complementary theorem, following. It
is framed in terms of the convergence of random measures, and the point mass on
the point x ∈ R is denoted by δx .
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(5.106) Theorem [81]. Let q ∈ [1,∞) and d ≥ 3. Let p ∈ ( p̂c(q), 1) be such
that p /∈ Dq . There exists a bounded, closed, convex set W of Rd containing the
origin in its interior such that the following holds. Under the conditional measure
obtained from φ1

p,q by conditioning on the event {nd ≤ |C| < ∞}, the random
measure

1

nd

∑

x∈C

δx/n

converges in probability, with respect to the bounded, uniformly continuous func-
tions, towards the set {θ1W (a + x) dx : a ∈ R} of measures, where θ = θ1(p, q).
The probabilities of deviations are of order exp(−cnd−1).

The meaning of the conclusion is as follows. For k ≥ 1, for any bounded,
uniformly continuous function f : Rd → Rk , and for any ǫ > 0, there exists
c = c(d, k, p, q, f, ǫ) > 0 such that

φ
1
p,q

(
∃ a ∈ Rd s.t.

∣∣∣∣
1

nd

∑

x∈C

f (x/n)− θ

∫

x∈W

f (a + x) dx

∣∣∣∣ ≤ ǫ

)
(5.107)

≥ 1 − e−cnd−1
, n ≥ 1,

where φ
1
p,q is the measure obtained from φ1

p,q by conditioning on the event

{nd ≤ |C| < ∞}, and | · | is the Euclidean norm on Rk . This is a way of saying
that the external boundary of a large finite open cluster with cardinality approxi-
mately nd resembles the boundary of a translate of nW . Within this boundary, the
open cluster has density approximately θ , whilst the density outside is zero. It is
presumably the case that the a in (5.107) may be chosen independently of f and
ǫ, but this has not yet been proved.

One important consequence of the analysis of [83] is an exact asymptotic for
the probability that |C| is large.

(5.108) Theorem [81]. Let q ∈ [1,∞) and d ≥ 3. Let p ∈ ( p̂c(q), 1) be such
that p /∈ Dq . There exists γ = γ (p, q) ∈ (0,∞) such that

1

nd−1 logφ1
p,q(n

d ≤ |C| < ∞) → −γ as n → ∞.

The above results are valid in two dimensions also although, as noted earlier,
this case is special. When d = 2, the slab critical point p̂c(q) is replaced by the
infimum of values p at which the dual process has exponential decay of connections
(see (6.5) for the relation between the dual and primal parameter-values). That is,
when d = 2,

p̂c(q) = q(1 − pg(q))

pg(q)+ q(1 − pg(q))

where pg(q) is given at (5.65). Fluctuations in droplet shape for random-cluster
models in two dimensions have been studied in [17, 18].
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Proof of Theorem 5.104. We adapt the proof of [87] as reported in [154,Thm 8.21].
We shall build the cluster C at the origin (viewed as a set of open edges) step by
step, in a manner akin to the proof of Proposition 5.30. First, we order the edges
of Ld in some arbitrary but deterministic way, and we write ei for the i th edge in
this ordering. Let ω ∈ �. We shall construct a sequence (C0, D0), (C1, D1), . . .

of pairs of (random) edge-sets such that Ci ⊆ Ci+1 and Di ⊆ Di+1 for each i .
Every edge in each Ci (respectively, Di ) will be open (respectively, closed). Let
C0 = D0 = ∅. Having found (Cm, Dm ) for m = 0, 1, . . . , n, we find the earliest
edge e /∈ Cn ∪ Dn in the above ordering such that e has an endvertex in common
with some member of Cn; if Cn = ∅ we take e /∈ Dn to be the earliest edge
incident to the origin if such an edge exists. We now define

(Cn+1, Dn+1) =
{
(Cn ∪ {e}, Dn) if e is open,

(Cn, Dn ∪ {e}) if e is closed.

This process is continued until no candidate edge e may be found, which is to say
that we have exhausted the open cluster C . If Cn = C for some n then we define
Cl = C for l ≥ n, so that

(5.109) C = lim
n→∞ Cn .

Let Hn = {x ∈ Zd : x1 = n}, and let Gn be the event that the origin belongs
to a finite cluster that intersects Hn. The box 3n has 2d faces, whence, by the
rotation-invariance of φ0

p,q ,

(5.110) φ1
p,q

(
0 ↔ ∂3n, |C| < ∞) ≤ 2dφ1

p,q(Gn).

We shall prove that, for p > p̂c(q), there exists γ > 0 such that

(5.111) φ1
p,q(Gn) ≤ e−nγ , n ≥ 1,

and the claim of the theorem is an immediate consequence.

The idea of the proof of (5.111) is as follows. Since p > p̂c(q) by assumption,
we may find an integer L such that p > p̂c(q, L). Write S(L) = [0, L)× Zd−1,
and

(5.112) Si (L) = S(L)+ (i − 1)Le1 =
[
(i − 1)L, i L

)
× Zd−1,

where e1 = (1, 0, 0, . . . , 0). Suppose that GmL occurs for some m ≥ 1. Then
each of the regions Si (L), i = 1, 2, . . . ,m, is traversed by an open path π from the
origin. Since p > p̂c(q, L), there is φ0

Si (L),p,q
-probability 1 that Si (L) contains

an infinite open cluster, and π must avoid all such clusters for i = 1, 2, . . . ,m.
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∂3N

∂3M

H4L

v2
v3

π

0

S1 S2 S4

Figure 5.2. Any path π from the origin to Hn (with n = 4L in this picture) traverses the
regions Si = Si (L), i = 1, 2, 3, 4. The vertex vj where π first hits the slab Sj may be joined
(with strictly positive conditional probability) within the slab to ∂3M .

By a suitable coupling argument, the chance of this is smaller than αm for some
α = α(p, q, L) < 1.

We have to do a certain amount of work to make this argument rigorous.
First, we construct the open cluster C at the origin as the limit of the sequence
(Cm : m = 1, 2, . . . ) in the manner described above. Next, we construct a
sequence v1, v2, . . . of vertices in the following manner. We set v1 = 0, the
origin. For i ≥ 2, we let

mi = min
{
m ≥ 1 : Cm contains some vertex of Si (L)

}
,

and we denote the (unique) vertex in question by vi . Such a vi exists if and only
if some vertex in Si (L) lies in the open cluster at the origin. We obtain thus a
sequence v1, v2, . . . , vT of vertices where

T = sup
{
i : C ∩ Si (L) 6= ∅

}
.
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Let S(L, N) = [0, L)×[−N, N]d−1 . Since p > p̂c(q, L), we may find α > 0
such that

φ0
S(L ,N),p,q(0 ↔ v) > α, v ∈ S(L, N).

By positive association,

(5.113) φ0
S(L ,N),p,q(v ↔ ∂3M ) > α2, v ∈ S(L, N), 0 < M ≤ N.

Let n be a positive integer satisfying n ≥ L, and write n = r L + s where
0 ≤ s < L. Let n < M < N , and consider the probability ψN (Gn,M ) where
ψN = φ1

3N ,p,q
and Gn,M = {0 ↔ Hn, 0 /↔ ∂3M }. Later, we shall take the

limit as M, N → ∞. On the event Gn,M , we have that T ≥ r , and vi /↔ ∂3M in
Si (L), for i = 1, 2, . . . , r . Therefore,

(5.114) ψN (Gn,M ) ≤ ψN (Ar ),

where

A j = {T ≥ j} ∩
{ j⋂

i=1

{
vi /↔ ∂3M in Si (L)

}}
.

Now A0 = �, and A j ⊇ A j+1 for j ≥ 1, whence

(5.115) ψN (Gn,M ) ≤ ψN (A1)

r∏

j=2

ψN (A j | A j−1).

Let j ∈ {2, 3, . . . , r}, and consider the conditional probabilityψN (A j | A j−1);
the case j = 1 is similar. We have that

ψN (A j | A j−1)

≤
∑

v∈H( j−1)L

ψN
(
v /↔ ∂3M in Sj (L)

∣∣ vj = v, T ≥ j, A j−1
)

×ψN (vj = v | T ≥ j, A j−1)ψN (T ≥ j | A j−1).

We claim that

(5.116) ψN
(
v /↔ ∂3M in Sj (L)

∣∣ vj = v, T ≥ j, A j−1
)

≤ 1 − α2.

This will imply that

ψN (A j | A j−1) ≤ (1 − α2)
∑

v∈H( j−1)L

ψN (vj = v | T ≥ j, A j−1)

= 1 − α2,

yielding in turn by (5.114)–(5.115) that

ψN (Gn,M ) ≤ (1 − α2)r .
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Let N → ∞ and M → ∞ to obtain that

φ1
p,q(0 ↔ Hn, 0 /↔ ∞) ≤ (1 − α2)⌊n/L⌋, n ≥ 1,

and (5.111) follows as required.

It remains to prove (5.116), which we do by a coupling argument. Suppose
that we have ‘built’ the cluster at the origin until the first epoch m = m j at which
Cm touches Sj (L) and, in so doing, we have discovered that vj = v, T ≥ j ,
and A j−1 occurs. The event Ev = {v /↔ ∂3M in Sj (L)} is measurable on the
σ -field generated by the edge-states in Sj (L), and the configuration on Sj (L) is
governed by a certain conditional probability measure, namely that featuring in
(5.116). This conditional measure on Sj (L) dominates (stochastically) the free
random-cluster measure on Sj (L)∩3N = S(L, N)+ ( j − 1)Le1. Since the last
region is a translate of S(L, N),

ψN (Ev | vj = v, T ≥ j, A j−1) ≤ 1 − α2,

by (5.113), and (5.116) is proved. �

5.8 Uniqueness when q < 1

Only a limited amount is known about the (non-)uniqueness of random-cluster
measures on Ld when q < 1, owing to the absence of stochastic ordering and
the failure of positive association. By Theorems 4.31 and 4.33, there exists at
least one translation-invariant member of co Wp,q , and this measure is a DLR-
random-cluster measure. One may glean a little concerning uniqueness from the
comparison inequalities, Theorem 3.21, from which we extract the facts that, for
the random-cluster measure φG,p,q on a finite graph G = (V , E),

φG,p1,1 ≤st φG,p2,q if q ≤ 1, p1 ≤ p2,(5.117)

φG,p1,1 ≥st φG,p2,q if q ≤ 1,
p1

1 − p1
≥ p2

q(1 − p2)
.(5.118)

One may deduce the following by making comparisons with the percolation model.

(5.119) Theorem. For d ≥ 2, there exists p′ = p′(d) < 1 such that the following
holds. Let p ∈ (0, 1), q ∈ (0, 1], and write π = p/[p + q(1 − p)]. We have that
|Wp,q | = |Rp,q | = 1 whenever either θ(π, 1) = 0 or p > p′.

Exponential decay holds similarly when q ∈ (0, 1) and π < pc(1). That is,
there exists ψ = ψ(p, q) > 0 such that φ0

p,q(|C| = n) ≤ e−nψ , see the comment
in the proof of Theorem 5.55.

Proof 7. The proof is similar to that of Proposition 5.30 and is therefore only
sketched. Let p, q be such that q ∈ (0, 1) and θ(π, 1) = 0, and let 3 and 1 be

7See also [8, 156, 281].
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boxes satisfying 3 ⊆ 1. A cutset is defined to be a subset S of E1 \ E3 such
that: every path joining3 to ∂1 uses at least one edge of S, and S is minimal with
this property. For a cutset S, we write int S for the set of edges of E1 possessing
no endvertex x such that x ↔ ∂1 off S, and we write S̃ = S ∪ int S. There is a
partial order on cutsets given by S1 ≤ S2 if S̃1 ⊆ S̃2.

Let A ∈ F3. Let 1, 6 be boxes such that 3 ⊆ 1 ⊆ 6, and let ξ, τ ∈ �. By
(5.118), there exists a probability measure ψ6 on {0, 1}E6 × {0, 1}E6 × {0, 1}E6

such that the following hold.

(i) The set of triples (ω1, ω2, ω3) satisfying ω1 ≤ ω3 and ω2 ≤ ω3 has ψ6-
probability 1.

(ii) The first marginal of ψ6 is φξ6,p,q , the second marginal restricted to E1 is
φτ1,p,q , and the third marginal is the product measure φ6,π .

(iii) Let M denote the maximal cutset of1 every edge of which is closed in ω3,
and note that M exists if and only if ω3 ∈ {∂3 /↔ ∂1}. Conditional on M ,
the marginal law of both {ω1(e) : e ∈ int M} and {ω2(e) : e ∈ int M} is the
free measure φ0

int M,p,q .

By conditioning on M ,

(5.120)
∣∣φξ6,p,q(A)− φτ1,p,q(A)

∣∣ ≤ φ6,π (∂3 ↔ ∂1).

By Theorem 4.17(a), there exists a probability measure ρ ∈ Wp,q , and we
choose τ ∈ � and an increasing sequence 1 = (1n : n = 1, 2, . . . ) such that
φτ1n,p,q

⇒ ρ as n → ∞. Suppose that ρ′ ∈ Wp,q and ρ′ 6= ρ. There exists ξ ∈ �
and an increasing sequence 6 = (6n : n = 1, 2, . . . ) such that φξ6n,p,q

⇒ ρ′.
For m sufficiently large that3 ⊆ 1m , let n = nm satisfy1m ⊆ 6n . By (5.120)

with 1 = 1m , 6 = 6n ,

(5.121)
∣∣φξ6n ,p,q

(A)− φτ1m,p,q(A)
∣∣ ≤ φ6n,π (∂3 ↔ ∂1m).

Let n → ∞ and m → ∞ in that order. Since θ(π, 1) = 0, the right side tends to
zero, and therefore ρ′(A) = ρ(A). This holds for all cylinders A, and therefore
ρ′ = ρ, a contradiction. It follows that |Wp,q | = 1. An alternative argument uses
the method of [117].

Suppose next that φ ∈ Rp,q so that, for any box 1,

φ(A | T1)(ξ) = φ
ξ
1,p,q(A) φ-a.s.

By (5.120) with 6 = 1 = 1m and ρ as above,

|φ(A)− ρ(A)| = lim
m→∞

∣∣φ(φ(A | T1m ))− φτ1m ,p,q(A)
∣∣

≤ lim
m→∞φ1m ,π (∂3 ↔ ∂1m) = 0,

whence Rp,q = {ρ}.
A similar proof of uniqueness is valid for large p, using (5.117) and the approach

taken for Theorem 5.33(b). �
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Chapter 6

In Two Dimensions

Summary. The dual of the random-cluster model on a planar graph is a
random-cluster model also. The self-duality of the square lattice gives rise
to the conjecture that pc(q) = psd(q) for q ∈ [1,∞), where psd(q) denotes
the self-dual point

√
q/(1+√

q). Using duality, one obtains the uniqueness
of random-cluster measures for p 6= psd(q) and q ∈ [1,∞). The phase
transition is discontinuous if q is sufficiently large. Results similar to those
for the square lattice may be obtained for the triangular and hexagonal lat-
tices, using the star–triangle transformation. It is expected when q ∈ [1, 4)
that the critical process may be described by a stochastic Löwner evolution.

6.1 Planar duality

The duality theory of planar graphs provides a technique for studying random-
cluster models in two dimensions. We shall see that, for a dual pair (G,Gd)

of finite planar graphs, the measures φG,p,q and φGd,pd,q are dual measures in a
certain sense to be explained soon, where p and pd are related by pd/(1 − pd) =
q(1 − p)/p. Such a duality survives the passage to a thermodynamic limit, and
may therefore be applied also to infinite planar graphs including the square lattice
L2. The square lattice has the further property of being isomorphic to its (infinite)
dual, and this observation leads to many results of significance for the associated
model. We begin with an account of planar duality in the random-cluster context.

A graph is called planar if it may be embedded in R2 in such a way that two
edges intersect only at a common endvertex. Let G = (V , E) be a planar (finite
or infinite) graph embedded in R2. We obtain its dual graph Gd = (Vd, Ed) as
follows1. We place a dual vertex within each face of G, including any infinite face
of G if such exist. For each e ∈ E we place a dual edge ed = 〈xd, yd〉 joining the
two dual vertices lying in the two faces of G abutting e; if these two faces are the
same, then xd = yd and ed is a loop. Thus, Vd is in one–one correspondence with

1The roman letter ‘d’ denotes ‘dual’ rather than ‘dimension’.
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Figure 6.1. The planar dual of the square lattice L
2 is isomorphic to L

2.

the set of faces of G, and Ed is in one–one correspondence with E . It is easy to
see as in Figure 6.1 that the dual L2

d of the square lattice L2 is isomorphic to L2.

What is the relevance of graphical duality to random-cluster measures on G.
Suppose that G is finite. A configuration ω ∈ � = {0, 1}E gives rise to a dual
configuration ωd ∈ �d = {0, 1}Ed given by ωd(ed) = 1 − ω(e). That is, ed is
declared open if and only if e is closed2. As before, to each configuration ωd there
corresponds the set η(ωd) = {ed ∈ Ed : ωd(ed) = 1} of its ‘open edges’, so that
η(ωd) is in one–one correspondence with E \ η(ω). Let f (ωd) be the number of
faces of the graph (Vd, η(ωd)), including the unique infinite face. By drawing a
picture, one may easily be convinced (see Figure 6.2) that the faces of (Vd, η(ωd))

are in one–one correspondence with the components of (V , η(ω)), and therefore

(6.1) f (ωd) = k(ω).

We shall make use of Euler’s formula (see [320]), namely

(6.2) k(ω) = |V | − |η(ω)| + f (ω)− 1, ω ∈ �,
and we note also for later use that

(6.3) |η(ω)| + |η(ωd)| = |E |.

Let q ∈ (0,∞) and p ∈ (0, 1). The random-cluster measure on G is given by

φG,p,q(ω) ∝
(

p

1 − p

)|η(ω)|
qk(ω), ω ∈ �,

where the constant of proportionality depends on G, p, and q . Therefore,

φG,p,q(ω) ∝
(

p

1 − p

)−|η(ωd)|
q f (ωd) by (6.1) and (6.3)(6.4)

∝
(

q(1 − p)

p

)|η(ωd)|
qk(ωd) by (6.2) applied to ωd

∝ φGd,pd,q(ωd),

2This differs from the convention used in [154].
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Figure 6.2. A primal configuration ω (with solid lines and vertices) and its dual configuration
ωd (with dashed lines and hollow vertices). The arrows join the given vertices of the dual to a
dual vertex in the infinite face. Note that each face of the dual graph corresponds to a unique
component of the primal graph lying ‘just within’.

where the dual parameter pd is given by

(6.5)
pd

1 − pd
= q(1 − p)

p
.

Note that the dual value of pd satisfies (pd)d = p. Since (6.4) involves probability
measures, we deduce that

(6.6) φG,p,q(ω) = φGd,pd,q(ωd), ω ∈ �.

It will later be convenient to work with the edge-parameter3

(6.7) x = q− 1
2 p

1 − p
,

for which the primal/dual transformation (6.5) becomes

(6.8) xxd = 1.

The unique fixed point of the mapping p 7→ pd is easily seen from (6.5) to be
the self-dual point psd(q) given by

(6.9) psd(q) =
√

q

1 + √
q
.

We note that

φG,psd(q),q(ω) ∝ q
1
2 |η(ω)|+k(ω) ∝ q

1
2 (k(ωd)+k(ω)),

3We shall work at a later stage with the parameter y = p/(1 − p), for which the primal/dual
relation is yyd = q.
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Figure 6.3. The dual of the box3(n) = [−n, n]2 is obtained from the box [−n−1, n]2+( 1
2 ,

1
2 )

by identifying all vertices in its boundary.

by (6.1)–(6.2). This representation at the self-dual point psd(q) highlights the
duality of measures.

When we keep track of the constants of proportionality in (6.4), we find that
the partition function

ZG(p, q) =
∑

ω∈�
p|η(ω)|(1 − p)|E\η(ω)|qk(ω)

satisfies the duality relation

(6.10) ZG(p, q) = q |V |−1
(

1 − p

pd

)|E |
ZGd(pd, q).

Therefore,

(6.11) ZG(psd(q), q) = q |V |−1− 1
2 |E | ZGd(psd(q), q).

We consider now the square lattice L2 = (Z2,E2). Let 3(n) = [−n, n]2,
viewed as a subgraph of L2, and note from Figure 6.3 that its dual graph 3(n)d
may be obtained from the box [−n − 1, n]2 + ( 1

2 ,
1
2 ) by identifying all boundary

vertices. By (6.6), and with a small adjustment on the boundary of 3(n)d,

(6.12) φ0
3(n),p,q(ω) = φ1

3(n)d,pd,q
(ωd)

for configurations ω on 3(n). Let A be a cylinder event of � = {0, 1}E
2
, and

write Ad for the dual event of �d = {0, 1}E
2
d , that is, Ad = {ωd ∈ �d : ω ∈ A}.

On letting n → ∞ in (6.12), we obtain by Theorem 4.19(a) that

φ0
p,q(A) = φ

1
pd,q(Ad),
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Figure 6.4. The box S(5) and its dual S(5)d. There exists no open crossing of S(5) from left
to right if and only if there exists an open dual crossing of S(5)d from top to bottom.

where the notation φ is used to indicate the random-cluster measure on the dual
configuration space �d. By a similar argument,

φ1
p,q(A) = φ

0
pd,q(Ad).

We summarize the above in a theorem.

(6.13) Theorem. Consider the square lattice L2, and let q ∈ [1,∞). For any
cylinder event A,

φb
p,q (A) = φ

1−b
pd,q(Ad), b = 0, 1,

where Ad = {ωd ∈ �d : ω ∈ A}.
There is a key application of duality to the existence of open crossings of a box.

Let S(n) = [0, n+1]×[0, n] and let S(n)d be its dual box [0, n]×[−1, n]+( 1
2,

1
2 ).

Let LR(n) be the event that there exists an open path of S(n) joining some vertex
on its left side to some vertex on its right side. It is standard that LR(n)d is the
event that there exists no open dual crossing from the top to the bottom of S(n)d.
This is explained further in [154, Section 11.3] and illustrated in Figure 6.4.

(6.14) Theorem. Let q ∈ [1,∞). We have that

φ0
psd(q),q

(LR(n))+ φ1
psd(q),q

(LR(n)) = 1, n ≥ 1.

Proof. Apply Theorem 6.13 with b = 0 to the event A = LR(n), and use the fact

that φ
1
p,q(LR(n)d) = φ1

p,q(LR(n)) = 1 − φ1
p,q(LR(n)). �

c©Springer-Verlag 2006



138 In Two Dimensions [6.2]

6.2 The value of the critical point

It is conjectured that the critical point and the self-dual point of the square lattice
are equal.

(6.15) Conjecture. The critical value pc(q) of the square lattice L2 is given by

(6.16) pc(q) =
√

q

1 + √
q
, q ∈ [1,∞).

This has been proved when q = 1, q = 2, and when q ≥ 25.72. The q = 1 case
was answered by Kesten, [207], in his famous proof that the critical probability
of bond percolation on L2 is 1

2 . For q = 2, the value of pc(2) given above agrees
with the Kramers–Wannier [221] and Onsager [264] calculations of the critical
temperature of the Ising model on Z2, and is implied by probabilistic results in
the modern vernacular, see [5] and Section 9.3. The formula (6.16) for pc(q) has
been established rigorously in [224, 225] for sufficiently large (real) values of q ,
specifically q ≥ 25.72 (see also [153]). This is explored further in Section 6.4,
see Theorem 6.35.

Several other remarkable conjectures about the phase transition on L2 may
be found in the physics literature as consequences of ‘exact’ but non-rigorous
arguments involving ice-type models, see [26]. These include exact formulae for
the asymptotic behaviour of the partition function lim3↑Z2{Z3(p, q)}1/|3|, and
also for the edge-densities at the self-dual point psd(q), that is, the quantities
hb(q) = φb

psd(q),q
(e is open) for b = 0, 1. These formulae are summarized in

Section 6.6.

Conjecture 6.15 asserts that pc(q) = psd(q) for q ∈ [1,∞). One part of this
equality is known. Recall that θ0(p, q) = φ0

p,q(0 ↔ ∞).

(6.17) Theorem [152, 314]. Consider the square lattice L2, and let q ∈ [1,∞).

(a) We have that θ0(psd(q), q) = 0, whence pc(q) ≥ psd(q).

(b) There exists a unique random-cluster measure if p 6= psd(q), that is,

|Rp,q | = |Wp,q | = 1 if p 6=
√

q

1 + √
q
.

The complementary inequality pc(q) ≤ psd(q) has eluded mathematicians de-
spite progress by physicists, [183]. Here is an intuitive argument to justify the latter
inequality. Suppose on the contrary that pc(q) > psd(q), so that pc(q)d < psd(q).
For p ∈ (pc(q)d, pc(q)) we have also that pd ∈ (pc(q)d, pc(q)). Therefore, for
p ∈ (pc(q)d, pc(q)), both primal and dual processes comprise (almost surely) the
union of finite open clusters. This contradicts the intuitive picture, supported for
p 6= pc(q) by our knowledge of percolation, of finite open clusters of one process
floating in an infinite open ocean of the other process.

Conjecture 6.15 would be proven if one could show the sufficiently fast decay
of φ0

p,q (0 ↔ ∂3(n)) as n → ∞. An example of such a statement may be found
at Lemma 6.28, and another follows. Recall from Section 5.5 the quantity p̃c(q).
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(6.18) Theorem [163]. Let q ∈ [1,∞) and suppose that, for all p < pc(q), there
exists A = A(p, q) < ∞ with

(6.19) φ0
p,q(0 ↔ ∂3(n)) ≤ A

n
, n ≥ 1.

Then p̃c(q) = pc(q) = psd(q).

Rigorous numerical upper bounds of impressive accuracy have been achieved
for the square lattice and certain other two-dimensional lattices.

(6.20) Theorem [15]. The critical point pc(q) of the square lattice L2 satisfies

(6.21) pc(q) ≤
√

q√
1 − q−1 + √

q
, q ∈ [2,∞).

For example, when q = 10, we have that 0.760 ≤ pc(10) ≤ 0.769, to be
compared with the conjecture that pc(10) =

√
10/(1 +

√
10) ≃ 0.760. The

upper bound in (6.21) is the dual value of psd(q − 1). See also Theorem 6.30.

Exact values for the critical points of the triangular and hexagonal lattices may
be conjectured similarly, using graphical duality together with the star–triangle
transformation; see Section 6.6.

Proof of Theorem 6.17. (a) There are at least two ways of proving this. One way is
to use the circuit-construction argument pioneered by Harris, [181], and developed
further in [47, 130], see Theorem 6.47. We shall instead adapt an argument of
Zhang using the 0/1-infinite-cluster property, see [154, p. 289]. Let p = psd(q),
so that φ0

p,q and φ1
p,q are dual measures in the sense of Theorem 6.13.

For n ≥ 1, let Al(n) (respectively Ar(n), At(n), Ab(n)) be the event that some
vertex on the left (respectively right, top, bottom) side of the square T (n) =
[0, n]2 lies in an infinite open path of L2 using no other vertex of T (n). Clearly
Al(n), Ar(n), At(n), and Ab(n) are increasing events whose union equals the event
{T (n) ↔ ∞}. Furthermore, by rotation-invariance,

(6.22) for b = 0, 1 and n ≥ 1, φb
p,q(A

u(n)) is constant for u = l, r, t, b.

Suppose that θ0(p, q) > 0, whence by stochastic ordering θ1(p, q) > 0. Since
the φb

p,q have the 0/1-infinite-cluster property,

φb
p,q

(
Al(n) ∪ Ar(n) ∪ At(n) ∪ Ab(n)

)
→ 1 as n → ∞.

By positive association,

φb
p,q (T (n) /↔ ∞) ≥ φb

p,q

(
Al(n)

)
φb

p,q

(
Ar(n)

)
φb

p,q

(
At(n)

)
φb

p,q

(
Ab(n)

)
,

c©Springer-Verlag 2006



140 In Two Dimensions [6.2]

a

b

x

π

y

Figure 6.5. Vertices a and b lie in infinite open clusters of L
2 \ T (N), and vertices x and y lie

in infinite open clusters of the dual lattice L
2
d \ T (N)d. If there exists a unique infinite open

cluster of L
2, then there exists an open path π joining a to b, and thus the infinite dual clusters

at x and y are disjoint.

implying by (6.22) that

(6.23) φb
p,q (A

u(n)) → 1 as n → ∞, for u = l, r, t, b.

We choose N such that

(6.24) φb
p,q(A

u(N)) > 7
8 for u = l, r, t, b, and b = 0, 1.

Moving to the dual lattice, we define the dual box

(6.25) T (n)d = [0, n]2 + ( 1
2 ,

1
2 ).

Let B l(n) (respectively, Br(n), B t(n), Bb(n)) be the event (in�d) that some vertex
on the left (respectively right, top, bottom) side of T (n)d lies in an infinite open
path of the dual lattice L2

d using no other vertex of T (n)d. Clearly,

(6.26) φ
1
p,q(B

u(N)) = φ1
p,q(A

u(N)) > 7
8 for u = l, r, t, b.

Consider now the event A = Al(N) ∩ Ar(N) ∩ B t(N) ∩ Bb(N), viewed as a
subset of � and illustrated in Figure 6.5. The probability that A does not occur
satisfies

φ0
p,q(A) ≤ φ0

p,q

(
Al(N)

)
+ φ0

p,q

(
Ar(N)

)
+ φ

1
p,q

(
B t(N)

)
+ φ

1
p,q

(
Bb(N)

)

≤ 1
2 by (6.24) and (6.26),
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giving that φb
p,q(A) ≥ 1

2 for b = 0, 1.

We now use the fact that every random-cluster measure φb
p,q has the 0/1-infinite-

cluster property, see Theorem 4.33(c). If A occurs, then L2 \ T (N) contains two
disjoint infinite open clusters, since the clusters in questions are separated by
infinite open paths of the dual; any open path of L2 \ T (N) joining these two
clusters would contain an edge which crosses an open edge of the dual, and no
such edge can exist. Similarly, on A, the graph L2

d \ T (N)d contains two disjoint
infinite open clusters, separated physically by infinite open paths of L2 \ T (N).
The whole lattice L2 contains (almost surely) a unique infinite open cluster, and it
follows that there exists (almost surely on A) an open connectionπ of L2 between
the fore-mentioned infinite open clusters. By the geometry of the situation (see
Figure 6.5), this connection forms a barrier to possible open connections of the
dual joining the two infinite open dual clusters. Therefore, almost surely on A,
the dual lattice contains two or more infinite open clusters. Since the latter event
has probability 0, it follows that φb

p,q(A) = 0 in contradiction of the inequality

φb
p,q (A) ≥ 1

2 . The initial hypothesis that θ0(p, q) > 0 is therefore incorrect, and
the proof is complete.

(b) By part (a), θ1(p, q) = 0 for p < psd(q), whence, by Theorem 5.33(a),
|Rp,q | = |Wp,q | = 1 for p < psd(q).

Suppose now that p > psd(q) so that, by (6.5), pd < psd(q). By part (a) and
Theorem 4.63,

φ
0
pd,q(ed is closed) = φ

1
pd,q(ed is closed), e ∈ E2,

and by Theorem 6.13,

φb
p,q(e is open) = φ

1−b
pd,q(ed is closed), b = 0, 1.

Therefore, φ0
p,q (e is open) = φ1

p,q(e is open), and the claim follows by Theorem
4.63. �

Proof of Theorem 6.18. Under the given hypothesis, p̃c(q) = pc(q). Suppose that
psd(q) < pc(q), and that (6.19) holds with p = psd(q) and A = A(psd(q), q).
By Theorem 5.33, φ0

psd(q),q
= φ1

psd(q),q
, implying (6.19) with φ0

psd(q),q
replaced

by φ1
psd(q),q

.

If, for illustration, A < 1
2 , then, by a consideration of the left endvertex of a

crossing of S(n),

(6.27) φ0
psd(q),q

(LR(n)) = φ1
psd(q),q

(LR(n)) < (n + 1)
A

n + 1
<

1

2
,

in contradiction of Theorem 6.14. Therefore psd(q) = pc(q).

More generally, by Theorem 5.60, φ0
psd(q),q

(0 ↔ ∂3(n)) decays exponentially

as n → ∞. Exponential decay holds for φ1
psd(q),q

also, as above, and (6.27)
follows for large n. Therefore, psd(q) = pc(q) as claimed. �
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We precede the proof of Theorem 6.20 with a lemma.

(6.28) Lemma. Let q ∈ [1,∞), and let p and pd satisfy (6.5). With C the open
cluster at the origin and b ∈ {0, 1},

if φb
pd,q(rad(C)) < ∞ then θ1−b(p, q) > 0.

In particular, pc(q) = psd(q) under the condition:

φ0
p,q(rad(C)) < ∞, p < psd(q).

Proof 4. Let 3(n) = [−n, n]2, and let 1 ≤ r < t < ∞. By Theorem 6.13,

φ1−b
p,q

(
∂3(r) /↔ ∂3(t)

)
= φ

b
pd,q

(t−1⋃

s=r

As(r, t)

)
,

where As(r, t) is the event that (s + 1
2 ,

1
2 ) belongs to an open circuit of the dual,

lying in3(t)d\3(r)d and having3(r) in its interior. By the translation-invariance
of random-cluster measures, Theorem 4.19(b),

φ1−b
p,q

(
∂3(r) /↔ ∂3(t)

)
≤

t−1∑

s=r

φ
b
pd,q

(
rad(Cd) ≥ r + s

)
,

where Cd is the open cluster at the origin of the dual lattice. Letting t → ∞,

(6.29) φ1−b
p,q

(
∂3(r) /↔ ∞) ≤

∞∑

s=r

φb
pd,q

(
rad(C) ≥ r + s

)
.

Suppose that φb
pd,q(rad(C)) < ∞, and pick R such that

∞∑

s=2R

φb
pd,q

(
rad(C) ≥ s

)
< 1.

By (6.29), φ1−b
p,q (∂3(R) /↔ ∞) < 1, whence θ1−b(p, q) > 0 as required. �

Proof of Theorem 6.20. Let q ∈ [2,∞) and b ∈ {0, 1}. By the forthcoming
Theorem 6.30, φ1

pd,q(rad(C)) < ∞ when pd < psd(q − 1). By Lemma 6.28,

θ0(p, q) > 0 whenever

p >
(

psd(q − 1)
)

d =
√

q√
1 − q−1 + √

q
. �

4An alternative proof appears in [141]. See also [314].

c©Springer-Verlag 2006



[6.3] Exponential decay 143

6.3 Exponential decay

A valuable consequence of the comparison methods developed in [15] is the ex-
ponential decay of connectivity functions when q ∈ [2,∞) and

p < psd(q − 1) =
√

q − 1

1 + √
q − 1

.

(6.30) Theorem (Exponential decay) [15]. Let q ∈ [2,∞), and consider the
random-cluster model on the box 3(n) = [−n, n]2. There exists α = α(p, q)
satisfying α(p, q) > 0 when p < psd(q − 1) such that

φ1
3(n),p,q(0 ↔ ∂3(n)) ≤ e−αn, n ≥ 1.

By stochastic ordering,

φ1
3(n),p,q(0 ↔ ∂3(m)) ≤ φ1

3(m),p,q(0 ↔ ∂3(m)), m ≤ n,

and therefore, on taking the limit as n → ∞,

φ1
p,q (0 ↔ ∂3(m)) ≤ e−αm, p < psd(q − 1), q ≥ 2, m ≥ 1,

by the above theorem. In summary,

psd(q − 1) ≤ p̃c(q) ≤ psd(q), q ≥ 2,

where p̃c(q) is the threshold for exponential decay, see (5.65) and (5.67). We
recall the conjecture that p̃c(q) = pc(q).

Proof. We use the comparison between the random-cluster model and the Ising
model with external field, as described in Section 3.7. Consider the wired random-
cluster measure on a box 3 with q ∈ [2,∞). By Theorem 3.79 and the note
following (3.83), the set of vertices that are joined to ∂3 by open paths is stochas-
tically smaller than the set of + spins in the Ising model on 3 with + boundary
conditions and parameters β ′, h′ satisfying (3.80). The maximum vertex degree
of L2 is 1 = 4 and, by (3.82),

eβ4 = q − 2√
q − 1 − 1

= 1 +
√

q − 1,

so that

1 − e−β4 =
√

q − 1

1 + √
q − 1

= psd(q − 1).

Let p = 1 − e−β < psd(q − 1). By (3.83), h′ < 0. By stochastic domination,

(6.31) φ1
3,p,q(0 ↔ ∂3) ≤ π+

3,β ′,h′(0 ↔+ ∂3),

where {0 ↔+ ∂3} is the event that there exists a path of 3 joining 0 to some
vertex of ∂3 all of whose vertices have spin +1. By results of [88, 182] (see the
discussion in [15, p. 438]), the right side of (6.31) decays exponentially in the
shortest side-length of 3. �
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6.4 First-order phase transition

The q = 1 case of the random-cluster measure is the percolation model, with
associated product measure φp = φp,1. One of the outstanding problems for
percolation is to prove the continuity for all d of the percolation probability θ(p)=
φp(0 ↔ ∞) at the critical point pc = pc(1), see [154, Section 8.3]. By a standard
argument of semi-continuity, this amounts to proving that θ(pc) = 0, which is to
say that there exists (almost surely) no infinite open cluster at the critical point.
The situation for general q is quite different. It turns out that θ1(pc(q), q) > 0
for all large q .

(6.32) Conjecture. Consider the d-dimensional lattice Ld where d ≥ 2.

(a) θ0(pc(q), q) = 0 for q ∈ [1,∞).

(b) There exists Q = Q(d) ∈ (1,∞) such that

θ1(pc(q), q)

{ = 0 if q < Q,

> 0 if q > Q.

In the vernacular of statistical physics, we speak of the phase transition as
being of second order if θ1(pc(q), q) = 0, and of first order otherwise. Thus
the random-cluster transition is expected to be of first order if and only if q is
sufficiently large. There are two issues: to prove the existence of a ‘sharp transition
in q’, and to calculate the ‘critical value’ Q(d) of q . The first problem is strangely
difficult. It is natural to seek some monotonicity, perhaps of the function f (q) =
θ1(pc(q), q), but this has proved elusive even in two dimensions. As for the value
of Q(d), it is believed5 that Q(d) is non-increasing in d and satisfies

(6.33) Q(d) =
{

4 if d = 2,

2 if d ≥ 6.

A first-order transition is characterized by a discontinuity in the order-parameter
θ1(p, q). Two further indicators of first-order transition are: discontinuity of the
edge-densities hb(p, q) = φb

p,q(e is open), b = 0, 1, and the existence of a so-
called ‘non-vanishing mass gap’. The edge-densities are sometimes termed the
‘energy’ functions, since they arise thus in the Potts model.

The term ‘mass gap’ arises in the study of the exponential decay of correla-
tions in the subcritical phase, in the limit as p ↑ pc(q). Of the various ways
of expressing this, we choose to work with the probability φ0

p,q (0 ↔ ∂3(n)),

where 3(n) = [−n, n]d . Recall from Theorem 5.45 that there exists a function
ψ = ψ(p, q) such that

φ0
p,q(0 ↔ ∂3(n)) ≈ e−nψ as n → ∞,

5See [26, 324] and the footnote on page 183.
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where ‘≈’ denotes logarithmic asymptotics. Clearly, ψ(p, q) is a non-increasing
function of p, and ψ(p, q) = 0 if θ0(p, q) > 0. It is believed that ψ(p, q) > 0
if p < pc(q). We speak of the limit

µ(q) = lim
p↑pc(q)

ψ(p, q)

as the mass gap. It is believed that the transition is of first order if and only if there
is a non-vanishing mass gap, that is, if µ(q) > 0.

(6.34) Conjecture. Consider the d-dimensional lattice Ld where d ≥ 2. Then

µ(q)

{ = 0 if q < Q(d),

> 0 if q > Q(d),

where Q(d) is given in Conjecture 6.32.

The first proof of first-order phase transition for the Potts model with large q
was discovered by Kotecký and Shlosman, [220]. Amongst the later proofs is that
of [225], and this is best formulated in the language of the random-cluster model,
[224]. It takes a very simple form in the special case d = 2, as shown in this
section. The general case of d ≥ 2 is treated in Chapter 7.

There follows a reminder concerning the number an of self-avoiding walks on
L2 beginning at the origin. It is standard, [244], that a1/n

n → κ as n → ∞, for
some constant κ termed the connective constant of the lattice. Let

Q =
{

1
2

(
κ +

√
κ2 − 4

)}4
.

We have that 2.620 < κ < 2.696, see [302], whence 21.61 < Q < 25.72. Let

ψ(q) = 1

24
log

{
(1 + √

q)4

qκ4

}
,

noting that ψ(q) > 0 if and only if q > Q.

(6.35) Theorem (Discontinuous phase transition when d = 2) [153, 225].
Consider the square lattice L2, and let q > Q.

(a) Critical point. The critical point is given by pc(q) = √
q/(1 + √

q).

(b) Discontinuous transition. We have that θ1(pc(q), q) > 0.

(c) Non-vanishing mass gap. For any ψ < ψ(q) and all large n,

φ0
pc(q),q(0 ↔ ∂3(n)) ≤ e−nψ .

(d) Discontinuous edge-densities. The functions hb(p, q) = φb
p,q(e is open),

b = 0, 1, are discontinuous functions of p at p = pc(q).

Similar conclusions may be obtained for general d ≥ 2 when q is sufficiently
large (q > Q(d) for suitable Q(d)). Whereas, in the case d = 2, planar du-
ality provides an especially simple proof, the proof for general d utilizes nested
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sequences of surfaces of Rd and requires a control of the effective boundary con-
ditions within the surfaces. See Section 7.5.

By Theorem 6.17(b), whenever q is such that the phase transition is of first
order, then necessarily pc(q) = psd(q).

The idea of the proof of the theorem is as follows. There is a partial order on
circuits Ŵ of L2 given by: Ŵ ≤ Ŵ′ if the bounded component of R2 \Ŵ is a subset
of that of R2 \ Ŵ′. We work at the self-dual point p = psd(q), and with the box
3(n) with wired boundary conditions. Roughly speaking, an ‘outer contour’ is
defined to be a circuit Ŵ of the dual graph 3(n)d all of whose edges are open in
the dual (that is, they traverse closed edges in the primal graph3(n)), and that is
maximal with this property. Using self-duality, one may show that

φ1
3(n),psd(q),q

(Ŵ is an outer circuit) ≤ 1

q

(
q

(1 + √
q)4

)|Ŵ|/4
,

for any given circuit Ŵ of 3(n)d. Combined with a circuit-counting argument of
Peierls-type involving the connective constant, this estimate implies after a little
work the claims of Theorem 6.35. The idea of the proof appeared in [225] in
the context of Potts models, and the random-cluster formulation may be found in
[153]; see also Section 7.5 of the current work.

Proof of Theorem 6.35. This proof carries a health warning. The use of two-
dimensional duality raises certain issues which are tedious to resolve with complete
rigour, and we choose not to do so here. Such issues may be resolved either by
the methods of [210, p. 386] when d = 2, or by those expounded in Section
7.2 for general d ≥ 2. Let n ≥ 1, let 3 = 3(n) = [−n, n]2, and let 3d =
[−n, n−1]2 +( 1

2 ,
1
2 ) be those vertices of the dual of3 that lie inside3 (that is, we

omit the dual vertex in the infinite face of3). We shall work with ‘wired’ boundary
conditions on 3, and we let ω ∈ �3 = {0, 1}E3 . The exterior (respectively,
interior) of a given circuit Ŵ of either L2 or its dual L2

d is defined to be the
unbounded (respectively, bounded) component of R2 \ Ŵ. A circuit Ŵ of 3d is
called an outer circuit of a configuration ω ∈ �3 if the following hold:

(a) all edges of Ŵ are open in the dual configuration ωd, which is to say that
they traverse closed edges of 3,

(b) the origin of L2 is in the interior of Ŵ,

(c) every vertex of 3 lying in the exterior of Ŵ, but within distance of 1/
√

2 of
some vertex of Ŵ, belongs to the same component of ω.

See Figure 6.6 for an illustration of the meaning of ‘outer circuit’.

Each circuit Ŵ of3d partitions the set E3 of edges of3 into three sets, namely

E = {e ∈ E3 : e lies in the exterior of Ŵ},
I = {e ∈ E3 : e lies in the interior of Ŵ},
Ŵ′ = {e ∈ E3 : ed ∈ Ŵ}.
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Figure 6.6. The solid lines represent open edges of 3. The dashed lines include an outer
circuit Ŵ of the dual3d.

The set I forms a connected subgraph of 3. We write GŴ ⊆ {0, 1}E for the set
of configurations of edges in E satisfying property (c) above.

Let F ⊆ E3, and write VF for the set of vertices incident to members of F .
For ω ∈ {0, 1}F , let

πF (ω) = p|η(ω)|(1 − p)|F\η(ω)|qk(ω),

where k(ω) is the number of components of the graph (VF , η(ω)). We shall
sometimes impose a boundary condition on F as follows. Let ∂ext F be the set of
vertices in VF that belong to infinite paths of L2 using no other vertex of VF . We
write

π1
F (ω) = p|η(ω)|(1 − p)|F\η(ω)|qk1(ω), ω ∈ {0, 1}F ,

where k1(ω) is the number of components of (VF , η(ω)) counted according to the
convention that components that intersect ∂ext F are counted only as one in total.

Our target is to obtain an upper bound for the probability that a given circuit Ŵ
is an outer circuit. Let Ŵ be a circuit of 3d with 0 in its interior. Since no open
component of ω contains points lying in both the exterior and interior of an outer
circuit, the event OC(Ŵ) = {Ŵ is an outer circuit} satisfies

φ1
3,p,q(OC(Ŵ)) = 1

Z1
3

∑

ω

1OC(Ŵ)(ω)π
1
3(ω)(6.36)

= 1

Z1
3

(1 − p)|Ŵ|Z1
E Z I
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Figure 6.7. The interior edges I of Ŵ are marked in the leftmost picture, and the dual Id in the
centre picture (the vertices marked with a cross are identified as a single vertex). The shifted
set I∗ = Id + ( 1

2 ,
1
2 ) is drawn in the rightmost picture. Note that I∗ ⊆ I ∪ Ŵ′.

where π1
3 = π1

3,p,q , Z1
3 is the wired partition function of 3, and

Z1
E =

∑

ω′∈GŴ

π1
E (ω

′), Z I =
∑

ω′′∈{0,1}I

πI (ω
′′).

We use duality next. Let Id be the set of dual edges that cross the primal edges
in I , and let m be the number of vertices of 3 inside Ŵ. By (6.10),

(6.37) Z I = qm−1
(

1 − p

pd

)|I |
Z1

Id
(pd, q),

where pd satisfies (6.5), Z1
Id
(pd, q) is the partition function for dual configurations

on (Vd, Id) with wired boundary conditions, and Vd is the set of vertices incident
to Id (with the convention that all vertices of Vd on its boundary are identified, as
indicated in Figure 6.7).

The partition functions have the following property of supermultiplicativity
when q ∈ [1,∞). For any dual circuit Ŵ with the origin in its interior,

Z1
3 =

∑

ω∈GŴ×{0,1}I∪Ŵ′
π1
3(ω)(6.38)

≥
∑

ω′∈GŴ

π1
E (ω

′)
∑

ω′′∈{0,1}I∪Ŵ′
π1

I∪Ŵ′(ω
′′)

= Z1
E Z1

I∪Ŵ′ .

Let I ∗ = Id + ( 1
2 ,

1
2 ), where Id is viewed as a subset of R2. Note from Figure 6.7

that I ∗ ⊆ I ∪ Ŵ′, and therefore

(6.39) Z1
I∪Ŵ′ ≥ Z1

I ∗

by Lemma 3.69 and inequality (3.70). By (6.38)–(6.39),

(6.40) Z1
3 ≥ Z1

E Z1
I ∗ = Z1

E Z1
Id
.
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Set p = psd(q) = √
q/(1 + √

q). By (6.36)–(6.40) and (6.11),

φ1
3,p,q(OC(Ŵ)) = (1 − p)|Ŵ| Z1

E Z I

Z1
3

(6.41)

= (1 − p)|Ŵ|qm−1− 1
2 |I | Z1

E Z1
Id

Z1
3

≤ (1 − p)|Ŵ|qm−1− 1
2 |I |.

Since each vertex of 3 (inside Ŵ) has degree 4,

4m = 2|I | + |Ŵ|,

whence

(6.42) φ1
3,p,q(OC(Ŵ)) ≤ (1 − p)|Ŵ|q

1
4 |Ŵ|−1 = 1

q

(
q

(1 + √
q)4

)|Ŵ|/4
.

The number of dual circuits of 3 having length l and containing the origin in
their interior is no greater than lal , where al is the number of self-avoiding walks
of L2 beginning at the origin with length l. Therefore,

∑

Ŵ

φ1
3,p,q(OC(Ŵ)) ≤

∞∑

l=4

lal

q

(
q

(1 + √
q)4

)l/4

.

Now l−1 log al → κ as l → ∞, where κ is the connective constant of L2. Suppose
that q > Q, so that qκ4 < (1 + √

q)4. There exists A(q) < ∞ such that

∑

Ŵ

φ1
3,p,q(OC(Ŵ)) < A(q), n ≥ 1.

If A(q) < 1 (which holds for sufficiently large q) then, by the assumption of wired
boundary conditions,

φ1
3,p,q(0 ↔ ∂3) = φ1

3,p,q(OC(Ŵ) occurs for no Ŵ)

≥ 1 − A(q) > 0.

On letting n → ∞, we obtain by Proposition 5.11 that θ1(p, q) > 0 when
p = √

q/(1 + √
q). By Theorem 6.17(a), this implies parts (a) and (b) of the

theorem when q is sufficiently large.

For general q > Q, we have only that A(q) < ∞. In this case, we find N < n
such that ∑

Ŵ:Ŵ outside3(N)

φ1
3,p,q(OC(Ŵ)) < 1

2 ,
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x

y

x + (6n, 0)

Figure 6.8. Six copies of a rectangle having width n and height 2n may be put together to
form a rectangle with size 6n by 2n. If each is crossed by an open path joining the images of
x and y, then the larger rectangle is crossed between its shorter sides.

where Ŵ is said to be outside3(N) if it contains3(N) in its interior. Then

φ1
3,p,q(3(N) ↔ ∂3) ≥ 1

2 .

Let n → ∞ to find that φ1
p,q(3(N) ↔ ∞) ≥ 1

2 , implying that θ1(p, q) > 0 as
required.

Turning to part (c), let p = pd = psd(q) = √
q/(1+√

q). Let An be the event
that the annulus 1n = 3(3n) \ 3(n − 1) contains an open circuit with 0 in its
interior. By Theorem 6.13 and (6.42),

φ0
3(r),p,q(An) ≤

∞∑

m=8n

mam

q

(
q

(1 + √
q)4

)m/4

, r > 3m.

We have used the fact that, if An occurs, there exists a maximal open circuit Ŵ of
3(r) containing 0 and with length at least 8n. In the dual of 3(r), Ŵ constitutes
an outer circuit. Let r → ∞ to obtain that

(6.43) φ0
p,q(An) ≤

∞∑

m=8n

mam

q

(
q

(1 + √
q)4

)m/4

, r > 3m.

Let LRn denote the event that there exists an open crossing of the rectangle
Rn = [0, n]× [0, 2n] from its left to its right side, and set λn = φ0

p,q(LRn). There
exists a point x on the left side of Rn and a point y on its right side such that

φ0
p,q(x ↔ y in Rn) ≥ λn

(2n + 1)2
.

By placing six of these rectangles side by side (as in Figure 6.8), we have by
positive association that

(6.44) φ0
p,q

(
x ↔ x + (6n, 0) in [0, 6n] × [0, 2n]

)
≥
(

λn

(2n + 1)2

)6

.
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Figure 6.9. If each of four rectangles with dimensions 6n by 2n is crossed by an open path
between its shorter sides, then the annulus 1n contains an open circuit having the origin in its
interior.

We now use four copies of the rectangle [0, 6n] × [0, 2n] to construct the annulus
1n (see Figure 6.9). If each of these copies contains an open crossing, then the
annulus contains a circuit around 0. By positive association again,

(6.45) φ0
p,q(An) ≥

(
λn

(2n + 1)2

)24

.

Finally, if 0 ↔ ∂3(n), then one of the four rectangles [0, n] × [−n, n],
[−n, n] × [0, n], [−n, 0] × [−n, n], [−n, n] × [−n, 0] is traversed by an open
path between its two longer sides. Therefore,

(6.46) φ0
p,q(0 ↔ ∂3(n)) ≤ 4λn .

Combining (6.43)–(6.46), we obtain that

φ0
p,q(0 ↔ ∂3(n)) ≤ 4(2n + 1)2[φ0

p,q(An)]1/24

≤ 4(2n + 1)2
{ ∞∑

m=8n

mam

q

(
q

(1 + √
q)4

)m/4
}1/24

.

Now, m−1 log am → κ as m → ∞, and part (c) follows.

By parts (b) and (c), φ0
pc(q),q

6= φ1
pc(q),q

. Part (d) follows by Theorem 4.63. �
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6.5 General lattices in two dimensions

Planar duality is an important technique in the study of interacting systems on
a two-dimensional lattice L, but it is no panacea. It may be summarized in the
two statements: the external boundary of a bounded connected subgraph of L

is topologically one-dimensional, and the statistical mechanics of the boundary
may be studied via an appropriate stochastic model on a certain dual lattice Ld.
Duality provides a relation between a primal model on L and a dual model on
Ld. In situations in which the dual model is related to the primal, or to some other
known system, one may sometimes obtain exact results. The exact calculations of
critical probabilities of percolation models on the square, triangular, and hexagonal
lattices are examples of this, see [154, Chapter 11]. Individuals less burdened by
the pulse for mathematical rigour have exploited duality to obtain exact but non-
rigorous predictions for other two-dimensional processes (see, for example, [26]),
of which a major example is the conjecture that pc(q) = √

q/(1 + √
q) for the

random-cluster model on L2. Such predictions are often beautiful and usually
provocative to mathematicians.

We shall not explore duality in general here, noting only in passing the existence
of many open problems of significance in extending known results for, say, the
square lattice to general primal/dual pairs. We discuss instead two specific issues
relating, in turn, to the critical points of a general primal/dual pair, and in the next
section to exact calculations for the triangular and hexagonal lattices.

Here is our definition of a lattice, [154, Section 12.1]. A lattice in d dimensions
is a connected loopless graph L, with bounded vertex degrees, that is embedded
in Rd in such a way that:

(a) the translations x 7→ x + e are automorphisms of L for each unit vector e
parallel to a coordinate axis,

(b) all edges are of non-zero length, and

(c) every compact subset of Rd intersects only finitely many edges.

Let L = (V,E) be a planar two-dimensional lattice, and let Ld be its dual
lattice, defined as in Section 6.1. We shall require some further symmetries of L,
namely that:

(d) the reflection mappings ρh, ρv : R2 → R2 given by

ρh(x, y) = (−x, y), ρv(x, y) = (x,−y), (x, y) ∈ R2,

are automorphisms of L.

Let p ∈ [0, 1] and q ∈ [1,∞). Under the above conditions, the random-cluster
measures φb

L,p,q exist for b = 0, 1, and are invariant under horizontal and vertical
translations, and under horizontal and vertical axis-reflection. They are in addition
ergodic with respect to horizontal and vertical translation (separately), and they
are positively associated. Such facts may be proved in exactly the same manner
as were the corresponding statements for the hypercubic lattice Ld in Chapter 4.

Let pc(q,L) denote the critical value of the random-cluster model on L.
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(6.47) Theorem. The critical points pc(q,L), pc(q,Ld) satisfy the inequality

(6.48) pc(q,L) ≥
(

pc(q,Ld)
)

d.

Proof. Let p > pc(q,L), so that φ1
L,p,q(0 ↔ ∞) > 0. The arguments leading to

the main result of [130] may be adapted to the current setting6 to show that all open
clusters in the dual lattice Ld are almost-surely finite. Therefore, pd ≤ pc(q,Ld),
whence p ≥ (

pc(q,Ld)
)

d as required. �

Equality may be conjectured in (6.48). Suppose that L and Ld are isomor-
phic or, weaker, that pc(q,L) = pc(q,Ld). Inequality (6.48) implies then that
pc(q,L) ≥ psd(q) (see Theorem 6.17(a) for the case of the square lattice). If
(6.48) were to hold with equality, we would obtain that pc(q,L) = psd(q).

Theorem 6.47 may be used to prove the uniqueness of random-cluster measures
for p 6= pc(q,L). Some further notation must first be introduced to deal with
case when L is not edge-transitive7. Let S = [0, 1)2 ⊆ R2. Let IS be the set of
edges of L with both endvertices in S, and ES the set of edges with exactly one
endvertex in S. Let

(6.49) NS(ω) =
∑

e∈IS

ω(e)+
∑

e∈ES

1
2ω(e), ω ∈ � = {0, 1}E,

and define the edge-density by

(6.50) hb
L(p, q) = 1

NS(1)
φb

L,p,q(NS), b = 0, 1.

If L is edge-transitive, it is easily seen that hb
L(p, q) is simply the probability

under φ1
L,p,q that a given edge is open.

(6.51) Theorem. Let L, Ld be a primal/dual pair of planar lattices in two di-
mensions and suppose L satisfies (a)–(d) above. Let p ∈ [0, 1] and q ∈ [1,∞),
and assume that p 6= pc(q,L).

(i) The edge-density hb
L(x, q) is a continuous function of x at the point x = p,

for b = 0, 1.

(ii) It is the case that h0
L(p, q) = h1

L(p, q).

(iii) There is a unique random-cluster measure on L with parameters p and q,
that is, |Wp,q(L)| = |Rp,q(L)| = 1, in the natural notation.

In the notation of Theorem 4.63, we have that Dq ⊆ {pc(q,L)}. In particular8,
if there exists a first-order phase transition at some value p, then necessarily

6Paper [130] treats vertex-models on Z
2 governed by measures with certain properties of

translation/rotation-invariance, ergodicity, and positive association. The arguments are however
more general and apply also to edge-models on planar graphs with corresponding properties.

7A graph G = (V , E) is called edge-transitive if: for every pair e, f ∈ E , there exists an
automorphism of G mapping e to f . See Sections 3.3 and 10.12 for a related notion of transitivity.

8Related matters for Potts models are discussed in [47].
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p = pc(q,L). As in Theorem 5.16, the percolation probabilities θb
L(·, q) =

φb
L,p,q(0 ↔ ∞), b = 0, 1, are continuous9 except possibly at the value p =

pc(q,L).

Proof. (i) For p < pc(q,L), this follows as in Theorems 4.63 and 5.33(a). When
p > pc(q,L), we have from (6.48) that pd < pc(q,Ld). As in Theorem 6.13,

hb
L(p, q)+ h1−b

Ld
(pd, q) = 1.

By part (i) applied to the dual lattice Ld, each hb
L(x, q) is continuous at the point

x = pd. Parts (ii) and (iii) follow as in Theorem 4.63, see also the proof of
Theorem 6.17(b). �

6.6 Square, triangular, and hexagonal lattices

There is a host of exact but non-rigorous ‘results’ for two-dimensional models
which, while widely accepted by physicists, continue to be subjected to mathe-
matical investigations. Some of these claims have been made rigorous and, in so
doing, mathematicians have discovered new structures of beauty and complexity.
The outstanding contemporary example of new structure provoked by physics is
the theory of stochastic Löwner evolutions (SLE). This has had considerable im-
pact on percolation, Brownian motion, and on other systems with a property of
conformal invariance; see Section 6.7 for a short account of SLE in the random-
cluster context.

Amongst ‘exact’ but non-rigorous results for the random-cluster model is the
claim that, for the square lattice, pc(q) = √

q/(1 + √
q). Baxter’s 1982 book

[26] remains a good source for this and related statements, usually in the context
of Potts models but extendable to random-cluster models with q ∈ [1,∞). Such
statements are achieved typically by following a sequence of transformations be-
tween models, arriving thus at a ‘soluble ice-type model’ on a new graph termed
the ‘medial graph’. It has proved difficult to ascertain whether such methods are
entirely rigorous, since they involve chains of argument which may seem indi-
vidually innocuous but which omit significant analytical details. We attempt no
more here than brief accounts of some of the conclusions together with a partial
mathematical commentary.

Consider the square lattice L2. Instead of working with a single edge-parameter
p, we allow greater generality by associating with each horizontal (respectively,
vertical) edge the parameter ph (respectively, pv), and we write p = (ph, pv).
It will be convenient as in (6.7)–(6.8) to work instead with the parameters x =
(xh, xv) given by

xh = q− 1
2 ph

1 − ph
, xv = q− 1

2 pv

1 − pv
,

9This may also be proved directly for a primal/dual pair, using the arguments of Theorems
5.33 and 6.47.
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and their dual values xh,d, xv,d satisfying

xhxh,d = 1, xvxv,d = 1.

Write φb
G,x,q for a corresponding random-cluster measure on a graph G, and

moreover
φb

x,q = lim
3↑L2

φb
3,x,q, θb(x, q) = φb

x,q(0 ↔ ∞).

The duality map of Section 6.1 maps a random-clustermodel on L2 with param-
eter x = (xh, xv) to a random-cluster model on L2

d with parameter xd = (xv,d, xh,d).
The primal and dual models have the same parameters whenever xh = xv,d and
xv = xh,d, which is to say that

(6.52) xhxv = 1,

and we refer to the model as ‘self-dual’ if (6.52) holds. The following conjecture
generalizes Conjecture 6.15.

(6.53) Conjecture. Let xh, xv ∈ (0,∞) and q ∈ [1,∞). For b = 0, 1,

θb(x, q)

{ = 0 if xhxv < 1,

> 0 if xhxv > 1.

The proof in the case of percolation (when q = 1) may be found at [154, Thm
11.115]. Partial progress in the direction of the general conjecture is provided by
the next theorem.

(6.54) Theorem. Let xh, xv ∈ (0,∞) and q ∈ [1,∞). Then

θ0(x, q) = 0 if xhxv ≤ 1.

Proof. Let n ≥ 1, and let

D(n) =
{

y ∈ Z2 : |y1| + |y2 − 1
2 | ≤ n + 1

2

}

be the ‘offset diamond’ illustrated in Figure 6.10. The proof follows that of
Theorem 6.17(a), but working with D(n) in place of T (n). We omit the details,
noting only that the proof uses the 0/1-infinite-cluster property of the measures
φb

x,q , and the symmetry of the model under reflection in both the vertical axis of

R2 and the line {(y1,
1
2 ) : y1 ∈ R}. �

Here are two exact but non-rigorous claims for this model. We recall from
Theorem 4.58 the ‘pressure’ function G given in the current context as

G(x, q) = lim
3↑Z2

{
1

|E3| log Y3(p, q)

}
, (x, q) ∈ (0,∞)2 × [1,∞),
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Figure 6.10. The diamond D(n) of the square lattice L
2 when n = 2, and the associated

‘dual’ diamond D(n)d of the dual lattice L
2
d.

where

Y3(p, q) = (1 − ph)
− 1

2 |E3|(1 − pv)
− 1

2 |E3|Z3(p, q)

=
∑

ω∈�3
(xh

√
q)|ηh(ω)|(xv

√
q)|ηv(ω)|qk(ω),

and ηh(ω) (respectively, ηv(ω)) is the set of open horizontal (respectively, vertical)
edges of the configuration ω ∈ �3 = {0, 1}E3 . By duality as in Section 6.1,

(6.55) G(x, q) = G(xd, q)+ 1
2 log(xhxv), x ∈ (0,∞)2.

By mapping the random-cluster model onto an ice-type model as in [26, Section
12.5], one obtains the following exact computation,

G(x, q) = 1
2ψ(xh)+ 1

2ψ(xv)+ 1
4 log q, xhxv = 1,

where the function ψ : (0,∞) → R is given as follows.

(i) When 0 < q < 4, choose µ ∈ (0, 1
2π) and γ ∈ (0, µ) by

2 cosµ = √
q, x = sin γ

sin(µ− γ )
,

and then

ψ(x) = 1

2

∫ ∞

−∞

sinh((π − µ)t) sinh(2γ t)

t sinh(π t) cosh(µt)
dt .
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(ii) When q = 4, let τ = x/(1 + x), and then

ψ(x) =
∫ ∞

0

e−y

y
sechy sinh(2τ y) dy.

(iii) When q > 4, choose λ > 0 and β ∈ (0, λ) by

2 cosh λ = √
q, x = sinh β

sinh(λ− β)
,

and then

ψ(x) = β +
∞∑

n=1

e−nλ

n
sech(nλ) sinh(2nβ).

Our second exact asymptotic relation concerns the mean density of open edges,

hb(p, q) = lim
3↑Z2

{
1

|E3|φ
b
3,p,q(|η|)

}
, b = 0, 1.

By the translation-invariance of the infinite-volume measures, the mean numbers
of open horizontal and vertical edges satisfy

(6.56)

2

|E3|φ
b
3,p,q(|ηh|) → hb

h(p, q) = φb
p,q(eh is open),

2

|E3|φ
b
3,p,q(|ηv|) → hb

v(p, q) = φb
p,q(ev is open),

as3 ↑ Z2, where eh (respectively, ev) is a representative horizontal (respectively,
vertical) edge of L2. Therefore,

hb(p, q) = 1
2

[
hb

h(p, q)+ hb
v(p, q)

]
.

As before, except possibly on the self-dual curve xhxv = 1, the functions hb
h(·, q),

hb
v(·, q) are continuous and h0

h/v(p, q) = h1
h/v(p, q). [We write h/v to indicate

that either possibility, chosen consistently within a given equation, is valid.] In
addition, as in Proposition 4.28, the h0

h/v(·, q) are left-continuous and the h1
h/v(·, q)

right-continuous everywhere, in that

h0
h/v(p, q) = lim

p′↑p
h0

h/v(p
′, q), h1

h/v(p, q) = lim
p′↓p

h1
h/v(p

′, q), p ∈ (0, 1)2.

By duality as in Theorem 6.13,

(6.57) h0
h/v(p, q)+ h1

v/h(pd, q) = 1, p ∈ (0, 1)2.
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Figure 6.11. The triangular lattice T and its dual (hexagonal) lattice H.

It is believed when q ∈ [1, 4) that the transition is of second order, and thus in
particular that the hb

h/v(p, q) are continuous on the self-dual curve. This implies
that

h0
h/v(p, q) = h1

h/v(p, q), p ∈ (0, 1)2, q ∈ [1, 4).

It follows from this and (6.57) that one should have

(6.58) hb(p, q) = 1
2

[
hb

h(p, q)+ hb
v(p, q)

] = 1
2 , b = 0, 1,

when xhxv = 1 and q ∈ [1, 4).

The transition is expected to be of first order when q ∈ (4,∞), and the exact
computations reported in [26, Section 12.5] yield when xhxv = 1 that

(6.59)
h0

h/v(p, q) = xh/v
[
ψ ′(xh/v)− ζ(xh/v)P0

]
,

h1
h/v(p, q) = xh/v

[
ψ ′(xh/v)+ ζ(xh/v)P0

]
,

where

ζ(x) = sinh λ

1 + x2 + 2x cosh λ
, P0 =

∞∏

m=1

[tanh(mλ)]2,

with λ given as in case (iii) above. Since 2 cosh λ = √
q ,

ζ(x) =
1
2

√
q − 4

1 + x2 + x
√

q
,

a formula which underscores the relevance of the condition q > 4. In the sym-
metric case xh = xv = 1, we deduce when q > 4 that the discontinuity of the
edge-density at the critical point equals

h1(p, q)− h0(p, q) =
√

q − 4

2 + √
q

∞∏

m=1

[tanh(mλ)]2.
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Figure 6.12. In the star–triangle transformation, alternate triangles of T are replaced as shown
by stars. The triangular lattice T is thereby transformed into a copy of the hexagonal lattice
H. The shaded triangles are referred to henceforth as grey triangles.

We turn now from speculation concerning the (self-dual) square lattice towards
rigorous mathematics concerning the triangular/hexagonal pair of lattices,denoted
by T and H respectively. It is elementary that T is the planar dual of H, and vice
versa (see Figure 6.11). This fact permits a relation as in Theorem 6.13 between
the random-cluster model on T with parameters p, q and that on H with parameters
pd, q . There is a second transformation between T and H called the ‘star–triangle
transformation’ and illustrated in Figure 6.12. Alternate triangles of T are replaced
by stars, and the resulting graph is isomorphic to H. We shall henceforth refer to
the shaded triangles in Figure 6.12 as grey triangles.

We explain next the use of the star–triangle transformation10, and this we do
with the extra generality allowed by assigning to each edge e the individual edge-
parameter pe. Rather than working with the pe, we shall work with the variables

ye = pe

1 − pe
,

see the footnote on page 135. For any finite subgraph G = (V , E) of T,

φG,p,q(ω) = 1

YG(p, q)

{∏

e∈E

yω(e)e

}
qk(ω), ω ∈ {0, 1}E .

Suppose that G contains some grey triangle T = ABC with edge-set ET =
{e1, e2, e3}, drawn on the left side of Figure 6.13. We propose to replace T by
the star S on the right side, adding thereby a supplementary vertex, and with the
edge-parameter values y ′

1, y ′
2, y ′

3 as shown. We shall see that that, under certain
conditions on the yi and y ′

i , the probabilities of a large family of ‘connection
events’ are not altered by this transformation. The conditions in question are as
follows:

ψT(y1, y2, y3) = 0,(6.60)

yi y ′
i = q for i = 1, 2, 3,(6.61)

10References to the star–triangle transformation in the context of the Potts model may be
found in [26, 324]. See also [92].
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A B B

C C

y1

y ′
1

y2

y ′
2 y ′

3

y3

A

Figure 6.13. Bond parameters in the star–triangle transformation. The ‘grey’ triangle T on
the left is replaced by the star S on the right, and the corresponding parameters are as marked.

where

(6.62) ψT(y1, y2, y3) = y1y2 y3 + y1y2 + y2 y3 + y3 y1 − q.

We note for later use that ψH(y ′
1, y ′

2, y ′
3) = 0 under (6.60)–(6.61), where

(6.63) ψH(y1, y2, y3) = y1y2y3 − q(y1 + y2 + y3)− q2.

Let ω ∈ {0, 1}E , and define the equivalence (connection) relation ↔ω on V in
the usual way, that is, u ↔ v if and only if there exists a open path ofω from u to v.
We think of ↔ω as a random equivalence relation. Write GS = (V S, E S) for the
graph obtained from G after the replacement of T by S, noting that V S is obtained
from V by the addition of a vertex in the interior of T . Each ωS ∈ {0, 1}E S

gives
rise similarly to an equivalence relation on V which we denote as ↔ωS .

(6.64) Lemma. Let q ∈ (0,∞). Let G = (V , E) be a finite subgraph of T and let
T = ABC be a grey triangle of G as above. Let p ∈ (0, 1)E , and let pS ∈ (0, 1)E S

be such that: pS
e = pe for e ∈ E \ ET , and on T and S the corresponding

parameters yi , y ′
i satisfy (6.60)–(6.61). The law of ↔ω under φG,p,q is the same

as the law of ↔ωS under φG S,pS,q .

Proof. Let e1, e2, e3 (respectively, e′
i ) be the edges of T (respectively, S), and

write yi (respectively, y ′
i ) for the corresponding parameters as in Figure 6.13. Let

(ω(e) : e ∈ E \{e1, e2, e3}) be given, and consider the conditional random-cluster
measures PT

ω (respectively, P S
ω ) on the ei (respectively, on the e′

i ). There are three
disjoint classes of configurationωwhich must be considered, depending on which
of the following holds:

(a) A, B , C are in distinct open clusters of ω restricted to E \ {e1, e2, e3},
(b) two members of {A, B,C} are in the same such cluster, and the third is not,

(c) A, B , and C are in the same such cluster.

In each case, we propose to show that, under (6.60)–(6.61), the connections be-
tween A, B , C have the same conditional probabilities under both PT

ω and P S
ω .

The required calculations are simple in principle, and we shall omit many details.
In particular, we shall verify the claim under case (b) only, the other two cases
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being similar. Assume then that (b) holds, and suppose for definiteness that the
configuration ω is such that: A and B are joined off T , but C is joined off T to
neither A nor B . By Theorem 3.1, the probabilities of connections internal to T
are given as follows:

(6.65)

PT
ω (A ↔ B and B /↔ C in T ) = 1

Y
y1q2,

PT
ω (A /↔ B and B ↔ C in T ) = 1

Y
y2q,

PT
ω (A /↔ B and A ↔ C in T ) = 1

Y
y3q,

PT
ω (A ↔ B ↔ C in T ) = 1

Y
(y1y2y3 + y1 y2 + y2y3 + y3y1)q,

where

(6.66) Y = (y1y2y3 + y1y2 + y2 y3 + y3y1 + y2 + y3)q + (1 + y1)q
2.

Note that the events in question concern the existence (or not) of open paths within
T only. The remaining term PT

ω (A /↔ B /↔ C in T ) is given by the fact that the
sum of the probabilities of all such configurations on T equals 1.

The corresponding probabilities for connections internal to S are:

(6.67)

P S
ω (A ↔ B and B /↔ C in S) = 1

Y ′ y ′
2y ′

3q2,

P S
ω (A /↔ B and B ↔ C in S) = 1

Y ′ y ′
1y ′

3q,

P S
ω (A /↔ B and A ↔ C in S) = 1

Y ′ y ′
1y ′

2q,

P S
ω (A ↔ B ↔ C in S) = 1

Y ′ y ′
1y ′

2y ′
3q,

where

(6.68) Y ′ = (y ′
1 y ′

2y ′
3 + y ′

1y ′
2 + y ′

1 y ′
3)q + (y ′

2y ′
3 + y ′

1 + y ′
2 + y ′

3)q
2 + q3.

It is left to the reader to check that, under (6.60)–(6.61), the probabilities in
(6.65) and (6.67) are equal. Similar computations are valid in cases (a) and (c)
also, and it follows that, in loose terms, the replacement of T by S is ‘invisible’
to connections elsewhere in the graph G. �

Lemma 6.64 allows us to replace one grey triangle of G by a star. This pro-
cess may be iterated until every grey triangle of G has been thus replaced. If G
is itself a union of grey triangles, then the resulting graph is a subgraph of the
hexagonal lattice H. By working on a square region 3 of T and passing to the
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limit as 3 ↑ T, we find in particular that connections on T have the same proba-
bilities as connections on H so long as the edge-parameters on T satisfy (6.60) and
the corresponding parameters on H satisfy (6.61). In particular the percolation
probabilities are the same. We now make the last statement more specific.

Write ET (respectively, EH) for the edge-set of T (respectively, H). Let p =
(pe : e ∈ ET) ∈ (0, 1)ET , and let ye = pe/(1 − pe). We speak of p as being of
type γ if, for every grey triangle T , the three parameters y1, y2, y3 of the edges of
T satisfy ψT(y1, y2, y3) = γ . Suppose that p is of type 0, as in (6.60). Applying
the star–triangle transformation to every grey triangle of T, we obtain a copy H
of the hexagonal lattice, and we choose the parameters p′ = (p′

e : e ∈ EH) of
edges of this lattice in such a way that (6.61) holds. By the above discussion, the
percolation probabilities θb

T
and θb

H
satisfy

(6.69) θb
T
(p, q) = θb

H
(p′, q), b = 0, 1,

whenever q ∈ [1,∞).

A labelled lattice is a lattice L together with a real vector p indexed by the edge-
set of L. An automorphism of a labelled lattice (L,p) is a graph automorphism
τ of L such that pτ (e) = pe for every edge e.

Equation (6.69) leads to a proposal for the so-called ‘critical surfaces’ of the
triangular and hexagonal lattices. The crude argument is as follows. Suppose that
p, p′ are as above. If θ0

T
(p, q) > 0 then, by (6.69), θ0

H
(p′, q) > 0 also. If we

accept a picture of an infinite primal ocean of H encompassing bounded islands of
its dual, then it follows that θ1

Hd
((p′)d, q) = 0. If the initial labelled lattice (T,p)

has a sufficiently large automorphism group then it may, by (6.61), be the case
that (Hd, (p′)d) is isomorphic to (T,p), in which case

0 = θ1
Hd
((p′)d, q) = θ1

T
(p, q).

This is a contradiction, and we deduce that θ0
T
(p, q) = 0 whenever p is of type 0.

On the other hand, some readers may be able to convince themselves that there
should exist no non-empty interval (α, β) ⊆ R such that: neither T nor its dual
lattice possesses an infinite cluster whenever the type of p lies in (α, β). One
arrives via these non-rigorous arguments at the (unproven) statement that

(6.70) θ0
T
(p, q)

{ = 0 if p is of non-positive type,

> 0 if p is of strictly positive type,

with a similar conjecture for the hexagonal lattice.

Let p1, p2, p3 ∈ (0, 1) and let yi = pi/(1− pi). We restrict the discussion now
to the situation in which every grey triangle of T has three edges with parameters
p1, p2, p3, in some order. The corresponding process on H has parameters p′

i
where the y ′

i = p′
i/(1 − p′

i ) satisfy (6.61). The assertions above motivate the
proposals that:

(6.71)
T has critical surface y1 y2y3 + y1y2 + y2 y3 + y3y1 − q = 0,

H has critical surface y ′
1y ′

2 y ′
3 − q(y ′

1 + y ′
2 + y ′

3)− q2 = 0,
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in the sense that

θ0
T
(p, q)

{ = 0 if ψT(y) ≤ 0,

> 0 if ψT(y) > 0,

with a similar statement for H. It is not known how to make (6.71) rigorous,
neither is it even accepted that the above statements are true in generality, since no
explicit assumption has been made about the automorphism groups of the labelled
lattices in question.

We move now to the special case of the homogeneous random-cluster model
on T, with constant edge-parameter pe = p for every edge e. One part of the
above discussion may be made rigorous, as follows.

(6.72) Theorem. Let q ∈ [1,∞).

(a) Consider the random-cluster model on the triangular lattice T, and let p be
such that y = p/(1 − p) satisfies y3 + 3y2 − q = 0. Then θ0

T
(p, q) = 0,

and therefore pc(q,T) ≥ p.

(b) Consider the random-cluster model on the hexagonal lattice H, and let p′ be
such that y = p′/(1− p′) satisfies y3 −3qy −q2 = 0. Then θ0

H
(p′, q) = 0,

and therefore pc(q,H) ≥ p′.

Proof. This may be proved either by adapting the argument used to prove The-
orems 6.17(a) and 6.54, or by following the proof of Theorem 6.47. The former
approach utilizes the 0/1-infinite-cluster property, and the latter approach makes
use of the circuit-generation procedure pioneered in [181] and extended in [130].
Under either method, it is important that the labelled lattices be invariant under
translations and possess axes of mirror-symmetry. �

It is generally believed that the critical values of T and H are the values given
in Theorem 6.72. To prove this, it would suffice to have a reasonable upper bound
for φ0

T,p,q(0 ↔ ∂3(n)), where 3(n) = [−n, n]2. See the related Theorem 6.18
and Lemma 6.28.

We close this section with an open problem. Arguably the simplest system on
the triangular lattice which possesses insufficient symmetry for the above proof is
that in which every horizontal (respectively, vertical, diagonal) edge of T has edge-
parameter ph (respectively, pv, pd). The ensuing labelled lattice has properties of
translation-invariance but has no axis of mirror-symmetry. Instead, it is symmetric
under reflections in the origin. We conjecture11 that the equivalent of Theorem
6.72 holds for this process, namely that

(6.73) θ0
T
(p, q) = 0 if ψT(ph, pv, pd) = 0.

Indeed, one expects that the critical surface is given by ψT(ph, pv, pd) = 0. The
proof of the corresponding statement for the percolation model may be found at
[154, Thm 11.116].

11Note added at reprinting: this conjecture has been verified in [327].
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6.7 Stochastic Löwner evolutions

Many exact calculations are ‘known’ for critical processes in two dimensions,
but the required physical arguments have sometimes appeared in varying degrees
magical or revelationary to mathematicians. The recently developed technology
of stochastic Löwner evolutions (SLE), discovered by Schramm [294], promises
a rigorous underpinning of many such arguments in a manner consonant with
modern probability theory. Roughly speaking, the theory of SLE informs us of
the correct weak limit of a critical process in the limit of large spatial scales, and in
addition provides a mechanism for performing calculations for the limit process.

Let U = (−∞,∞) × (0,∞) denote the upper half-plane of R2, with closure
U. We view U and U as subsets of the complex plane. Consider the ordinary
differential equation

d

dt
gt (z) = 2

gt (z)− Bκt
, z ∈ U \ {0},

subject to the boundary condition g0(z) = z, where t ∈ [0,∞), κ is a positive
constant, and (Bt : t ≥ 0) is a standard Brownian motion. The solution exists
when gt (z) is bounded away from Bκt . More specifically, for z ∈ U, let τz be the
infimum of all times τ such that 0 is a limit point of gs(z) − Bκs in the limit as
s ↑ τ . We let

Ht = {z ∈ U : τz > t}, Kt = {z ∈ U : τz ≤ t},

so that Ht is open, and Kt is compact. It may now be seen that gt is a conformal
homeomorphism from Ht to U.

We call (gt : t ≥ 0) a stochastic Löwner evolution (SLE) with parameter κ ,
written SLEκ , and we call the Kt the hulls of the process. There is good reason
to believe that the family K = (Kt : t ≥ 0) provides the correct scaling limit of a
variety of random spatial processes, the value of κ being chosen according to the
process in question. General properties of SLEκ , viewed as a function of κ , have
been studied in [284, 316], and a beautiful theory has emerged. For example, the
hulls K form (almost surely) a simple path if and only if κ ≤ 4. If κ > 8, then
SLEκ generates (almost surely) a space-filling curve.

Schramm [294, 295] has identified the relevant value of κ for several different
processes, and has indicated that percolation has scaling limit SLE6. Full rigorous
proofs are not yet known even for general percolation models. For the special case
of site percolation on the triangular lattice T, Smirnov [304, 305] has proved the
very remarkable result that the crossing probabilities of re-scaled regions of R2

satisfy Cardy’s formula, and he has outlined a connection to a ‘full scaling limit’
and to the process SLE6. (This last statement is illustrated and partly explained in
Figure 6.14.) The full scaling limit for critical percolation on T as an SLE6-based
loop process was announced by Camia and Newman in [75] and the proofs may
be found in [76].
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Figure 6.14. Site percolation on the triangular lattice with p equal to the critical point 1
2 ,

and with a mixed boundary condition along the lower side. The interface traces the boundary
between the white and the black clusters touching the boundary, and is termed the ‘exploration
process’. In the limit of small lattice-spacing, the interface converges in a certain manner to
the graph of a function that satisfies the Löwner differential equation driven by a Brownian
motion with variance parameter κ = 6.

It is possible to perform calculations for stochastic Löwner evolutions, and in
particular to confirm, [230, 307], the values of many critical exponents associated
with site percolation on the triangular lattice. The outcomes are in agreement
with predictions of mathematical physicists considered previously to be near-
miraculous, see [154, Chapter 9]. In addition, SLE6 satisfies the appropriate
version of Cardy’s formula, [80, 227].

The technology of SLE is a major piece of contemporary mathematics which
promises to explain phase transitions in an important class of two-dimensional
disordered systems, and to help bridge the gap between probability theory and
conformal field theory. It has in addition provided complete explanations of
conjectures made by mathematicians and physicists concerning the intersection
exponents and fractionality of frontier of two-dimensional Brownian motion, see
[228, 229].

Further work is needed to prove the validity of the limiting operation for other
percolation models and random processes. Lawler, Schramm, and Werner have
verified in [231] the existence of the scaling limit for loop-erased random walk and
for the uniform spanning-tree Peano curve, and have shown them to be SLE2 and
SLE8 respectively. It is believed that self-avoiding walk on L2, [244], has scaling
limit SLE8/3. Schramm and Sheffield have proved that the so-called harmonic
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explorer and the interface of the discrete Gaussian free field have common limit
SLE4, see [296, 297].

We turn now to the random-cluster model on L2 with parameters p and q .
For q ∈ [1, 4), it is believed as in Conjectures 6.15 and 6.32 that the percolation
probability θ(p, q), viewed as a function of p, is continuous at the critical point
pc(q), and furthermore that pc(q) = √

q/(1 + √
q). It seems likely that, when

re-scaled in the manner similar to that of percolation, the cluster-boundaries of
the model converge to a limit process of SLE type. It will remain only to specify
the parameter κ of the limit in terms of q . It has been conjectured in [284] that
κ = κ(q) satisfies

cos(4π/κ) = − 1
2
√

q, κ ∈ (4, 8).

This value is consistent with the above observation that κ(1) = 6, and also with
the finding of [231] that the scaling limit of the uniform spanning-tree Peano curve
is SLE8. We recall from Theorem 1.23 that the uniform spanning-tree measure is
obtained as a limit of the random-cluster measure as p, q ↓ 0.

There are uncertainties over how this programme will develop. For a start, the
theory of random-cluster models is not so complete as that of percolation and of the
uniform spanning tree. Secondly, the existence of spatial limits is currently known
only in certain special cases. The programme is however ambitious and promising,
and may ultimately yield a full picture of the critical behaviour, including the
numerical values of critical exponents, of random-cluster models with q ∈ [1, 4),
and hence of Ising/Potts models also. There is good reason to expect early progress
for the case q = 2, for which the random-cluster interface should converge to
SLE16/3, and the Ising (spin) interface to SLE3, [306]. The reader is referred to
[295] for a survey of open problems and conjectures concerning SLE.
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Chapter 7

Duality in Higher Dimensions

Summary. The boundaries of clusters in d dimensions are (topologically)
(d − 1)-dimensional and, in their study, one encounters new geometrical
difficulties when d ≥ 3. By representing the random-cluster model as a
sequence of nested contours with alternately wired and free boundary con-
ditions, one arrives at the proof that the phase transition is discontinuous for
sufficiently large q. There is a random-cluster analysis of non-translation-
invariant states of Dobrushin-type when d ≥ 3, q ∈ [1,∞), and p is
sufficiently large.

7.1 Surfaces and plaquettes

Duality is a fundamental technique in the study of a number of stochastic models on
a planar graph G = (V , E). Domains of G which are ‘switched-on’ in the model
are surrounded by contours of the dual graph Gd which are ‘switched-off’. We
make this more concrete as follows. We take as sample space the set� = {0, 1}E

where, as usual, an edge e is called open in ω ∈ � if ω(e) = 1. There exists no
open path between two vertices x , y of G if and only if there exists a contour in the
dual graph that separates x and y and that traverses closed edges only. Such facts
have been especially fruitful in the case of percolation, because the dual process
of closed edges is itself a percolation process. We saw similarly in Section 6.1 that
the dual of a random-cluster model on a planar graph G is a random-cluster model
on the dual graph Gd, and this observation led to a largely complete theory of the
random-cluster model on the square lattice. When d = 2, one may summarize
this with the facile remark that 2 = 1 + 1, viewed as an expression of the fact that
the co-dimension of a line in R2 is 1. The situation in three and more dimensions
is much more complicated since the co-dimension of a line in Rd is d − 1, and
one is led therefore to a consideration of surfaces and their geometry.

We begin with a general description of duality in three dimensions (see, for
example, [6, 139]) and we consider for the moment the three-dimensional cu-
bic lattice L3. The dual lattice L3

d is obtained by translating L3 by the vector
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Figure 7.1. A unit cube of the primal lattice L
3, and a plaquette of the dual lattice. The open

circles are vertices of the dual lattice L
3
d placed at the centres of the primal unit cubes. Each

edge e of L
3 passes through the centre of some face common to two unit cubes of the dual

lattice, illustrated here by the shaded region, and this face is the ‘plaquette’ associated with e.

1
2 = ( 1

2 ,
1
2 ,

1
2 ); each vertex of L3

d lies at the centre of a unit cube of the primal
lattice L3. We define a plaquette to be a (topologically) closed unit square in
R3 with corners lying in the dual vertex set Z3 + 1

2 . That is, plaquettes are the
bounding faces of the unit cubes of the dual lattice L3

d. Each edge e of L3 passes
through the centre of a dual plaquette, namely the plaquette that is perpendicular
to e and passes through its centre, see Figure 7.1.

Two distinct plaquettes h1 and h2 are called 1-connected, written h1
1∼ h2, if:

either h1 = h2, or h1 ∩ h2 is homeomorphic to the unit interval [0, 1]. A set of
plaquettes is called 1-connected if they are connected when viewed as the vertex-

set of a graph with adjacency relation
1∼. Consider a finite, connected, open cluster

C of L3. It has an external edge-boundary1eC comprising all closed edges with
exactly one endvertex in C . Edges in 1eC correspond to plaquettes of the dual
L3

d, and it turns out that this set of plaquettes contains a 1-connected surface that
separates C from ∞. Thus, connectivity in the primal lattice is constrained by the
existence of 1-connected ‘surfaces’ of dual plaquettes.

Here is a plan of this chapter. There appears in Section 7.2 a topological
argument which is fundamental to the study of the random-cluster model with
d ≥ 3. This extends the two-dimensional duality results of [210, Appendix] to
three and more dimensions. There are two principal components in the remain-
der of the chapter. In Sections 7.3–7.5, a representation of the wired and free
random-cluster models as polymer models (in the sense of statistical mechan-
ics) is established and developed. This leads to the famous result that the phase
transition of the random-cluster model is discontinuous when d ≥ 2 and q is suff-
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iciently large, [224]. The second component is the proof in Sections 7.6–7.11 of
the existence of ‘Dobrushin interfaces’ for all random-cluster models with d ≥ 3,
q ∈ [1,∞), and sufficiently large p. This generalizes Dobrushin’s work on non-
translation-invariant Gibbs states for the Ising model, [103], and extends even to
the percolation model. A considerable amount of geometry is required for this,
and the account given here draws heavily on the original paper, [139].

7.2 Basic properties of surfaces

The principal target of this section is to study the geometry of the dual surface
corresponding to the external boundary of a finite connected subgraph of Ld . The
results are presented for d ≥ 3, but the reader is advised to concentrate on the
case d = 3. We write Ld

d for the dual lattice of Ld , being the translate of Ld by
the vector 1

2 = ( 1
2 ,

1
2 , . . . ,

1
2 ).

Let d ≥ 3 and let B0 = [0, 1]d , viewed as a subset of Rd . The elementary
cubes of Ld

d are translates by integer vectors of the cube B0 − 1
2 = [− 1

2 ,
1
2 ]d . The

boundary of B0 − 1
2 is the union of the 2d sets Pi,u given by

(7.1) Pi,u = [− 1
2 ,

1
2 ]i−1 × {u − 1

2 } × [− 1
2 ,

1
2 ]d−i ,

for i = 1, 2, . . . , d and u = 0, 1. A plaquette (in Rd ) is defined to be a translate
by an integer vector of some Pi,u . We point out that plaquettes are (topologically)
closed (d−1)-dimensional subsets of Rd, and that plaquettes are lines when d = 2,
and are unit squares when d = 3 (see Figure 7.1). Let H denote the set of all pla-
quettes in Rd . The straight line-segment joining the vertices of an edge e = 〈x, y〉
passes through the middle of a plaquette denoted by h(e), which we call the dual
plaquette of e. More precisely, if y = x + ei where ei = (0, . . . , 0, 1, 0, . . . , 0) is
the unit vector in the direction of increasing i th coordinate, then h(e) = Pi,1 + x .

Let s ∈ {1, 2, . . . , d − 2}. Two distinct plaquettes h1 and h2 are said to be

s-connected, written h1
s∼ h2, if h1 ∩ h2 contains a homeomorphic image of the

s-dimensional unit cube [0, 1]s . We say that h1 and h2 are 0-connected, written

h1
0∼ h2, if h1∩h2 6= ∅. Note that h1

d−2∼ h2 if and only if h1∩h2 is homeomorphic
to [0, 1]d−2. A set of plaquettes is said to be s-connected if they are connected

when viewed as the vertex-set of a graph with adjacency relation
s∼. Of particular

importance is the case s = d − 2. The distance ‖h1, h2‖ between two plaquettes
h1, h2 is defined to be the L∞ distance between their centres. For any set H of
plaquettes, we write E(H ) for the set of edges of Ld to which they are dual.

We consider next some geometrical matters. The words ‘connected’ and ‘com-
ponent’ should be interpreted for the moment in their topological sense. Let
T ⊆ Rd , and write T for the closure of T in Rd . We define the inside ins(T ) to be
the union of all bounded connected components of Rd \ T ; the outside out(T ) is
the union of all unbounded connected components of Rd \ T . The set T is said to
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separate Rd if Rd \ T has more than one connected component. For a set H ⊆ H
of plaquettes, we define the set [H ] ⊆ Rd by

(7.2) [H ] = {x ∈ Rd : x ∈ h for some h ∈ H }.

We call a finite set H of plaquettes a splitting set if it is (d − 2)-connected and
Rd \ [H ] contains at least one bounded connected component.

The two theorems that follow are in a sense dual to one another. The first
is an analogue1 in a general number of dimensions of Proposition 2.1 of [210,
Appendix], where two-dimensional mosaics were considered.

(7.3) Theorem [139]. Let d ≥ 3, and let G = (V , E) be a finite connected
subgraph of Ld . There exists a splitting set Q of plaquettes such that:

(i) V ⊆ ins([Q]),

(ii) every plaquette in Q is dual to some edge of Ed with exactly one endvertex
in V ,

(iii) if W is a connected set of vertices of Ld such that V ∩ W = ∅, and there
exists an infinite path on Ld starting in W that uses no vertex in V , then
W ⊆ out([Q]).

For any set δ of plaquettes, we define its closure δ to be the set

(7.4) δ = δ ∪
{
h ∈ H : h is (d − 2)-connected to some member of δ

}
.

Let δ = {h(e) : e ∈ D} be a (d − 2)-connected set of plaquettes. Consider
the subgraph (Zd ,Ed \ D) of Ld , and let C be a component of this graph. Let
1v,δC denote the set of all vertices v in C for which there exists w ∈ Zd with
h(〈v,w〉) ∈ δ, and let1e,δC denote the set of edges f of C for which h( f ) ∈ δ\δ.
Note that edges in 1e,δC have both endvertices belonging to 1v,δC .

(7.5) Theorem [139]. Let d ≥ 3. Let δ = {h(e) : e ∈ D} be a (d − 2)-connected
set of plaquettes, and let C = (VC , EC) be a finite connected component of the
graph (Zd ,Ed \ D). There exists a splitting set Q = QC of plaquettes such that:

(i) VC ⊆ ins([Q]),

(ii) Q ⊆ δ,

(iii) every plaquette in Q is dual to some edge of Ed with exactly one endvertex
in C.

Furthermore, the graph (1v,δC,1e,δC) is connected.

This theorem will be used later to show that, for a suitable (random) set δ of
plaquettes, the random-cluster measure within a bounded connected component
of Rd \ [δ] is that with wired boundary condition. The argument is roughly as
follows. Let ω ∈ �, and let δ = {h(e) : e ∈ D} be a maximal (d − 2)-connected

1This answers a question which arose in 1980 during a conversation with H. Kesten.
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set of plaquettes that are open (in the sense that they are dual to ω-closed edges
of Ld , see (7.9)). Let h = h( f ) ∈ δ \ δ. It must be the case that f is open,
since if f were closed then h( f ) would be open, which would in turn imply that
h( f ) ∈ δ, a contradiction. That is to say, for any finite connected component C of
(Zd ,Ed \ D), every edge in1e,δC is open. By Theorem 7.5, the boundary1v,δC ,
when augmented by the set 1e,δC of edges, is a connected graph. The random-
cluster measure on C , conditional on the set δ, is therefore a wired measure.

We shall require one further theorem of similar type.

(7.6) Theorem. Let d ≥ 3 and let δ = {h(e) : e ∈ D} be a finite (d−2)-connected
set of plaquettes. Let C = (V , E) be the subgraph of (Zd ,Ed \ D) comprising all
vertices and edges lying in out([δ]). There exists a subset Q of δ such that:

(i) Q is (d − 2)-connected,

(ii) every plaquette in Q is dual to some edge of Ed with at least one endvertex
in C.

Furthermore, the graph (1v,δC,1e,δC) is connected.

Proof of Theorem 7.3. Related results may be found in [82, 101, 159]. The theorem
may be proved by extending the proof of [159, Lemma 7.2], but instead we adapt
the proof given for three dimensions in [139]. Consider the set of edges of Ld

with exactly one endvertex in V , and let P be the corresponding set of plaquettes.

Let x ∈ V . We show first that x ∈ ins([P]). Let U be the set of all closed unit
cubes of Rd having centres in V . Since all relevant sets in this proof are simplicial,
the notions of path-connectedness and arc-connectedness coincide. Recall that an
unbounded path of Rd from x is a continuous mapping γ : [0,∞) → Rd with
γ (0) = x and unbounded image. For any such path γ satisfying |γ (t)| → ∞ as
t → ∞, γ has a final point z(γ ) belonging to the (closed) union of all cubes in
U. Now z(γ ) ∈ [P] for all such γ , and therefore x ∈ ins([P]).

Let λs denote s-dimensional Lebesgue measure, so that, in particular, λ0(S) =
|S|. A subset S of Rd is called:

{
thin if λd−3(S) < ∞,

fat if λd−2(S) > 0.

Let P1, P2, . . . , Pn be the (d − 2)-connected components of P . Note that
[Pi ] ∩ [Pj ] is thin, for i 6= j . We show next that there exists i such that x ∈
ins([Pi ]). Suppose for the sake of contradiction that this is false, which is to say
that x /∈ ins([Pi ]) for all i . Then x /∈ P i = [Pi ] ∪ ins([Pi ]) for i = 1, 2, . . . , n.
Note that each P i is a closed set which does not separate Rd .

Let i 6= j . We claim that:

(7.7) either P i ∩ P j is thin, or one of the sets P i , P j is a subset of the other.

To see this, suppose that P i ∩ P j is fat; we shall deduce as required that either
P i ⊆ P j or P i ⊇ P j .
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Suppose further that P i ∩ [Pj ] is fat. Since [Pj ] is a union of plaquettes and P i

is a union of plaquettes and cubes, all with corners in Zd + 1
2 , there exists a pair h1,

h2 of plaquettes of Ld
d such that h1

d−2∼ h2, and g = h1∩h2 satisfies g ⊆ P i ∩[Pj ].
We cannot have g ⊆ [Pi ] since [Pi ] ∩ [Pj ] is thin, whence int(g) ⊆ ins([Pi ]),
where int(g) denotes the interior of g viewed as a subset of Rd−2. Now, [Pj ] is
(d − 2)-connected and [Pi ] ∩ [Pj ] is thin, so that [Pj ] is contained in the closure
of ins([Pi ]), implying that [Pj ] ⊆ P i and therefore P j ⊆ P i .

Suppose next that P i ∩ [Pj ] is thin but P i ∩ ins([Pj ]) is fat. Since [Pi ] is
(d − 2)-connected, it has by definition no thin cutset. Since [Pi ] ∩ [Pj ] is thin,
either [Pi ] ⊆ P j or [Pi ] is contained in the closure of the unbounded component
of Rd \ [Pj ]. The latter cannot hold since P i ∩ ins([Pj ]) is fat, whence [Pi ] ⊆ P j

and therefore P i ⊆ P j . Statement (7.7) has been proved.

By (7.7), we may write R = ⋃n
i=1 P i as the union of distinct closed bounded

sets P̃i , i = 1, 2, . . . , k, where k ≤ n, that do not separate Rd and such that
P̃i ∩ P̃j is thin for i 6= j . By Theorem 11 of [223, §59, Section II]2, R does not
separate Rd . By assumption, x /∈ R, whence x lies in the unique component of
the complement Rd \ R, in contradiction of the assumption that x ∈ ins([P]). We
deduce that there exists k such that x ∈ ins([Pk]), and we define Q = Pk .

Consider now a vertex y ∈ V . Since G = (V , E) is connected, there exists a
path in Ld that connects x with y using only edges in E . Whenever u and v are
two consecutive vertices on this path, h(〈u, v〉) does not belong to P . Therefore,
y lies in the inside of [Q]. Claims (i) and (ii) are now proved with Q as given,
and it remains to prove (iii).

Let W be as in (iii), and let w ∈ W be such that: there exists an infinite path
on Ld with endvertex w and using no vertex of V . Whenever u and v are two
consecutive vertices on such a path, the plaquette h(〈u, v〉) does not lie in P . It
follows that w ∈ out([P]), and therefore w ∈ out([Q]). �

Proof of Theorem 7.5. Let H = (1v,δC,1e,δC). Let x ∈ 1v,δC , and write Hx

for the connected component of H containing x . We claim that there exists a
plaquette hx = h(〈y, z〉) ∈ δ such that y ∈ Hx .

The claim holds with y = x and hx = h(〈x, z〉) if x has a neighbour z with
h(〈x, z〉) ∈ δ. Assume therefore that x has no such neighbour z. Since x ∈ 1v,δC ,
x has some neighbour u in Ld with h(〈x, u〉) ∈ δ \ δ. Following a consideration

of the various possibilities, there exists h̃ ∈ δ such that h̃
d−2∼ h(〈x, u〉), and

either (a) h̃ = h(〈u, z〉) for some z,

or (b) h̃ = h(〈v, z〉) for some v, z satisfying v ∼ x, z ∼ u.

2This theorem states, subject to a mild change of notation, that: “If none of the closed sets F0
and F1 cuts Sd between the points p and q and if dim(F0 ∩ F1) ≤ d − 3, their union F0 ∪ F1
does it neither”. Here, Sd denotes the d-sphere.
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If (a) holds, we take y = u (∈ Hx) and hx = h̃. If (a) does not hold but (b) holds
for some v, z, we take y = v (∈ Hx) and hx = h̃.

We apply Theorem 7.3 with G = Hx to obtain a splitting set Qx , and we claim
that

(7.8) Qx ∩ δ 6= ∅.

This we prove as follows. If hx ∈ Qx , the claim is immediate. Suppose that
hx /∈ Qx , so that [hx ] ∩ ins([Qx ]) 6= ∅, implying that δ intersects both ins([Qx ])
and out([Qx ]). Since both δ and Qx are (d − 2)-connected sets of plaquettes, it
follows that δ ∪ Qx is (d − 2)-connected. Therefore, there exist h′ ∈ δ, h′′ ∈ Qx

such that h′ d−2∼ h′′. If h′′ ∈ δ, then (7.8) holds, so we may assume that h′′ /∈ δ,
and hence h′′ ∈ δ \ δ. Then h′′ = h(〈v,w〉) for some v ∈ Hx , and therefore
w ∈ Hx , a contradiction. We conclude that (7.8) holds.

Now, (7.8) implies that Qx ⊆ δ. Suppose on the contrary that Qx 6⊆ δ, so that

there exist h′ ∈ δ, h′′ ∈ Qx \ δ such that h′ d−2∼ h′′. This leads to a contradiction
by the argument just given, whence Qx ⊆ δ.

Suppose now that x and y are vertices of H such that Hx and Hy are distinct
connected components. Either Hx lies in out([Qy]), or Hy lies in out([Qx ]).
Since Qx , Qy ⊆ δ, either possibility contradicts the assumption that x and y are
connected in C . Therefore, Hx = Hy as claimed. Part (i) of the theorem holds
with Q = Qx . �

Proof of Theorem 7.6. This makes use the methods of the last two proofs, and
is only sketched. Let Q ⊆ H be the set of plaquettes that are dual to edges of
Ed \ E with at least one endvertex in V . By the definition of the graph C =
(V , E), Q ⊆ δ. Let Q1, Q2, . . . , Qm be the (d − 2)-connected components of
Q. If m ≥ 2, there exists a non-empty subset H ⊆ δ \ Q such that Q ∪ H is
(d − 2)-connected but no strict subset of Q ∪ H is (d − 2)-connected. Each
h = h(e) ∈ H must be such that at least one vertex of e lies in out(Q), in
contradiction of the definition of Q. It follows that Q is (d − 2)-connected.

The connectivity of (1v,δC,1e,δC)may be proved in very much the same way
as in the proof of Theorem 7.5. �

7.3 A contour representation

The dual of a two-dimensional random-cluster model is itself a random-cluster
model, as explained in Chapter 6. The corresponding statement is plainly false
in three or more dimensions, since the geometry of plaquettes differs from that of
edges. Consider an edge-configuration ω ∈ � = {0, 1}E

d
, and the corresponding

plaquette-configuration π = (π(h) : h ∈ H) given by

(7.9) π(h(e)) = 1 − ω(e), e ∈ Ed .
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Thus, h(e) is open if and only if e is closed. The open plaquettes form surfaces,
or ‘contours’, and one seeks to understand the geometry of the original process
through a study of the probable structure of such contours. Contours are objects of
some geometrical complexity, and they demand a proper study in their own right,
of which the results of Section 7.2 form part.

The study of contours for the random-cluster model has as principal triumph
a fairly complete analysis of the model for large q . The central feature of this
analysis is the proof that, at the critical point p = pc(q) for sufficiently large
q , the contour measures of both free and wired models have convergent cluster
expansions. This implies a discontinuous phase transition, the existence of a mass
gap, and a number of other facts presented in Section 7.5.

Cluster (or ‘polymer’) expansions form a classical topic of statistical mechan-
ics, and their theory is extensive and well understood by experts. Rather than
developing the theory from scratch here, we shall in the next section abstract those
ingredients that are relevant for the current application. Meanwhile, we concen-
trate on formulating the random-cluster model in a manner resonant with polymer
expansions. The account given here is an expansion and elaboration of that found
in [224]. A further treatment may be found in [65, 66].

Henceforth in this chapter we shall assume, unless otherwise stated, that d = 3.
Similar results are valid whenever d ≥ 3, and stronger results hold when d = 2.
A plaquette is taken to be a closed unit square of the dual lattice L3

d, and each
plaquette h = h(e) is pierced by a unique edge e of L3.

Since the random-cluster model involves probability measures on the set of
edge-configurations, we shall consider functions on the power set of the edge-
set E3 rather than of the vertex-set Z3. Let E be a finite subset of E3, and let
LE = (VE , E) denote the induced subgraph of L3. We shall consider the partition
functions of the wired and free random-cluster measures on this graph, and to this
end we introduce various notions of ‘boundary’. Let D be a (finite or infinite)
subset of E3, and write D = E3 \ D for its complement.

(i) The vertex-boundary ∂D is the set of all x ∈ VD such that there exists an
edge e = 〈x, z〉 with e /∈ D. Note that ∂D = ∂D.

We shall require three (related) types of ‘edge-boundaries’ of D.

(ii) The 1-edge-boundary ∂e D is defined3 to be the set of all edges e ∈ D such

that there exists f /∈ D with the property that h(e)
1∼ h( f ).

(iii) The external edge-boundary 1ext D is the set of all edges e /∈ D that are
incident to some vertex in ∂D.

(iv) The internal edge-boundary 1intD is the external edge-boundary of the
complement D, that is, 1intD = 1ext D. In other words, 1int D includes
every edge e ∈ D that is incident to some x ∈ ∂D.

3When working with L
d for general d, ∂e D would be taken to be the (d − 2)-edge-boundary,

given similarly but with 1 replaced by d − 2.
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Let p ∈ (0, 1), q ∈ (0,∞), and r = p/(1 − p). As is usual in classical statis-
tical mechanics, it is the partition functions which play leading roles. Henceforth,
we take E to be a finite subset of E3. We consider first the wired measure on LE ,
which we define via its partition function4

(7.10) Z1(E) =
∑

D: D⊆E
D⊇∂eE

r |D|qk1(D,E),

where k1(D, E) denotes the number of connected components (including the
infinite cluster and any isolated vertices) of L3 after the removal of edges in E \ D.
This definition (7.10) differs slightly from that of (4.12) with ξ = 1, but it may
be seen via Theorem 7.5 that the corresponding probability measure amounts to
the wired measure on the edge-set E \ ∂e E . It is presented in the above manner
in order to facilitate certain relations to be derived soon.

We define similarly the free partition function on LE by

(7.11) Z0(E) =
∑

D: D⊆E
D∩1int E=∅

r |D|qk0(VE \∂E,D),

where k0(G) denotes the number of connected components of a graph G including
isolated vertices5. Since 1int E includes every edge e ∈ E that is incident to
some vertex x ∈ ∂E , every x ∈ ∂E is isolated for all sets D contributing to
the summation in (7.11), and these vertices are not included in the cluster-count
k(VE \ ∂E, D). The measure defined by (7.11) differs slightly from that given at
(4.11)–(4.12) with ξ = 0, but it may be seen that the corresponding probability
measure amounts to the free measure on the graph (VE , E \1int E).

By an argument similar to that of Theorem 4.58, there exists a function F ,
termed the pressure, such that

(7.12) F(p, q) = lim
E↑E3

{
1

|E | log Z1(E)

}
= lim

E↑E3

{
1

|E | log Z0(E)

}
,

where the limit is taken in a suitable ‘van Hove’ sense.

We introduce next the classes of ‘wired’ and ‘free’ contours of the lattice L3.
For s ∈ {0, 1} and e, f ∈ E3, we write e

s∼ f if h(e)
s∼ h( f ). A subset D of E3 is

said to be s-connected if it is connected when viewed as a graph with adjacency

relation
s∼. Thus, D is s-connected if and only if the set {h( f ) : f ∈ D} of

plaquettes is s-connected. Let D ⊆ E3, and consider its external edge-boundary
γ = 1ext D. We call the set γ a wired contour (respectively, free contour) if it is

4It is convenient in the present setting to think of a configuration as a subset of edges rather
than as a 0/1-vector. We adopt the convention that Z1(∅) = 1.

5We set Z0(E) = 1 if E \1int E = ∅. In particular, Z0(∅) = 1.
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Figure 7.2. Examples of wired and free contours in two dimensions. The solid lines comprise
D, the dashed lines are the contours, and the dotted lines the dual plaquettes. A wired con-
tour resembles an archipelago joined by causeways, a free contour resembles a single island
traversed by canals.

1-connected and E3 \ D is finite (respectively, it is 1-connected and D is finite).
Illustrations of wired and free contours are presented in Figure 7.2. For any (wired
or free) contour γ , the unique infinite connected component of E3 \ γ is denoted
by ext(γ ) (or ext γ ), and we define also γ = E3 \ext(γ ) and int(γ ) = γ \γ . Note
by Theorem 7.5 that every finite connected cluster C of E3 \ γ lies in the inside
of some splitting set Q = QC of plaquettes drawn from {h(e) : e ∈ γ }.

The set of all wired (respectively, free) contours of L3 is denoted by Cw
(respectively, Cf), and we write γw (respectively, γf) for a typical wired (respec-
tively, free) contour. The length ‖γ ‖ of a contour is defined as

(7.13) ‖γ ‖ =
{ ∣∣{(x, y) : x ∈ ∂γ , 〈x, y〉 ∈ γ }

∣∣, γ ∈ Cw,∣∣{(x, y) : x ∈ Vintγ , 〈x, y〉 /∈ int γ
}∣∣, γ ∈ Cf.

For γ ∈ Cw ∩ Cf, the appropriate choice of ‖γ ‖ will be clear from the context. In
each case, we count the number of ordered pairs (x, y); for example, for γ ∈ Cw,
if x, y ∈ ∂γ and e = 〈x, y〉 ∈ γ , then e contributes a total of 2 to ‖γ ‖. We note
for later use that, by elementary counting arguments,

2d|Vγ \ ∂γ | = 2|γ | − ‖γ ‖, γ ∈ Cw,(7.14)

2d|Vintγ | = 2|int γ | + ‖γ ‖, γ ∈ Cf,(7.15)

and furthermore6,

|∂(int γ )| ≤ |γ | ≤ ‖γ ‖, γ ∈ Cw,(7.16)

|∂(int γ )| ≤ ‖γ ‖, γ ∈ Cf.(7.17)

6The second inequality of (7.16) follows from the fact that every edge in a wired contour γ is
incident to some vertex in ∂γ . See (7.18).
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It may be seen by Theorem 7.5 that

(7.18) 1intγ = γ, γ ∈ Cw.

Two contours γ1, γ2 of the same class are said to be compatible if γ1 ∪γ2 is not
1-connected. We call the pair γ1, γ2 externally compatible if they are compatible
and in addition γ1 ⊆ ext(γ2) and γ2 ⊆ ext(γ1). IfŴ = {γ1, γ2, . . . , γn} is a family
of pairwise externally-compatiblecontours of the same class, we write Ŵ = ⋃

i γi ,
ext(Ŵ) = E3 \ Ŵ, and int(Ŵ) = Ŵ \ Ŵ. Here, we have used Ŵ to denote the set of
edges in the union of the γi .

LetŴw = {γ1, γ2, . . . , γm} be a family of pairwise externally-compatiblewired
contours. It may be seen that

1intŴ =
m⋃

i=1

1intγi ,

and, by (7.11),

(7.19) Z0(Ŵw) =
m∏

i=1

Z0(γi ).

Similarly, if Ŵf = {γ1, γ2, . . . , γn} is a family of pairwise externally-compatible
free contours, then

∂e(intŴf) =
n⋃

i=1

∂e(int γi ),

and, by (7.10),

(7.20) qn−1 Z1(intŴf) =
n∏

i=1

Z1(int γi ).

A key step in the transformation of the random-cluster model to a polymer
model is the derivation of recursive expressions for Z1(E) and Z0(E) in terms of
partition functions of subsets of E . We describe this first for the wired partition
function Z1(E). The subset E ⊆ E3 is called co-connected if |E | < ∞ and E3\ E
is connected. Let E be co-connected. Let D ⊆ E be such that ∂e E ⊆ D. Let
D∞ be the set of edges in the unique infinite connected component of D ∪ Ec,
and let Ŵ(D) = 1ext D∞. The set Ŵ(D) may be expressed as a union of maximal
1-connected sets γi , i = 1, 2, . . . ,m, which are pairwise externally-compatible
wired contours, and we write Ŵw(D) = {γ1, γ2, . . . , γm}. Note that every edge
in Ŵ(D) belongs to E \ ∂e E . Thus, to each set D there corresponds a collection
Ŵw(D), and the summation in (7.10) may be partitioned according to the value
of Ŵw(D). For a given family Ŵw = {γ1, γ2, . . . , γm} of pairwise externally-
compatible wired contours in E \ ∂e E , the corresponding part of the summation
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in (7.10) is over sets D with Ŵw(D) = Ŵw, and the constraints on such D are as
follows:

1. D contains no edge in any γi ,

2. D contains every edge of E not belonging to Ŵw.

This leads via (7.18) and (7.19) to the formula

(7.21) Z1(E) =
∑

Ŵw⊂E\∂e E

r |E\Ŵw|q Z0(Ŵw)

where the summation is over all families Ŵw of pairwise externally-compatible
wired contours contained in E \ ∂e E . By Theorems 7.3 and 7.5, each such Ŵw is
co-connected.

We turn now to the free partition function Z0(E). Let D ⊆ E \1int E . Let Dc
∞

be the set of edges in the unique infinite 1-connected component of Dc = E3 \ D,
and let Ŵ(D) = 1int Dc

∞. The set Ŵ(D) may be expressed as a union of maximal
1-connected sets γi , i = 1, 2, . . . , n, which are pairwise externally-compatible
free contours, and we write Ŵf(D) = {γ1, γ2, . . . , γn}. We note that every edge
in Ŵ(D) belongs to E . Thus, to each set D there corresponds a collection Ŵf(D),
and the summation in (7.11) may be partitioned according to the value of Ŵf(D).
For a given family Ŵf = {γ1, γ2, . . . , γn} of pairwise externally-compatible free
contours in E , one sums over sets D with Ŵf(D) = Ŵf, and the constraints on such
D are as follows:

1. D ⊆ intŴf,

2. for i = 1, 2, . . . , n, D contains every edge in int γi that is 1-connected to
some edge in γi .

This leads by (7.11), (7.20), and Theorem 7.5 to the formula

(7.22) Z0(E) =
∑

Ŵf⊂E

q |VE \∂E |−|VintŴf |qn−1 Z1(intŴf),

where the summation is over all families Ŵf of pairwise externally-compatible
free contours γ contained in E . By Theorems 7.3 and 7.5, each such intŴf is
co-connected.

The next step is to transform the random-cluster model into a so-called polymer
model of statistical mechanics. To the latter model we shall apply certain standard
results summarized in the next section, and we shall return to the random-cluster
application in Section 7.5.
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7.4 Polymer models

The partition function of a lattice model in a finite volume3 of Rd may generally
be written in the form

(7.23) Z(3) =
∑

6⊂3

∏

γ∈6
8(γ ),

where the summation7 is over all compatible families6 in3 (including the empty
family, which contributes 1) comprising certain types of geometrical objects γ
called ‘polymers’. The nature of these polymers, of the weight function8 (which
we shall assume to be non-negative),and of the meaning of ‘compatibility’,depend
on the particular model in question. We summarize some basic properties of such
polymer models in this section, and shall apply these results to random-cluster
models in the next section. The current target is to communicate the theory in the
broad. The details of this theory have the potential to complicate the message, and
they will therefore be omitted in almost their entirety. In the interests of brevity,
certain liberties will be taken with the level of rigour. The theory of polymer
models is well developed in the literature of statistical mechanics, and the reader
may consult the papers [85, 216, 219, 274, 275, 326], the book [301], and the
references therein.

The discontinuity of the Potts phase transition was proved first in [220] via a so-
called chessboard estimate. This striking result, combined with the work of [218],
inspired the proof via polymer models of the discontinuity of the random-cluster
phase transition, [224]. The last paper is the basis for the present account.

The study of polymer models is wider than is required for our specific applica-
tions, and a general approach may be found in [219]. For the sake of concreteness,
we note the following. Our applications will involve co-connected subsets 3 of
E3. Our polymers will be either wired or free contours in the sense of the last sec-
tion, and ‘compatible’ shall be interpreted in the sense of that section. Our weight
functions8 will be assumed henceforth to be strictly positive and automorphism-
invariant, in that 8(γ ) = 8(τγ ) for any automorphism τ of L3.

One seeks conditions under which the limit

(7.24) f (8) = lim
3↑E3

{
1

|3| log Z(3)

}

exists, together with bounds on the deviation

(7.25) σ(3,8) = |3| f (8)− log Z(3).

These are obtained by elementary arguments under the assumption that the8(γ )
decay exponentially in the size of γ , with a sufficiently negative exponent. With

7We adopt the convention that Z(∅) = 1.
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each polymer γ we associate a natural measure of ‘size’ denoted by ‖γ ‖ and, for
τ ∈ (0,∞), we call 8 a τ -functional if

(7.26) 8(γ ) ≤ e−τ‖γ ‖ for all γ.

The principal conclusions that follow are not stated unambiguously as a theorem
since their exact hypotheses will not be specified. Throughout this and the next
section, the terms c and ci are positive finite constants which depend only on the
particular type of model and not on the function 8. These constants may depend
on the underlying lattice (which we shall take to be L3), and may therefore vary
with the number d of dimensions.

(7.27) ‘Theorem’. There exist c, c1, c2 ∈ (0,∞) such that the following holds.
Let 8 be a τ -functional with τ > c.

(a) The limit f (8) exists in (7.24), and satisfies 0 ≤ f (8) ≤ e−c1τ .

(b) The deviation in (7.25) satisfies |σ(3,8)| ≤ |∂3|e−c2τ for all finite3.

The polymer model is said to be convergent when the condition of the above
‘Theorem’ is satisfied.

Sketch proof. Here are some comments on the proof. The existence of the pressure
f (8) in part (a) may be shown using subadditivity in a manner similar to the proof
of Theorem 4.58. This part of the conclusion is valid irrespective of the assumption
that 8 be a τ -functional, although it may in general be the case that f (8) = ∞.
One obtains a formula for the limit function f (8) in the following manner. Let

(7.28) ψ(E) =
∑

3⊆E

(−1)|E\3| log Z(3), E ⊆ E3, |E | < ∞.

By the inclusion–exclusion principle8,

(7.29) log Z(3) =
∑

E⊆3
ψ(E).

By (7.23), Z(31 ∪ 32) = Z(31)Z(32) if 31 and 32 have no common vertex.
By (7.28), ψ is automorphism-invariant and satisfies

(7.30) ψ(E) = 0 if E is not connected.

Under the assumption of ‘Theorem’ 7.27, one may obtain after a calculation that

(7.31) |ψ(E)| ≤ e−c3τ‖E‖

for a suitable definition of the size ‖E‖ and for some c3 ∈ (0,∞).

8As in [144].
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Formula (7.29) motivates the proposal that, for any given e ∈ E3,

f (8) = lim
3↑E3

{
1

|3| log Z(3)

}
=

∑

E : e∈E

ψ(E)

|E | ,

and this may be proved rigorously by use of (7.31) with sufficiently large τ . The
inequality of part (a) follows. By (7.29) again,

σ(3,8) =
∑

e∈3

∑

E : e∈E

1{E∩3c 6=∅}
ψ(E)

|E | ,

and, by (7.30),
|σ(3,8)| ≤

∑

x∈∂3

∑

E : x∈VE

|ψ(E)|.

Part (b) follows by (7.31) and a combinatorial estimate. �

Turning to probabilities, the partition function Z(3) gives rise to a probability
measure κ on the set of compatible families in 3, namely

κ(6) = 1

Z(3)
8(6), 6 ⊂ 3,

where8(6) = ∏
γ∈6 8(γ ). The following elementary result will be useful later.

(7.32) Theorem (Peierls estimate). Let γ be a polymer of 3. The κ-probability
that γ belongs to a randomly chosen compatible family satisfies

κ
(
{6 : γ ∈ 6}

)
≤ 8(γ ).

Proof. We write6 ⊥ γ to mean that6 is a compatible family satisfying: γ /∈ 6,
and 6 ∪ {γ } is a compatible family. Then,

κ
(
{6 : γ ∈ 6}

)
= 1

Z(3)

∑

6:6⊥γ
8(6)8(γ )

≤

∑

6:6⊥γ
8(6)8(γ )

∑

6:6⊥γ
8(6)[1 +8(γ )]

≤ 8(γ ). �
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7.5 Discontinuous phase transition for large q

It is a principal theorem for Potts and random-cluster models that the phase trans-
ition is discontinuous when q is sufficiently large, see [68, 220, 251] for Potts
models and [224] for random-cluster models. This is proved for random-cluster
models by showing that the maximal contours of both wired and free models at
p = pc(q) have the same laws as those of certain convergent polymer models.
Such use of contour expansions is normally termed a ‘Pirogov–Sinai’ approach9,
after the authors of [274, 275].

Here are the main results, expressed for a general number d of dimensions.

(7.33) Theorem (Discontinuous phase transition) [224]. Let d ≥ 2. There
exists Q = Q(d) such that following hold when q > Q.

(a) The edge-densities

hb(p, q) = φb
p,q (e is open), b = 0, 1,

are discontinuous functions of p at the critical point pc(q).

(b) The percolation probabilities satisfy

θ0(pc(q), q) = 0, θ1(pc(q), q) > 0.

(c) There is a unique random-cluster measure when p 6= pc(q), and at least
two random-cluster measures when p = pc(q), in that

φ0
pc(q),q 6= φ1

pc(q),q .

(d) If p < pc(q), there is exponential decay and a non-vanishing mass gap, in
that the unique random-cluster measure satisfies

φp,q(0 ↔ x) ≤ e−α|x |, x ∈ Zd ,

for some α = α(p, q) satisfying α ∈ (0,∞) and

lim
p↑pc(q)

α(p, q) > 0.

The large-q behaviour of pc(q) is given as follows. One may obtain an expan-
sion of pc(q) in powers of q−1/d by pursuing the proof further.

(7.34) Theorem [224]. For d ≥ 3,

pc(q) = 1 − q−1/d + O(q−2/d) as q → ∞.

This may be compared to the exact value pc(q) = √
q/(1 + √

q) when d = 2
and q is large, see Theorem 6.35. For d ≥ 3 and large q , there exist non-translation-
invariant random-cluster measures at the critical point pc(q).

9An overview of contour methods may be found in [217].

c©Springer-Verlag 2006



[7.5] Discontinuous phase transition for large q 183

(7.35) Theorem (Non-translation-invariant measure at pc(q)) [85, 254].
Let d ≥ 3. There exists Q = Q(d) such that there exists a non-translation-
invariant DLR-random-cluster measure when p = pc(q) and q > Q.

It is not especially fruitful to seek numerical estimates on the Q(d) above.
Such estimates may be computed, but they turn out to be fairly distant from those
anticipated, namely10

(7.36) Q(2) = 4, Q(d) = 2 for d ≥ 6.

No proof of Theorem 7.35 is included here, and the reader is referred for more
details to the given references.

Numerous facts for Potts models with large q follow from the above. Let
d ≥ 2 and p = 1 − e−β , and consider the q-state Potts model on Ld with inverse-
temperature β. Let q be large. When β < βc(q) (respectively, β > βc(q)),
the number of distinct translation-invariant Gibbs states is 1 (respectively, q).
When β = βc(q), there are q + 1 distinct extremal translation-invariant Gibbs
states, corresponding to the free measure and the ‘b-boundary-condition’measure
for b ∈ {1, 2, . . . , q}, and every translation-invariant Gibbs state is a convex
combination of these q + 1 states. When d ≥ 3, there exist in addition an
infinity of non-translation-invariantGibbs states at the critical pointβc(q). Further
discussion may be found in [65, 66, 68, 136, 224, 251, 254].

In preparation for the proofs of Theorems 7.33 and 7.34, we introduce an
extension of the polymer model of the last section, in the context of the wired and
free contours of Section 7.3. For a finite subset E of E3, let

(7.37) Z(E;8) =
∑

6⊂E

∏

γ∈6
8(γ )

be the partition function of a polymer model on E . The admissible families 6 of
polymers will be either families of wired contours (lying in E \ ∂e E) or families
of free contours (lying in E); in either case they are required to be pairwise
compatible. By a standard iterative argument, the sum in (7.37) may be restricted
to families Ŵ of pairwise externally-compatible contours, and (7.37) becomes

(7.38) Z(E;8) =
∑

Ŵ⊂E

∏

γ∈Ŵ
9(γ )

where

(7.39) 9(γ ) = 8(γ )Z(int γ ;8).
10Some progress has been made towards bounds on the value of Q(d). It is proved in [45] that

the 3-state Potts model has a discontinuous transition for large d, and in [46] that discontinuity
occurs when d = 3 for a long-range Potts model with exponentially decaying interactions. See
[140] for related work when d = 2.
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The letter 6 (respectively, Ŵ) will always denote a family of pairwise compatible
contours (respectively, pairwise externally-compatible contours).

Let β ∈ R. In either of the cases above, we define

Z(E;8,β) =
∑

Ŵ⊂E

∏

γ∈Ŵ
eβ|γ |9(γ )(7.40)

=
∑

Ŵ⊂E

∏

γ∈Ŵ
eβ|γ |8(γ )Z(int γ ;8),

and we say that this new model has parameters (β,8).

We shall consider a pair of such models. The first has parameters (βw,8w),
and its polymer families comprise pairwise compatible wired contours; the second
has parameters (βf,8f) and it involves free contours. They are defined as follows.
Let p ∈ (0, 1), q ∈ [1,∞), r = p/(1 − p), and βw, βf ∈ [0,∞). The weight
functions8w(γ ) = 8

βw
w (γ ),8f(γ ) = 8

βf
f (γ ) are defined inductively on the size

of γ by:
(7.41)

8
βw
w (γ )Z(int γ ;8βw

w ) = 9
βw
w (γ ) = (reβw)−|γ |Z0(γ ), γ ∈ Cw,

8
βf
f (γ )Z(int γ ;8βf

f ) = 9
βf
f (γ ) = e−βf|γ |q−|Vintγ |Z1(int γ ), γ ∈ Cf.

These functions give rise to polymer models which are related to the free and wired
random-cluster models, as described in the first part of the next theorem. They
have related pressure functions f (8βw

w ), f (8βf
f ) given as in (7.24). The theorem

is stated for general d ≥ 2, but the reader is advised to concentrate on the case
d = 3.

(7.42) Theorem [224]. Let d ≥ 2, p ∈ (0, 1), q ∈ [1,∞), and r = p/(1 − p).
For βw, βf ∈ [0,∞) and a co-connected set E,

(7.43)
Z1(E) = r |E |qZ(E;8βw

w , βw),

Z0(E) = q |VE\∂E |Z(E;8βf
f , βf).

Let

(7.44) τ = 1

8d
log q − 5.

There exists Q = Q(d) such that the following hold when q > Q.

(a) There exist reals bw, bf ∈ [0,∞) such that 8bw
w and 8bf

f are τ -functionals
with τ > c, with c as in the hypothesis of ‘Theorem’ 7.27, and that the
pressure F(p, q) of (7.12) satisfies

F(p, q) = f (8bw
w )+ bw + log r = f (8bf

f )+ bf + 1

d
log q. (7.45)
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(b) There exists a unique value p̃ = p̃(q) such that the values bw, bf in part (a)
satisfy:

if p < p̃, then bw > 0, bf = 0,

if p = p̃, then bw = 0, bf = 0,

if p > p̃, then bw = 0, bf > 0.

(7.46)

Proof of Theorem 7.42. We follow the scheme of [224] which in turn makes use
of [218, 326]. For any given βw, βf ∈ [0,∞), equations (7.41) may be combined
with (7.19)–(7.22) to obtain (7.43).

For βw, βf ∈ [0,∞), let 8w = 8
βw
w , 8f = 8

βf
f be given by (7.41). Let

τ = τ (q) be as in (7.44), and choose Q′ such that τ (Q′) > c where c is the
constant in the hypothesis of ‘Theorem’ 7.27. We assume henceforth that

(7.47) q > Q′.

We define the τ -functionals

8
βw
w (γ ) = min{8βw

w (γ ), e−τ‖γ ‖}, γ ∈ Cw,(7.48)

8
βf
f (γ ) = min{8βf

f (γ ), e−τ‖γ ‖}, γ ∈ Cf,(7.49)

and let
(7.50)
bw = sup Bw where Bw =

{
βw ≥ 0 : f (8

βw
w )+ βw + log r ≤ F(p, q)

}
,

bf = sup Bf where Bf =
{
βf ≥ 0 : f (8

βf
f )+ βf + d−1 log q ≤ F(p, q)

}
.

We make three observations concerning the definition of bw; similar reasoning

applies to bf. Firstly, since 8
0
w ≤ 80

w,

Z1(E) ≥ r |E |Z(E;80
w, 0) = r |E |Z(E;80

w),

by (7.43). Applying ‘Theorem’ 7.27 to the τ -functional8
0
w,

F(p, q) ≥ log r + f (8
0
w),

whence 0 ∈ Bw. Secondly, by ‘Theorem’ 7.27 again, f (8
0
w) ≤ e−c1τ , whence

β /∈ Bw for large β. The third observation is contained in the next lemma which
is based on the corresponding step of [218]. The lemma will be used later also,
and its proof is deferred until that of Theorem 7.42 is otherwise complete.

(7.51) Lemma. Let α ∈ (0,∞). There exists Q′′ = Q′′(α) ≥ Q′ such that the
following holds. If q > Q′′, the functions h(β, r) = f (8

β

w), f (8
β

f ) have the
Lipschitz property: for β, β ′ ∈ [0,∞) and r, r ′ ∈ (0,∞),

∣∣h(β, r)− h(β ′, r ′)
∣∣ ≤ α

{
|β − β ′| + |r − r ′|

r ∧ r ′

}
.
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Assume henceforth that

(7.52) q > Q′′ = Q′′( 1
2 ).

By Lemma 7.51, the pressure f (8
βw
w ) (respectively, f (8

βf
f )) is continuous in βw

(respectively, βf), and it follows by the prior observations that the suprema in
(7.50) are attained, and hence

(7.53) F(p, q) = f (8
bw
w )+ bw + log r = f (8

bf
f )+ bf + 1

d
log q.

By Lemma 7.51 and the continuity in p of F(p, q), Theorem 4.58,

(7.54) bw = bw(p) and bf = bf(p) are continuous functions of p ∈ (0, 1).

Having chosen the values bw and bf, we shall henceforth suppress their reference
in the notation for the weight functions8w, 8f, 8w, 8f, and we prove next that

(7.55)
8w(γ ) ≤ e−τ‖γ ‖, γ ∈ Cw,

8f(γ ) ≤ e−τ‖γ ‖, γ ∈ Cf.

This implies in particular that 8w = 8w and 8f = 8f, and then (7.45) follows
from (7.53). We shall prove (7.55) by induction on |γ |.

It is not difficult to see that (7.55) holds for γw ∈ Cw with |γw| ≤ 1, and for
γf ∈ Cf with |γf| ≤ 2. This is trivial in the latter case since the free contour γf with
smallest ‖γf‖ has ‖γf‖ = 2(2d −1), and it is proved in the former case as follows.
Let γw ∈ Cw be such that |γw| = 1, which is to say that γw comprises a single
edge. By (7.41), 8w(γw) = (rebw)−1. By (7.12), F(p, q) ≥ d−1 log q , and the
claim follows by (7.53) and the fact that f (8w) ≤ 1, see ‘Theorem’ 7.27(a).

Let k ≥ 1 and assume that (7.55) holds for all γw ∈ Cw satisfying |γw| ≤ k and
all γf ∈ Cf satisfying |γf| ≤ k + 1. Let γw be a wired contour with |γw| = k + 1.

Any contour γ ′
w ∈ Cw contributing to Z(int γw;8w) satisfies |γ ′

w| ≤ k. By the
induction hypothesis,

Z(int γw;8w) = Z(int γw;8w)(7.56)

= exp
{|int γw| f (8w)− σ(int γw,8w)

}
,

where
σ(E,8) = |E | f (8)− log Z(E;8)

as in (7.25). Any contour γf ∈ Cf contributing to Z(γw;8f) is a subset of γw, and
therefore satisfies |γf| ≤ k + 1. By the induction hypothesis as above,

Z(γw;8f) = Z(γw;8f)(7.57)

= exp
{
|γw| f (8f)− σ(γw,8f)

}
.
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By (7.41),

8w(γw) = (rebw)−|γw| Z0(γw)

Z(int γw;8w)

= (rebw)−|γw|q |V (γw)\∂γw| Z(γw;8f, bf)

Z(int γw;8w)
by (7.43)

≤ (rebw)−|γw|q |V (γw)\∂γw|ebf|γw| Z(γw;8f)

Z(int γw;8w)

= exp
{
−|γw|(log r + bw − bf − f (8f)

)

+ |V (γw) \ ∂γw| log q − |int γw| f (8w)
}

× exp
{
σ(int γw,8w)− σ(γw,8f)

}
by (7.56)–(7.57).

We use (7.13)–(7.14) and (7.53) to obtain that

(7.58) 8w(γw) ≤ q−‖γw‖/(2d) exp
{
|γw| f (8w)+ σ(int γw,8w)− σ(γw,8f)

}
.

By ‘Theorem’ 7.27, f (8w) ≤ e−c1τ ≤ 1, and

|σ(E,8w)| ≤ |∂E |e−c2τ , |σ(E,8f)| ≤ |∂E |e−c2τ

for co-connected sets E . By (7.58), (7.16), and (7.44),

(7.59) 8w(γw) ≤ q−‖γw‖/(2d)e5‖γw‖ ≤ e−τ‖γw‖,

as required in the induction step.

We consider now a free contour γf with |γf| = k + 2. By an elementary
geometric argument,

(7.60) ‖γf‖ ≥ 2(2d − 1).

Arguing as in the wired case above, we obtain subject to the induction hypothesis
that

(7.61) 8f(γf) ≤ q · q−‖γf‖/(2d) exp
{
σ(int γf,8f)− σ(int γf,8w)

}
,

by (7.15). By (7.17),

8f(γf) ≤ q · q−‖γf‖/(2d)e5‖γf‖.

By (7.60) and the fact that d ≥ 2,

‖γf‖ − 2d ≥ 1
4‖γf‖,
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whence
8f(γf) ≤ e−τ‖γf‖,

and the induction proof of (7.55) is complete.

We turn now to part (b) of the theorem, and we prove next that, for any given
p ∈ (0, 1),

(7.62) min{bw, bf} = 0.

Suppose conversely that p ∈ (0, 1) is such that bw, bf > 0. By (7.53) and Lemma
7.51 with α = 1

2 , there exist βw ∈ (0, bw), βf ∈ (0, bf), and ǫ > 0 such that

(7.63) F(p, q)− ǫ = f (8
βw
w )+ βw + log r = f (8

βf
f )+ βf + 1

d
log q.

We use this in place of (7.53) in the argument above, to obtain that 8
βw
w = 8

βw
w

and 8
βf
w = 8

βf
f . Equation (7.63) implies that

(7.64) F(p, q) > f (8βw
w )+ βw + log r = f (8βf

f )+ βf + 1

d
log q.

However, by (7.43),

Z1(E) = r |E |qZ(E;8βw
w , βw) ≤ (reβw)|E |qZ(E;8βw

w ),

whence
F(p, q) ≤ log r + βw + f (8βw

w )

in contradiction of (7.64). Therefore, (7.62) holds.

Next we show that there exists a unique p such that bw(p) = bf(p) = 0. The
proof is deferred until later in the section.

(7.65) Lemma. There exists Q′′′ ≥ Q′′ such that the following holds. For
q > Q′′′, there is a unique p′ ∈ (0, 1) such that bw(p′) = bf(p′) = 0. The
ratio r ′ = p′/(1 − p′) satisfies

(7.66) r ′ = q1/d exp
{

f (80
f )− f (80

w)
}
.

Let q > Q = Q′′′ and p̃ = p′, where Q′′′ and p′ are as given in this lemma.
By (7.45) and the fact that F(p, q) → d−1 log q as p ↓ 0, f (8bf

f ) → 0 and
bf(p) → 0 as p ↓ 0. Similarly, bw(p) → ∞ as p ↓ 0. By a similar argument for
p close to 1, bw(p) → 0 and bf(p) → ∞ as p ↑ 1. Statement (7.46) follows by
Lemma 7.65 and the continuity of bw(p) and bf(p), (7.54). This completes the
proof of Theorem 7.42. �

Proof of Lemma 7.51. We give the proof in the wired case, the other case being
similar. Write 8 = 8

β
w and let E be co-connected. For any contour γ ⊆ E and
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any family6 of compatible contours in E , we write 6 ⊥ γ if γ /∈ 6 and6 ∪{γ }
is a compatible family of contours. Since 8(γ ) is a smooth function of β, 8 is
piecewise-differentiable in β (see (7.48)).

Let α ∈ (0,∞). We prove first that the function

zE
w(β, r) = 1

|E | log Z(E;8βw)

satisfies

(7.67)
∣∣zE

w(β, r)− zE
w(β

′, r)
∣∣ ≤ α|β − β ′|, β, β ′ ∈ [0,∞),

for sufficiently large q , uniformly in r and E . We fix r ∈ (0,∞) and shall suppress
reference to r for the moment. If zE

w is differentiable at β then, by (7.37),

d

dβ
zE

w = 1

|E |Z(E;8)
∑

6⊂E

∑

γ∈6

8(6)

8(γ )
·8′

(γ ),

where g′ denotes the derivative of a function g with respect to β, and g(6) =∏
γ∈6 g(γ ). Therefore, for any given edge e,

∣∣∣∣
d

dβ
zE

w

∣∣∣∣ = 1

|E |
∑

γ⊆E

|8′
(γ )|Z1(E \ γ ;8)

Z(E;8)(7.68)

≤
∑

γ : e∈γ

|8′
(γ )|

|γ | ,

where
Z1(E \ γ ;8) =

∑

6⊂E :6⊥γ
8(6) ≤ Z(E;8).

Let γ ∈ Cw. We claim that

(7.69) |8′
(γ )| ≤ 2|γ |8(γ )

whenever the derivative exists. By (7.48), either the left side equals 0, or it equals
|8′(γ )|, and we may assume that the latter holds. Write Y(γ ) = Z(int γ ;8).
The function 9 = 9

β
w satisfies 9(γ ) = 8(γ )Y by (7.41), and also

(7.70) 9 ′(γ ) = −|γ |9(γ ) = −|γ |8(γ )Y(γ ).

Hence,

(7.71) 8′(γ ) = 9 ′(γ )−8(γ )Y′(γ )
Y(γ )

= −8(γ )
(

|γ | + Y′(γ )
Y(γ )

)
.
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By an argument similar to that above,

Y′(γ ) = d

dβ

∑

Ŵ⊂intγ

9(Ŵ) =
∑

Ŵ⊂intγ

9(Ŵ)
∑

ν∈Ŵ

9 ′(ν)
9(ν)

= −
∑

Ŵ⊂intγ

|Ŵ|9(Ŵ),

whence

(7.72) |Y′(γ )| ≤ |γ |Y(γ ).

Claim (7.69) follows from (7.71)–(7.72).

Returning to (7.68), by (7.69),

(7.73)

∣∣∣∣
d

dβ
zE

w

∣∣∣∣ ≤
∑

γ : e∈γ
2
|γ |
|γ |8(γ ) ≤

∑

γ : e∈γ
2
|γ |
|γ |e−τ‖γ ‖,

since 8 is a τ -functional. The Lipschitz inequality (7.67) follows by integration
for τ = τ (q) sufficiently large.

More or less the same argument may be used as follows to obtain that

(7.74)
∣∣zE

w(β, r)− zE
w(β, r

′)
∣∣ ≤ α

|r − r ′|
r ∧ r ′ , r, r ′ ∈ (0,∞),

for large q , uniformly in β and E . We now denote by g′ the derivative of a
function g(r) with respect to r . Equation (7.68) remains valid in this new setting.
Inequality (7.69) becomes

|8′
(γ )| ≤ 2

r
|γ |8(γ )

and (7.73) is replaced by

(7.75)

∣∣∣∣
d

dr
zE

w

∣∣∣∣ ≤
∑

γ : e∈γ

2|γ |
r |γ |8(γ ) ≤

∑

γ : e∈γ

2|γ |
r |γ | e−τ‖γ ‖.

The right side may be made small by choosing q large, and (7.74) follows by
integration.

The claim of the lemma is a consequence of (7.67) and (7.74), on using the
triangle inequality and passing to the limit as E ↑ Ed . �

Proof of Lemma 7.65. Let p ∈ (0, 1) be such that bw = bf = 0, and let
r = p/(1 − p). By (7.45), r is a root of the equation h1(r) = h2(r) where

h1(r) = f (80
w)+ log r, h2(r) = f (80

f )+ 1

d
log q,

c©Springer-Verlag 2006



[7.5] Discontinuous phase transition for large q 191

y

y = log r

1

d
log q

r̂ r

Figure 7.3. The function y = log r is plotted against r , and it intersects the constant function
y = d−1 log q at the point r = r̂ . The functions h1 and h2 are small perturbations of the two
solid lines, and have Lipschitz constants which can be made as small as desired by a suitable
large choice of q. Therefore, when q is large, there exists a unique intersection of h1 and h2,
and this lies within the region delineated by dashed lines.

and thus (7.66) holds. Let fw(r) = f (8
0
w), ff(r) = f (8

0
f ), r̂ = q1/d , and note

the two following facts.

(I) Since fw and ff are the pressure functions of τ -functionals with τ > c, we
have by ‘Theorem’ 7.27 that | fw|, | ff| ≤ e−c1τ .

(II) By (7.52) and Lemma 7.51 with β = 0, fw and ff are Lipschitz-continuous
on a neighbourhood of r̂ , with Lipschitz constants which may be made as
small as desired by a suitable large choice of q .

From these facts it will follow (for sufficiently large q) that any roots of h1(r) =
h2(r) lie near r̂ , and indeed there must be a unique such root. Some readers
will accept this conclusion after looking at Figure 7.3, those wishing to check the
details may read on.

Let r1, r2 be roots of h1(r) = h2(r) with 0 < r1 < r2 < ∞. With c1 as in
(I), we choose Q1 ≥ Q′′ such that e−c1τ ≤ 1

8 for q > Q1. Let q > Q1. Then
r1, r2 ∈ [̂r − a, r̂ + a] where

(7.76) a = [
exp(2e−c1τ )− 1

]
r̂ ≤ 4e−c1τ r̂ ≤ 1

2 r̂ .

Now, δ(r) = ff(r)− fw(r) satisfies

δ(r2)− δ(r1) = log r2 − log r1(7.77)

≥ r2 − r1

r̂ + a
≥ 2

3
· r2 − r1

r̂
.
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By Lemma 7.51, there exists Q′′′ ≥ Q1 such that, if q > Q′′′,

| fw(r)− fw(r
′)| ≤ |r − r ′|

8(̂r − a)
, | ff(r)− ff(r

′)| ≤ |r − r ′|
8(̂r − a)

,

for r, r ′ ≥ r̂ − a. Hence, by (7.76),

|δ(r2)− δ(r1)| ≤ r2 − r1

4(̂r − a)
≤ 1

2
· r2 − r1

r̂
.

This contradicts (7.77), whence such distinct r1, r2 do not exist. �

Proof of Theorem 7.33. Let p ∈ (0, 1) and q > Q where Q, τ = τ (q), bw =
bw(p, q), bf = bf(p, q), and p̃ = p̃(q) are given as in Theorem 7.42. Let 3 be
a box of Ld , and let φ1

3 (respectively, φ0
3) be the wired random-cluster measure

on E3 generated by the partition function Z1(E3) of (7.10) (respectively, the free
measure generated by the partition function Z0(E3) of (7.11)).

Consider first the wired measure φ1
3. As in (7.21), there exists a family of

maximal closed wired contours Ŵ of E3 (maximal in the sense of the partial order
γ1 ≤ γ2 if γ 1 ⊆ γ 2) and, by (7.40)–(7.41),Ŵ has law

κ
bw
3,w(Ŵ) = 1

Z(3;8bw
w , bw)

ebw|Ŵ|9bw
w (Ŵ).

Let p ≥ p̃, so that bw = 0. Then κbw
3,w = κ0

3,w is the law of the family of maximal

contours in the wired contour model on 3 with weight function80
w.

Let x, y ∈ 3, and consider the event

F3(x, y) = {x ↔ y, x /↔ ∂3}.

If F3(x, y) occurs, then x, y ∈ Vintγ for some maximal closed wired contour γ .
This event has the same probability as the event that x, y ∈ Vint ν for some contour
ν of the wired contour model with weight function 80

w. Therefore,

φ1
3(F3(x, y)) ≤ κ0

3,w(x, y ∈ Vint ν for some contour ν)(7.78)

≤
∑

ν: x,y∈Vintν

80
w(ν)

≤
∑

ν: x,y∈Vintν

e−τ‖ν‖,

by Theorem 7.32 and the fact that80
w is a τ -functional. The number of such wired

contours ν with ‖ν‖ = n grows at most exponentially in n. The leading term in
the above series arises from the contour ν having smallest ‖ν‖, and such ν satisfies
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‖ν‖ ≥ b(1 + |x − y|) for some absolute constant b > 0. We may therefore find
absolute constants Q′ ≥ Q and a > 0 such that, for q ≥ Q′,

(7.79) φ1
3(F3(x, y)) ≤ e−aτ (1+|x−y|).

Take x = y in (7.79), and let 3 ↑ Zd to obtain by Proposition 5.11 that

φ1
p,q(x /↔ ∞) < 1

whence p ≥ pc(q). It follows that

(7.80) p̃ ≥ pc(q).

Consider next the free measure φ0
3. Let p ≤ p̃, so that bf = 0. By an adaptation

of the argument above, there exists Q′′ ≥ Q′ and k > 0 such that, for q ≥ Q′′,
x, y ∈ Zd , and all large 3,

(7.81) φ0
3(x ↔ y) ≤ e−kτ |x−y|.

By Proposition 5.12 applied to φ0
p,q ,

φ0
p,q(x ↔ y) = lim

3↑Zd
φ0
3(x ↔ y)(7.82)

≤ e−kτ |x−y|, x, y ∈ Zd .

Hence p ≤ pc(q), and so

(7.83) p̃ ≤ pc(q).

By (7.80) and (7.83), p̃ = pc(q). By (7.82), there is exponential decay of con-
nectivity11 for p ≤ pc(q), and a non-vanishing mass gap.

Parts (b) and (d) of the theorem have been proved for q ≥ Q′′. Part (b) implies
that φ0

pc(q),q
6= φ1

pc(q),q
, and hence (a) via Theorem 4.63. The uniqueness of

random-cluster measures holds generally when p < pc(q), Theorem 5.33. The
proof of uniqueness when p > pc(q) has much in common with the proofs of
Proposition 5.30 and Theorem 11.40, and so we present a sketch only.

Let q ≥ Q′′ and p ∈ (pc(q), 1). We shall show that h1(p, q) = φ1
p,q(e is open)

satisfies

(7.84) h1(p − ǫ, q) ↑ h1(p, q) as ǫ ↓ 0,

and the claim will follow by Proposition 4.28(b) and Theorem 4.63.

11The related issue of ‘restricted complete analyticity’ is considered in [110] for the case of
two dimensions.
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Let ǫ be such that pc(q) < p−ǫ < p, and let η ∈ (0, 1). Write φ1
n,p = φ1

3n ,p,q

where 3n = [−n, n]d . For n > 3
2 m ≥ 2, let Em,n be the event that, for every

x ∈ ∂3m , if ν = νx is a maximal closed wired contour of3n with x ∈ Vint ν , then
ν ⊆ x + E3m/4 . As in (7.78)–(7.79), there exists γ = γ (q) > 0 such that

φ1
n,p−ǫ(Em,n) ≥ 1 − |∂3m |e−γm,

and we choose m = m(q) ≥ 8 such that

(7.85) φ1
n,p−ǫ(Em,n) > 1 − η, n > 3

2 m.

Let z denote the vertex (1, 0, 0, . . . , 0). A cutset σ of 3m is defined to be a
subset of3m \{0, z} such that: every path from either 0 or z to ∂3m passes through
at least one vertex in σ , and σ is minimal with this property. For any cutset σ , we
write int(σ ) for the set of vertices reachable from either 0 and z along paths not
intersecting σ , and out(σ ) = Zd \ int(σ ). For n > 3

2 m and a cutset σ , we write
‘σ H⇒ ∂3n in ω’ if every vertex in σ is connected to ∂3n by an ω-open path
of out(σ ). We shall see below that, for ω ∈ Em,n , there exists a (random) cutset
6 = 6(ω) ⊆ 3m \3m/2 such that 6 H⇒ ∂3n in ω.

Let e = 〈0, z〉 and n > 3
2 m. We couple the measures φ1

n,p−ǫ and φ1
n,p in

such a way that the first lies beneath the second, and we do this by a sequential
examination of the (paired) states of edges in 3n . We will follow the recipe of
the proof of Theorem 3.45 (see also Proposition 5.30), but subject to a special
ordering of the edges. The outcome will be a pair ω0, ω1 ∈ �1

3n
such that: ω0

has law φ1
n,p−ǫ , ω1 has law φ1

n,p , and ω0 ≤ ω1. First, we determine the states
ω0(e), ω1(e) of edges e with both endvertices in3n \3m−1, using some arbitrary
ordering of these edges. If ∂3m H⇒ ∂3n in ω0, we set 6 = ∂3m and we
complete the construction of ω0 and ω1 according to an arbitrary ordering of the
remaining edges in 3m .

Suppose that ∂3m /H⇒ ∂3n in ω0. Let A be the set of edges in ∂3m that
are closed in ω0. If A = ∅, we sample the states of the remaining edges of 3m

in an arbitrary order as above. Suppose A 6= ∅. Pick f ∈ A, and sample the
states of edges in the (d − 2)-connected closed cluster Ff = Ff (ω0) of f in the
lower configuration ω0. When this has been done for every f ∈ A, we complete
the construction of ω0 and ω1 according to an arbitrary ordering of the remaining
edges in 3m .

In examining the states of edges in Ff we will discover a set1(Ff ) of edges, not
belonging to Ff but (d −2)-connected to Ff , such that ω0(g) = 1 for g ∈ 1(Ff ).
Let 1v, f be the set of all vertices v ∈ 3n lying in the infinite component of
(Zd ,Ed \ Ff ) and such that there exists w ∈ 3n with 〈v,w〉 ∈ 1(Ff ) ∪ Ff . Let
1e, f be the set of edges of 1Ff joining pairs of vertices in 1v, f . By Theorem
7.6, the graph (1v, f ,1e, f ) is connected.

Suppose ω0 ∈ Em,n . By the above, ∂3m ∪
{⋃

f ∈A 1v, f
}

contains a (random)
cutset 6 = 6(ω0) such that: 6 H⇒ ∂3n in ω0 and, conditional on 6 and the
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states of edges of out(6), the coupled conditional measures of φ1
n,p−ǫ and φ1

n,p
on the remaining edges of 6 ∪ int(6) are the appropriate wired measures.

Therefore, hn(p) = φ1
n,p(Je) satisfies

hn(p)− hn(p − ǫ) ≤ η +
∑

σ∈C

∣∣φ1
σ,p(Je)− φ1

σ,p−ǫ(Je)
∣∣φ1

n,p−ǫ(6 = σ)

≤ η + max
σ∈C

{∣∣φ1
σ,p(Je)− φ1

σ,p−ǫ(Je)
∣∣},

where C is the set of all cutsets of3m and φ1
σ,p denotes the wired random-cluster

measure on σ ∪ int(σ ). Since m is fixed, C is bounded, and (7.84) follows on
letting n → ∞, ǫ ↓ 0, and η ↓ 0 in that order. �

Proof of Theorem 7.34. Let q be large. Then pc(q) = r ′/(1+r ′)where r ′ is given
in Lemma 7.65 and satisfies (7.66). Let p = pc(q). By (7.44) and ‘Theorem’
7.27, f (80

f ), f (80
w) → 0 as q → ∞, and therefore r ′ ∼ q1/d . We sketch a

derivation of the error term O(q−2/d). The rate at which f (80
f ) → 0 (respectively,

f (80
w) → 0) is determined by the value 80

f (γf) (respectively, 80
w(γw)) on the

smallest free contour γf (respectively, smallest wired contour γw). The smallest
free contour is the external edge-boundary γf of a single edge, and it is easily seen
from (7.41) that 80

f (γf) = r ′q−1 ∼ q−1+(1/d). The shortest wired contour γw is
a single edge, and 80

w(γw) = 1/r ′ ∼ q−1/d . By (7.24), as q → ∞,

f (80
w) = O(q−1/d), f (80

f ) = O(q−1+(1/d)),

and the claim follows by (7.66). �

7.6 Dobrushin interfaces

Until now in this chapter we have studied the critical random-cluster model for
large q . We turn now to the model with q ∈ [1,∞) and with large p, and we
prove the existence of so-called Dobrushin interfaces.

Consider for illustration the Ising model on Z3 with ‘inverse-temperature’ β
and zero external-field. There is a critical value βc marking the point at which
long-range correlations cease to decay to zero. As β increases to ∞, pairs of
vertices have an increasing propensity to acquire the same state, either both +
or both −. Suppose we are working on a large cube 3L = [−L, L]3, to the
boundary of which we give a so-called ‘Dobrushin boundary condition’; that is,
the upper boundary ∂+3L = {x ∈ ∂3L : x3 > 0} is allocated the spin +, and
the lower boundary ∂−3L = {x ∈ ∂3L : x3 ≤ 0} receives spin −. There is a
competition between the + spins and the − spins. There is an ‘upper’ domain
of + spins containing ∂+3L , and a ‘lower’ domain of − spins containing ∂−3L ,
and these domains are separated by a (random) interface 1 = 1L . It is a famous
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result of Dobrushin, [103], that, for large β in the limit as L → ∞, 1L deviates
only locally from the horizontal plane through the centre of 3L . This implies in
particular that there exist non-translation-invariant Gibbs measures for the three-
dimensional Ising model with large β. The argument is valid in all dimensions
of three or more, but not in two dimensions, for which case the interface may be
thought of as a line subject to Gaussian fluctuations (see [127, 137, 187]).

Dobrushin’s proof was the starting point for the study of interfaces in spin sys-
tems. His conclusions may be reformulated and generalized in the context of the
random-cluster model in three or more dimensions with q ∈ [1,∞). This gener-
alization of Dobrushin’s theorem is achieved by defining a family of conditioned
random-cluster measures, and by showing the stiffness of the ensuing interface.
It is a striking fact that the conclusions hold even for the percolation model.

When cast in the more general setting of the random-cluster model on a box3,
the correct interpretation of the boundary condition is as follows. The vertices on
the upper (respectively, lower) hemisphere of 3 are wired together into a single
composite vertex labelled ∂+3 (respectively, ∂−3). Let D be the event that no
open path of 3 exists joining ∂−3 to ∂+3, and let φ3,p,q be the random-cluster
measure on 3 with the above boundary condition and conditioned on the event
D . It is a geometrical fact that, under φ3,p,q , there exists an interface separating
an upper region of 3 containing ∂+3 and a lower region containing ∂−3, and
each of these regions is in the wired phase. Dobrushin’s theorem amounts to the
statement that, when q = 2 and p is sufficiently large, this interface deviates only
locally from the horizontal plane through the equator of 3. It was proved in [139]
that the same conclusion is valid for all q ∈ [1,∞) and all sufficiently large p,
and this result is presented in the remainder of this chapter. The geometry of the
interfaces for the random-cluster model is notably different from that of a spin
model since the configurations are indexed by edges rather than by vertices, and
this leads to difficulties not encountered in the Ising model.

Although such arguments are valid whenever d ≥ 3, we shall assume for
simplicity that d = 3. It is striking that the results are valid for high-density
percolation on Zd with d ≥ 3, being the random-cluster model with q = 1. A
corresponding question for supercritical percolation in two dimensions has been
studied in depth in [77], where it is shown effectively that the (one-dimensional)
interface converges when re-scaled to a Brownian bridge.

We have spoken above of interfaces which ‘deviate only locally’ from a plane,
an expression made more rigorous in Section 7.11 where the principal Theorem
7.142 is presented. We include at Theorem 7.87 a weaker version of the main
result which does not make use of the notation developed in later sections.

The results are proved under the assumption that q ∈ [1,∞) and p is sufficiently
large. It is a major open question to determine whether or not such results are valid
under the weaker assumption that p exceeds the critical value pc(q) of the random-
cluster model. The answer may be expected to depend on the value of q and the
number d of dimensions. Since the percolation measure φ3,p,1 is a conditioned
product measure, it may be possible to gain insight into the existence or not of
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such a ‘roughening transition’ by concentrating on the special case of percolation.
The two core problems here are the following. Let p(q) be the infimum of all
values of p at which the above interface is localized (a rigorous interpretation of
this definition is evident after reading Theorems 7.87 and 7.142).

I. Is it the case that the interface is localized for all p > p(q)?

II. For what q and d does strict inequality of critical points hold in the sense
that pc(q) < p(q)?

In the case of the Ising model (q = 2), it is generally believed that pc(2) < p(2)
if and only if d = 3.

A certain amount of notation and preliminary work is required before the main
theorems may be stated (in Section 7.11). In order to whet appetites, a preliminary
result is included towards the end of the current section. Sections 7.7–7.8 contain
some preliminary facts about random-cluster measures and interfaces. A detailed
geometrical analysis of interfaces is included in Section 7.9 along the lines of
Dobrushin’s classification of ‘walls’ and ‘ceilings’. This is followed in Section
7.10 by an exponential bound for the probability of finding local perturbations of
a flat interface.

The upper and lower boundaries of a set 3 of vertices are defined as

∂+3 = {x ∈ 3 : x3 > 0, x ∼ z for some z ∈ 3},
∂−3 = {x ∈ 3 : x3 ≤ 0, x ∼ z for some z ∈ 3},

where 3 = Zd \ 3. For positive integers L, M , let 3L ,M denote the box
[−L, L]2 × [−M,M], and write EL ,M for the set of edges having at least one
endvertex in 3L ,M . We write 3L = 3L ,L , the cube of side-length 2L, and
6L = [−L, L]2 ×Z, an infinite cylinder. The equator of the box3M,N is defined
to be the circuit of 3L ,M \3L−1,M comprising all vertices x with x3 = 1

2 , with a
similar definition for the cylinder 6L .

We shall be particularly concerned with a boundary condition D corresponding
to the mixed ‘Dobrushin boundary’ of [103]. Let D ∈ � be given by
(7.86)

D(e) =
{

0 if e = 〈x, y〉 for some x = (x1, x2, 0) and y = (x1, x2, 1),

1 otherwise.

See Figure 7.4. Let �D
L ,M be the set of configurations ω ∈ � such that ω( f ) =

D( f ) if f /∈ EL ,M , and let IL ,M be the event that there exists no open path
connecting a vertex of ∂+3L ,M to a vertex of ∂−3L ,M . The probability measure
of current interest is the random-cluster measure φD

3M,N ,p,q
conditioned on the

event IL ,M , which we denote by φ
D
3L,M ,p,q .

Many of the calculations concern the box 3L ,M and the measure φ
D
3L,M ,p,q .

We choose however to express our conclusions in terms of the infinite cylinder

6L = 3L ,∞ and the weak limit φL ,p,q = limM→∞ φ
D
3L,M ,p,q .
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Figure 7.4. The box3L ,M . The heavy black edges are those given by the boundary condition
D, and there is a two-dimensional sketch of the interface 1.

It is shown in Lemma 7.98 that, on the event IL ,M ∩ �D
L ,M , there exists an

interface spanning the equator of 3L ,M . Much of the work of the subsequent
sections is devoted to understanding the geometry of such an interface. We shall
see in Theorem 7.142 that, in the limit as M → ∞ and for sufficiently large p, this
interface deviates, φL ,p,q-almost-surely, only locally from the flat plane through
the equator of 6L . Indeed, the spatial density of such deviations approaches zero
as p approaches 1. The following theorem is an example of an application of the
forthcoming Theorem 7.142.

(7.87) Theorem [139]. Let q ∈ [1,∞). For ǫ > 0, there exists p̂ = p̂(ǫ) < 1
such that, if p > p̂,

(7.88)
φL ,p,q(x ↔ ∂−6L) > 1 − ǫ,

φL ,p,q(x + (0, 0, 1) ↔ ∂+6L) > 1 − ǫ,

for all L ≥ 1 and every x = (x1, x2, 0) ∈ 6L .

No proof is known of the weak convergence of φL ,p,q as L → ∞, but, by the
usual compactness argument12, the sequence must possess weak limits. It is a

12See the proof of Theorem 4.17(a).
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consequence of Theorems 7.87 and 7.142 that, for sufficiently large p, any such
weak limit is non-translation-invariant.

(7.89) Theorem [139]. Let q ∈ [1,∞) and p > p̂( 1
2 ), where p̂( 1

2 ) is given
in Theorem 7.87. The family {φL ,p,q : L = 1, 2, . . . } possesses at least one
non-translation-invariant weak limit.

It is shown in addition at Theorem 7.144 that there exists a geometric bound,
uniformly in L, on the tail of the displacement of the interface from the flat plane.

By making use of the relationship between random-cluster models and Potts
models (see Sections 1.4 and 4.6), one obtains a generalization of the theorem of
Dobrushin [103] to include percolation and Potts models.

The measure φL ,p,q is not a random-cluster measure in the sense of Chapter
3, even though it corresponds to a Gibbs measure when q ∈ {2, 3, . . . }. It may
instead be termed a ‘conditioned’ random-cluster measure, and such measures
will be encountered again in Chapter 11.

The strategy of the proofs is to follow the milestones of the paper of Dobrushin
[103]. Although Dobrushin’s work is a helpful indicator of the overall route to
the results, a considerable amount of extra work is necessary in the context of the
random-cluster model, much of which arises from the fact that the geometry of
interfaces is different for the random-cluster model from that for spin systems.
Heavy use is made in the remainder of this chapter of the material in [139].

7.7 Probabilistic and geometric preliminaries

We shall require two general facts about random-cluster measures, and we state
these next. The first is a formula for the partition function in terms of the edge
densities. For E ⊆ E3, let VE denote the set of endvertices of members of E . As
usual, Je denotes the event that the edge e is open, and Z ζG(p, q) is given as in
(4.12). Let ζ 1

E be the configuration obtained from ζ ∈ � by declaring every edge
in E to be open, and k(ζ 1

E , E) the number of components of ζ 1
E that intersect VE .

(7.90) Lemma. Let E be a finite subset of E3, and G = (VE , E). Then

log Z ζG(p, q) = k(ζ 1
E , E) log q +

∑

e∈E

gζG,p,q(e), ζ ∈ �,

where

(7.91) gζG,p,q(e) =
∫ 1

p

[
r − φ

ζ

G,r,q(Je)

r(1 − r)

]
dr.

Proof. As in the proofs of Theorems 3.73 and 4.58,

d

dr
log Z ζG(r, q) =

∑

e∈E

φ
ζ
G,r,q(Je)− r

r(1 − r)
.
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This we integrate from p to 1, noting that log Z ζG(1, q) = k(ζ 1
E , E) log q . �

Let q ∈ [1,∞). By Theorem 3.1,

r

r + q(1 − r)
≤ φ

ζ

G,r,q(Je) ≤ r.

By substitution into (7.91),

(7.92) 0 ≤ gζG,p,q(e) ≤
∫ 1

p
(q − 1) dr = (1 − p)(q − 1), e ∈ E,

uniformly in E and ζ . The above inequalities are reversed if q < 1.

Let 3n = 3n,n and write 3n(e) = e + 3n for the set of translates of the
endvertices of the edge e by vectors in 3n .

(7.93) Lemma. Let q ∈ [1,∞). There exists p∗ = p∗(q) < 1 and a constant
α > 0 such that the following holds. Let E1 and E2 be finite edge-sets of L3 such
that e ∈ E1 ∩ E2, and let n ≥ 1 be such that E1 ∩ 3n(e) = E2 ∩ 3n(e). If
p > p∗, ∣∣g1

G1,p,q(e)− g1
G2,p,q(e)

∣∣ ≤ e−αn,

where Gi = (VEi , Ei ).

Proof. Let Ke be the event that the endvertices of the edge e are joined by an open
path of Ed \ {e}. By (3.3),

r − φ1
G,r,q(Je)

r(1 − r)
=
(q − 1)(1 − φ1

G,r,q(Ke))

r + q(1 − r)
,

whence

∣∣g1
G1,p,q(e)− g1

G2,p,q(e)
∣∣(7.94)

≤
∫ 1

p

(q − 1)

r + q(1 − r)

∣∣φ1
G1,r,q (Ke)− φ1

G2,r,q(Ke)
∣∣ dr.

Let n ≥ 1. We pursue the method of proof of Theorem 5.33(b), and shall use the
notation therein. Let V be the set of vertices that are incident in L3 to edges of
both 3n(e) and its complement. We define B to be the union of V together with
all vertices x0 ∈ Z3 for which there exists a path x0, x1, . . . , xm of L such that
x0, x1, . . . , xm−1 /∈ V , xm ∈ V , and x0, x1, . . . , xm−1 are black. Let Wn be the
event that there exists no x ∈ B such that ‖x − z‖ ≤ 10, say, where z is the centre
of e. By (5.36)–(5.37) together with estimates at the beginning of the proof of
[211, Lemma (2.24)],

(7.95) φ0
3n (e),r,q

(Wn) ≥ 1 − cn(1 − ρ)en,
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where c and e are absolute positive constants, and ρ = r/[r + q(1 − r)]. Since
Wn is an increasing event,

(7.96) φ1
G1,r,q (Wn) ≥ 1 − cn(1 − ρ)en .

Let H = E1 ∩3n(e). As in the proof of Theorem 5.33, and by coupling,

0 ≤ φ1
H,r,q(Ke)− φ1

G1,r,q (Ke) ≤ 1 − φ1
G1,r,q (Wn).

The claim follows by (7.94), (7.96), and the triangle inequality. �

As explained in Sections 7.1–7.2, the dual of the random-cluster model on L3

is a certain probability measure associated with the plaquettes of the dual lattice
L3

d. The straight line-segment joining the vertices of an edge e = 〈x, y〉 passes
through the middle of exactly one plaquette, denoted by h(e), which we call the
dual plaquette of e. We declare this plaquette open (respectively, closed) if e is
closed (respectively, open), see (7.9). The plaquette h(e) is called horizontal if
y = x + (0, 0,±1), and vertical otherwise.

The regular interface of L3 is the set δ0 of plaquettes given by

δ0 =
{
h ∈ H : h = h(〈x, y〉) for some x = (x1, x2, 0) and y = (x1, x2, 1)

}
.

The interface 1(ω) of a configuration ω ∈ IL ,M ∩ �D
L ,M is defined to be the

maximal 1-connected set of open plaquettes containing the plaquettes in the set
δ0 \ {h(e) : e ∈ EL ,M}. The set of all interfaces is

(7.97) DL ,M =
{
1(ω) : ω ∈ IL ,M ∩�D

L ,M

}
.

It is tempting to think of an interface as part of a deformed plane. Interfaces
may however have more complex geometry involving cavities and attachments,
see Figure 7.4. The following proposition confirms that the interfaces in DL ,M

separate the top of 3L ,M from its bottom.

(7.98) Lemma. The event IL ,M ∩ �D
L ,M comprises those configurations ω ∈

�D
L ,M for which there exists δ ∈ DL ,M satisfying: ω(e) = 0 whenever h(e) ∈ δ.

For δ ∈ DL ,M , we define its extended interface (or closure) δ to be the set

(7.99) δ = δ ∪
{
h ∈ H : h is 1-connected to some member of δ

}
.

See (7.4). It will be useful to introduce the ‘maximal’ (denoted by ωδ) and ‘min-
imal’ (denoted by ωδ) configurations in �D

L ,M that are compatible with δ:

(7.100) ωδ(e) =
{

0 if e ∈ δ,
1 otherwise,

ωδ(e) =





D(e) if e /∈ EL ,M ,

1 if e ∈ EL ,M ∩ (δ \ δ),
0 otherwise.
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Proof of Lemma 7.98. If ω ∈ IL ,M ∩ �D
L ,M , then ω(e) = 0 whenever h(e) ∈

1(ω). Suppose conversely that δ ∈ DL ,M , and let ω ∈ �D
L ,M satisfy ω(e) = 0

whenever h(e) ∈ δ. Since ω ≤ ωδ , it suffices to show that ωδ ∈ IL ,M . Since
δ ∈ DL ,M , there exists ξ ∈ IL ,M ∩ �D

L ,M such that δ = 1(ξ). Note that
ξ ≤ ωδ . Suppose for the sake of obtaining a contradiction that ωδ /∈ IL ,M ,
and think of ωδ as being obtained from ξ by declaring, in turn, a certain sequence
e1, e2, . . . , er with ξ(ei ) = 0, i = 1, 2, . . . , r , to be open. Let ξ k be obtained from
ξ by η(ξ k) = η(ξ) ∪ {e1, e2, . . . , ek}. By assumption, there exists K such that
ξ K ∈ IL ,M but ξ K+1 /∈ IL ,M . For ψ ∈ �D

L ,M , let J (ψ) denote the set of edges
e having endvertices in 3L ,M , with ψ(e) = 1, and both of whose endvertices are
attainable from ∂+3L ,M by open paths of ψ . We apply Theorem 7.3 to the finite
connected graph induced by J (ξ K ) to find that there exists a splitting set Q of
plaquettes such that: ∂+3L ,M ⊆ ins([Q]), ∂−3L ,M ⊆ out([Q]), and ξ K (e) = 0
whenever e ∈ EL ,M and h(e) ∈ Q. It must be the case that h(eK+1) ∈ Q,
since ξ K+1 /∈ IL ,M . By the 1-connectedness of Q, there exists a sequence
f1 = eK+1, f2, f3, . . . , ft of edges such that:

(i) h( fi ) ∈ Q for all i ,

(ii) fi ∈ EL ,M for i = 1, 2, . . . , t − 1, ft = h(〈x, x − (0, 0, 1)〉) for some
x = (x1, x2, 1) ∈ ∂+3L ,M , and

(iii) h( fi )
1∼ h( fi+1) for i = 1, 2, . . . , t − 1.

It follows that h( fi ) ∈ δ for i = 1, 2, . . . , t . In particular, h(eK+1) ∈ δ and so
ωδ(eK+1) = 0, a contradiction. Therefore ωδ ∈ IL ,M as claimed. �

7.8 The law of the interface

For conciseness of notation, we abbreviate φD
3L,M ,p,q

to φL ,M , and φ
D
3L,M ,p,q to

φL ,M . Let δ ∈ DL ,M . The better to study φL ,M (δ) = φL ,M (1 = δ), we develop
next an expression for this probability. Consider the connected components of the
graph (Z3, η(ωδ)), and denote these components by (Si

δ,U
i
δ), i = 1, 2, . . . , kδ ,

where kδ = k(ωδ). Note that U i
δ is empty whenever Si

δ is a singleton. Let W (δ)

be the edge-set EL ,M \ {e ∈ E3 : h(e) ∈ δ}.
Let ω ∈ IL ,M ∩�D

L ,M be such that 1(ω) = δ, so that

(7.101) ω(e) =
{

0 if h(e) ∈ δ,
1 if h(e) ∈ δ \ δ.

Let D be the set of edges with both endvertices in 3L+2,M+2 that either are dual
to plaquettes in δ or join a vertex of 3L+1,M+1 to a vertex of ∂3L+2,M+2. We
apply Theorem 7.5 to the set D, and deduce that there are exactly kδ components
of the graph (Z3, η(ω)) having a vertex in V (δ).
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We have that

φL ,M (δ) = 1

Z(EL ,M )
p|δ\δ|(1 − p)|δ|(7.102)

×
∑

ω∈�D
L,M :

1(ω)=δ

{ ∏

e∈W (δ)

pω(e)(1 − p)1−ω(e)
}

qk(ω)

= Z1(δ)

Z(EL ,M )
p|δ\δ|(1 − p)|δ|qkδ−1,

where Z(EL ,M) = ZD
3L,M

(p, q) and Z1(δ) = Z1
W (δ)

(p, q). In this expression
and later, for H ⊆ H, |H | is the cardinality of the set H ∩ {h(e) : e ∈ EL ,M}.
The term qkδ−1 arises since the application of ‘1’ boundary conditions to δ has
the effect of uniting the boundaries of the cavities of δ, whereby the number of
clusters diminishes by kδ − 1.

For x ∈ Z3, we denote by τx : Z3 → Z3 the translate given by τx(y) = x + y.
The translate τx acts on edges and subgraphs of L3 in the natural way, see Section
4.3. For sets A, B of edges or vertices of L3, we write A ≃ B if B = τx A for
some x ∈ Z3. Note that two edges e, f satisfy {e} ≃ { f } if and only if they are
parallel, in which case we write e ≃ f .

We shall exploit properties of the partition functions Z(·) in order to rewrite
(7.102). For i = 1, 2, let L i ,Mi > 0, δi ∈ DL i ,Mi , and ei ∈ E(δi ) ∩ EL i ,Mi , and

G(e1, δ1, EL1,M1; e2, δ2, EL2,M2)(7.103)

= sup

{
L :

3L(e1) ∩ EL1,M1 ≃ 3L(e2) ∩ EL2,M2

and3L(e1) ∩ E(δ1) ≃ 3L(e2) ∩ E(δ2)

}
,

where 3L(e) = e +3L as before. Let Z1(EL ,M ) = Z1
3L,M

(p, q).

(7.104) Lemma. Let L,M ≥ 1 and δ ∈ DL ,M . We may write φL ,M(δ) as
(7.105)

φL ,M(δ) = Z1(EL ,M)

Z(EL ,M)
p|δ\δ|(1 − p)|δ|qkδ−1 exp

( ∑

e∈E(δ)∩EL,M

fp(e, δ, L,M)

)
,

for functions fp(e, δ, L,M) with the following properties. For q ∈ [1,∞), there
exist p∗ < 1 and constants C1, C2, γ > 0 such that, if p > p∗,

| fp(e, δ, L,M)| < C1,(7.106) ∣∣ fp(e1, δ1, L1,M1)− fp(e2, δ2, L2,M2)
∣∣ ≤ C2e−γG ,

e1 ∈ δ1, e2 ∈ δ2, e1 ≃ e2,
(7.107)

where G = G(e1, δ1, EL1,M1; e2, δ2, EL2,M2). Inequalities (7.106) and (7.107)
are valid for all relevant values of their arguments.
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Proof. By Lemma 7.90,
(7.108)

log

(
Z1(δ)

Z1(EL ,M)

)
=

∑

f ∈W (δ)

[
g( f,W (δ))− g( f, EL ,M)

]
−

∑

f ∈E(δ)

g( f, EL ,M),

where g( f, D) = g1
D,p,q( f ). The summations may be expressed as sums over

edges e ∈ E(δ) in the following way. The set E3 may be ordered according to
the lexicographic ordering of the centres of edges. Let f ∈ EL ,M and δ ∈ DL ,M .
Amongst all edges in E(δ) ∩ EL ,M that are closest to f (in the sense that their
centres are closest in the L∞ norm), let ν( f, δ) be the earliest edge in this ordering.
By (7.108),

(7.109) log

(
Z1(δ)

Z1(EL ,M)

)
=

∑

e∈E(δ)∩EL,M

fp(e, δ, L,M)

where
(7.110)

fp(e, δ, L,M) =
∑

f ∈W (δ):
ν( f,δ)=e

[
g( f,W (δ))− g( f, EL ,M)

]
−

∑

f ∈E(δ):
ν( f,δ)=e

g( f, EL ,M).

This implies (7.105) via (7.102).

It remains to show (7.106)–(7.107). Let e = ν( f, δ) and set r = ‖e, f ‖. Then
3r−2( f ) does not intersect δ, implying by Lemma 7.93 that

(7.111)
∣∣g( f,W (δ))− g( f, EL ,M)

∣∣ ≤ e−α‖e, f ‖+2α, p > p∗,

where p∗ and α are given as in that lemma. Secondly, there exists an absolute
constant K such that, for all e and δ, the number of edges f ∈ E(δ) with e =
ν( f, δ) is no greater than K . Therefore, by (7.92),

| fp(e, δ, L,M)| ≤
∑

f ∈E3

e−α‖e, f ‖+2α + K (1 − p)(q − 1)

as required for (7.106).

Finally, we show (7.107) for p > p∗ and appropriate C2, γ . Let e ∈ δ1,
e2 ∈ δ2, and let G be given by (7.103); we may suppose that G > 9. By
assumption, e1 ≃ e2, whence there exists a translate τ of L3 such that τe1 = e2.
For f ∈ W (δ1) ∩3G/3(e1),

τ [3G/3( f ) ∩ EL1,M1 ] = 3G/3(τ f ) ∩ EL2,M2 ,(7.112)

τ [3G/3( f ) ∩ δ1] = 3G/3(τ f ) ∩ δ2,(7.113)
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and

(7.114) for ‖ f, e1‖ ≤ 1
3 G, ν( f, δ1) = e1 if and only if ν(τ f, δ2) = e2.

By the definition (7.110) of the functions fp ,

∣∣ fp(e1, δ1, L1,M1)− fp(e2, δ2, L2,M2)
∣∣

(7.115)

≤
∑

f ∈W (δ1)∩3G/3(e1):
ν( f,δ1)=e1

{∣∣g( f,W (δ1))− g(τ f,W (δ2))
∣∣

+
∣∣g( f, EL1,M1)− g(τ f, EL2,M2)

∣∣}

+
∑

f ∈W (δ1)\3G/3(e1):
ν( f,δ1)=e1

∣∣g( f,W (δ1))− g( f, EL1,M1)
∣∣

+
∑

f ∈W (δ2)\3G/3(e2):
ν( f,δ2)=e2

∣∣g( f,W (δ2))− g( f, EL2,M2)
∣∣+ S,

where

S =
∣∣∣∣∣

∑

f ∈E(δ1):
ν( f,δ1)=e1

g( f, EL1,M1)−
∑

f ∈E(δ2):
ν( f,δ2)=e2

g( f, EL2,M2)

∣∣∣∣∣ .

By (7.112)–(7.113)and Lemma 7.93, the first summation in (7.115) is bounded

above by 2G3e− 1
3αG . By the definition of the ν( f, δi ), the second and third

summations are bounded above, respectively, by

∑

f /∈3G/3(ei )

e−α‖ f,ei‖+2α ≤ C ′e− 1
3αG+2α,

for some C ′ < ∞, as in (7.111). By (7.114),

S =
∣∣∣∣∣

∑

f ∈E(δ1):
ν( f,δ1)=e1

g( f, EL1,M1)− g(τ f, EL2,M2)

∣∣∣∣∣ ≤ K e− 1
3αG ,

and (7.107) follows for an appropriate choice of γ . �

In the second part of this section, we consider measures and interfaces for the
infinite cylinder 6L = 3L ,∞ = [−L, L]2 × Z. Note first by stochastic ordering
that, if q ∈ [1,∞), then φL ,M+1 ≤st φL ,M , whence the (decreasing) weak limit

(7.116) φL = lim
M→∞

φL ,M
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exists. Let �D
L be the set of all configurations ω such that ω(e) = D(e) for

e /∈ EL = limM→∞ EL ,M , and let IL be the event that no vertex of ∂6+
L is joined

by an open path to a vertex of ∂6−
L . The set of interfaces on which we concentrate

is DL = ⋃
M DL ,M = limM→∞ DL ,M . Thus, DL is the set of interfaces that span

6L , and every member of DL is bounded in the direction of the third coordinate.
It is easy to see that IL ⊇ limM→∞ IL ,M , and it is a consequence of the next
lemma that the difference between these two events has φL -probability zero.

(7.117) Lemma. Let q ∈ [1,∞). The weak limit φL ,M(· | IL ,M) ⇒ φL(· | IL)

holds as M → ∞, and

φL

(
IL
∖

lim
M→∞

IL ,M

)
= 0.

For L i > 0, δi ∈ DL i , and ei ∈ E(δi ) ∩ EL i , let

G(e1, δ1, EL1; e2, δ2, EL2) = G(e1, δ1, EL1,∞; e2, δ2, EL2,∞).

On the event IL ,1 is defined as before to be the maximal 1-connected set of open
plaquettes that intersects δ0 \ EL .

(7.118) Lemma.
(a) Suppose L > 0, δ ∈ DL , and e ∈ E(δ) ∩ EL . The functions fp given in

(7.110) are such that the limit

fp(e, δ, L) = lim
M→∞

fp(e, δ, L,M) (7.119)

exists. Furthermore, if p > p∗,

| fp(e, δ, L)| < C1, (7.120)

and, for L i > 0, δi ∈ DL i , and ei ∈ E(δi ) ∩ EL i satisfying e1 ≃ e2,

∣∣ fp(e1, δ1, L1)− fp(e2, δ2, L2)
∣∣ ≤ C2e−γG ,

where G = G(e1, δ1, EL1; e2, δ2, EL2) and p∗, C1, C2, γ are as in Lemma
7.104.

(b) For q ∈ [1,∞) and δ ∈ DL , the probability φL(δ | IL) = φL(1 = δ | IL)

satisfies

φL(δ | IL) = 1

Z L
p|δ\δ|(1 − p)|δ|qkδ exp

( ∑

e∈E(δ)∩EL

fp(e, δ, L)

)
,

(7.121)
where Z L is the appropriate normalizing constant.

Proof of Lemma 7.117. It suffices for the claim of weak convergence that

(7.122) φL ,M (F ∩ IL ,M) → φL(F ∩ IL) for all cylinder events F.
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Let AL ,M = [−L, L]2 × {−M} and BL ,M = [−L, L]2 × {M}, and let TL ,M be
the event that no open path exists between a vertex of ∂3+

L ,M \ BL ,M and a vertex

of ∂3−
L ,M \ AL ,M . Note that TL ,M → IL as M → ∞. Let F be a cylinder event.

Then

φL ,M (F ∩ IL ,M ) ≤ φL ,M (F ∩ TL ,M ′) for M ′ ≤ M(7.123)

→ φL(F ∩ TL ,M ′) as M → ∞
→ φL(F ∩ IL) as M ′ → ∞.

In order to obtain a corresponding lower bound, we introduce the event Kr

that all edges of EL , both of whose endvertices have third coordinate equal to
±r , are open. We may suppose without loss of generality that p > 0. By the
comparison inequality (Theorem 3.21), φL ,M dominates product measure with
density π = p/[p + q(1 − p)], whence there exists β = βL < 1 such that

φL ,M

( R⋃

r=1

Kr

)
≥ 1 − βR, R < M.

Now IL ,M ⊆ TL ,M , and TL ,M \ IL ,M ⊆ ⋂M−1
r=1 Kr , whence

φL ,M (F ∩ IL ,M) ≥ φL ,M(F ∩ TL ,M)− βM−1(7.124)

≥ φL ,M(F ∩ IL)− βM−1

→ φL(F ∩ IL) as M → ∞.

Equation (7.122) holds by (7.123)–(7.124). The second claim of the lemma fol-
lows by taking F = �, the entire sample space. �

Proof of Lemma 7.118. (a) The existence of the limit follows by the monotonic-
ity of g( f, Di ) for an increasing sequence {Di }, and the proof of (7.106). The
inequalities are implied by (7.106)–(7.107).

(b) Let δ ∈ DL , so that δ ∈ IL ,M for all large M . By Lemma 7.117,

φL(δ | IL) = lim
M→∞

φL ,M(δ | IL ,M ).

Let M → ∞ in (7.105), and use part (a) to obtain the claim. �
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7.9 Geometry of interfaces

A taxonomy of interfaces is required, and this is the topic of this section. Let
δ ∈ DL . While it was natural in Section 7.7 to introduce the extended interface
δ, it turns out to be useful when studying the geometry of δ to work with its
semi-extended interface

δ∗ = δ ∪ {h ∈ H : h is a horizontal plaquette that is 1-connected to δ
}
.

Let x = (x1, x2, x3) ∈ Z3. The projection π(h) of a horizontal plaquette h =
h(〈x, x + (0, 0, 1)〉) onto the regular interface δ0 is defined to be the plaquette

π(h) = h
(
〈(x1, x2, 0), (x1, x2, 1)〉

)
.

The projection of the vertical plaquette h = h(〈x, x + (1, 0, 0)〉) is the interval

π(h) =
[
(x1 + 1

2 , x2 − 1
2 ,

1
2 ), (x1 + 1

2 , x2 + 1
2 ,

1
2 )
]
,

and, similarly, h = h(〈x, x + (0, 1, 0)〉) has projection

π(h) =
[
(x1 − 1

2 , x2 + 1
2 ,

1
2 ), (x1 + 1

2 , x2 + 1
2 ,

1
2 )
]
.

A horizontal plaquette h of the semi-extended interface δ∗ is called a c-plaquette
if h is the unique member of δ∗ with projectionπ(h). All other plaquettes of δ∗ are
called w-plaquettes. A ceiling of δ is a maximal 0-connected set of c-plaquettes.
The projection of a ceiling C is the set π(C) = {π(h) : h ∈ C}. Similarly,
we define a wall W of δ as a maximal 0-connected set of w-plaquettes, and its
projection as

π(W ) =
{
π(h) : h is a horizontal plaquette of W

}
.

(7.125) Lemma. Let δ ∈ DL .

(i) The set δ∗ \ δ contains no c-plaquette.

(ii) All plaquettes of δ∗ that are 1-connected to some c-plaquette are horizontal
plaquettes of δ. All horizontal plaquettes that are 0-connected to some
c-plaquette belong to δ∗.

(iii) Let C be a ceiling. There is a unique plane parallel to the regular interface
that contains all the c-plaquettes of C.

(iv) Let C be a ceiling. Then C = {h ∈ δ∗ : π(h) ⊆ [π(C)]}.
(v) Let W be a wall. Then W = {h ∈ δ∗ : π(h) ⊆ [π(W )]}.

(vi) For each wall W, δ0 \ π(W ) has exactly one maximal infinite 0-connected
component (respectively, 1-connected component).

(vii) Let W be a wall, and suppose that δ0 \ π(W ) comprises n maximal
0-connected sets H1, H2, . . . , Hn . The set of all plaquettes h ∈ δ∗ \ W
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that are 0-connected to W comprises only c-plaquettes, which belong to the
union of exactly n distinct ceilings C1,C2, . . . ,Cn such that

{
π(h) : h is a c-plaquette of Ci

}
⊆ Hi .

(viii) The projections π(W1) and π(W2) of two different walls W1 and W2 of δ∗

are not 0-connected.

(ix) The projection π(W ) of any wall W contains at least one plaquette of δ0.

The displacement of the plane in (iii) from the regular interface, counted positive
or negative, is called the height of the ceiling C .

Proof. (i) Let h be a c-plaquette of δ∗ with π(h) = h0. Since δ ∈ DL , δ contains
at least one plaquette with projection h0. Yet, according to the definition of a
c-plaquette, there is no such a plaquette besides h. Therefore h ∈ δ.
(ii) Suppose h is a c-plaquette. Then h belongs to δ, and any horizontal plaquette
that is 1-connected to h belongs to δ∗. It may be seen in addition that any vertical
plaquette that is 1-connected to h lies in δ \ δ. Suppose, on the contrary, that
some such vertical plaquette h′ lies in δ. Then the horizontal plaquettes that are
1-connected to h′ lie in δ∗. One of these latter plaquettes has projection π(h), in
contradiction of the assumption that h is a c-plaquette.

We may now see as follows that any horizontal plaquette h′′ that is 1-connected
to h must lie in δ. Suppose, on the contrary, that some such plaquette h′′ lies in
δ \δ. We may construct a path of open edges on (Z3, η(ωδ)) connecting the vertex
x just above h to the vertex x − (0, 0, 1) just below h, using the open edges of
ωδ corresponding to the three relevant plaquettes of δ \ δ. This contradicts the
assumption that h is a c-plaquette of the interface δ.

The second claim of (ii) follows immediately, by the definition of δ∗.

(iii) The first part follows by the definition of ceiling, since the only horizontal
plaquettes that are 0-connected with a given c-plaquette h lie in the plane containing
h.

(iv) Assume that h ∈ δ∗ and π(h) ⊆ [π(C)]. If h is horizontal, the conclu-
sion holds by the definition of c-plaquette. If h is vertical, then h ∈ δ, and all
1-connected horizontal plaquettes lie in δ∗. At least two such horizontal plaquettes
project onto the same plaquette in π(C), in contradiction of the assumption that
C is a ceiling.

(v) Let C be a ceiling and let γ1, γ2, . . . , γn be the maximal 0-connected sets of
plaquettes of δ0 \ π(C). Let δ∗i = {h ∈ δ∗ : π(h) ⊆ [γi ]}, and let

β∗
i =

{
h ∈ δ∗i : h horizontal, h

0∼ h′ for some h′ ∈ C
}
.

We note that13 β∗
i is a 0-connected subset of δ∗i .

13This is a consequence of [311, eqn (5.3)], see also [286, p. 40, footnote 2].
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By part (iv), δ∗ = C ∪
{⋃n

i=1 δ
∗
i

}
. We claim that each δ∗i is 0-connected, and

we prove this as follows. Let h1, h2 ∈ δ∗i . Since δ∗ is 0-connected, it contains

a sequence h1 = f0, f1, . . . , fm = h2 of plaquettes such that fi−1
0∼ fi for

i = 1, 2, . . . ,m. We need to show that such a sequence exists containing no
plaquettes in C . Suppose on the contrary that the sequence ( fi ) has a non-empty
intersection with C . Let k = min{i : fi ∈ C} and l = max{i : fi ∈ C}, and note
that 0 < k ≤ l < n.

If fk−1 and fl+1 are horizontal, then fk−1, fl+1 ∈ β∗
i , whence they are

0-connected by a path of horizontal plaquettes of β∗
i , and the claim follows. A

similar argument is valid if either or both of fk−1 and fl+1 is vertical. For example,
if fk−1 is vertical, by (ii) it cannot be 1-connected to a plaquette of C . Hence, it
is 1-connected to some horizontal plaquette in δ∗ \ C that is itself 1-connected to
a plaquette of C . The same conclusion is valid for fl+1 if vertical. In any such
case, as above there exists a 0-connected sequence of w-plaquettes connecting
fk−1 with fl+1, and the claim follows.

To prove (v), we note by the above that the wall W is a subset of one of the
sets δ∗i , say δ∗1 . Next, we let C1 be a ceiling contained in δ∗1 , if this exists, and we
repeat the above procedure. Consider the 0-connected components of γ1 \π(C1),
and use the fact that δ∗1 is 0-connected, to deduce that the set of plaquettes that
project onto one of these components is itself 0-connected. This procedure is
repeated until all ceilings have been removed, the result being a 0-connected set
of w-plaquettes of which, by definition of a wall, all members belong to W .

Claim (vi) is a simple observation since walls are finite. Claim (vii) is immediate
from claim (ii) and the definitions of wall and ceiling. Claim (viii) follows from
(v) and (vii), and (ix) is a consequence of the definition of the semi-extended
interface δ∗. �

The properties described in Lemma 7.125 allow us to describe a wall W in
more detail. By (vi) and (vii), there exists a unique ceiling that is 0-connected
to W and with projection in the infinite 0-connected component of δ0 \ π(W ).
We call this ceiling the base of W . The altitude of W is the height of the base
of W , see (iii). The height D(W ) of W is the maximum absolute value of the
displacement in the third coordinate direction of [W ] from the horizontal plane
{(x1, x2, s + 1

2 ) : x1, x2 ∈ Z}, where s is the altitude of W . The interior int(W )

(of the projection π(W )) of W is the complement in δ0 of the unique maximal
infinite 0-connected component of δ0 \ π(W ), see (vi).

Let S = (A, B) where A, B are sets of plaquettes. We call S a standard wall
if there exists δ ∈ DL such that A ⊆ δ, B ⊆ δ∗ \ δ, and A ∪ B is the unique wall
of δ. If S = (A, B) is a standard wall, we refer to plaquettes of either A or B as
plaquettes of S, and we write π(S) = π(A ∪ B).

(7.126) Lemma. Let S = (A, B) be a standard wall. There exists a unique
δ ∈ DL such that: A ⊆ δ, B ⊆ δ∗ \ δ, and A ∪ B is the unique wall of δ.

This will be proved soon. Let δS denote the unique such δ ∈ DL corresponding
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to the standard wall S. We shall see that standard walls are the basic building blocks
for a general interface. Notice that the base of a standard wall is a subset of the
regular interface. Suppose we are provided with an ordering of the plaquettes
of δ0, and let the origin of the standard wall S be the earliest plaquette in π(S)
that is 1-connected to some plaquette of δ0 \ π(S). Such an origin exists by
Lemma 7.125(ix), and the origin belongs to S by (ii). For h ∈ δ0, let Sh be the set
of all standard walls with origin h. To Sh is attached the empty wall Eh , interpreted
as a wall with origin h but containing no plaquettes.

A family {Si = (Ai , Bi ) : i = 1, 2, . . . ,m} of standard walls is called admis-
sible if:

(i) for i 6= j , there exists no pair h1 ∈ π(Si ) and h2 ∈ π(Sj ) such that h1
0∼ h2,

(ii) if, for some i , h(e) ∈ Si where e /∈ EL , then h(e) ∈ Ai if and only if
D(e) = 0.

The members of any such family have distinct origins. For our future convenience,
each Si is labelled according to its origin h(i), and we write {Sh : h ∈ δ0} for
the family, where Sh is to be interpreted as Eh when h is the origin of none of the
Si . We adopt the convention that, when a standard wall is denoted as Sh for some
h ∈ δ0, then Sh ∈ Sh .

We introduce next the concept of a group of walls. Let h ∈ δ0, δ ∈ DL , and
denote by ρ(h, δ) the number of (vertical or horizontal) plaquettes in δ whose
projection is a subset of h. Two standard walls S1, S2 are called close if there exist
h1 ∈ π(S1) and h2 ∈ π(S2) such that

‖h1, h2‖ <
√
ρ(h1, δS1)+

√
ρ(h2, δS2).

A family G of non-empty standard walls is called a group of (standard) walls
if it is admissible and if, for any pair S1, S2 ∈ G, there exists a sequence T0 =
S1, T1, T2, . . . , Tn = S2 of members of G such that Ti and Ti+1 are close for
i = 0, 1, . . . , n − 1.

The origin of a group of walls is defined to be the earliest of the origins of the
standard walls therein. Let Gh denote the set of all possible groups of walls with
origin h ∈ δ0. As before, we attach to Gh the empty group Eh with origin h but
containing no standard wall. A family {Gi : i = 1, 2, . . . ,m} of groups of walls
is called admissible if, for i 6= j , there exists no pair S1 ∈ Gi , S2 ∈ G j such that
S1 and S2 are close.

We adopt the convention that, when a group of walls is denoted as Gh for some
h ∈ δ0, then Gh ∈ Gh . Thus, a family of groups of walls may be written as a
collection G = {Gh : h ∈ δ0} where Gh ∈ Gh .

(7.127) Lemma. The set DL is in one–one correspondence with both the collec-
tion of admissible families of standard walls, and with the collection of admissible
families of groups of walls.

Just as important as the existence of these one–one correspondences is their
nature, as described in the proof of the lemma. Let δG (respectively, δG) denote
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the interface corresponding thus to an admissible family G of standard walls
(respectively, an admissible family G of groups of walls).

Proof of Lemma 7.126. Let δ ∈ DL have unique wall S = (A, B). By definition,
every plaquette of δ∗ other than those in A ∪ B is a c-plaquette, so that 6 =
δ∗ \ (A ∪ B) is a union of ceilings C1,C2, . . . ,Cn . Each Ci contains some
plaquette hi that is 1-connected to some h′

i ∈ A, whence, by Lemma 7.125(iii),
the height of Ci is determined uniquely by knowledge of S. Hence δ is unique. �

Proof of Lemma 7.127. Let δ ∈ DL . Let W1,W2, . . . ,Wn be the non-empty walls
of δ∗, and write Wi = (Ai , Bi ) where Ai = Wi ∩ δ, Bi = Wi ∩ (δ∗ \ δ). Let si be
the altitude of Wi . We claim that τ(0,0,−si )Wi is a standard wall, and we prove this
as follows. Let Cij , j = 1, 2, . . . , k, be the ceilings that are 0-connected to Wi, and
let Hij be the maximal 0-connected set of plaquettes in δ0 \π(Wi ) onto which Cij

projects. See Lemma 7.125(vii). It suffices to construct an interface δ(Wi ) having
τ(0,0,−si )Wi as its unique wall. To this end, we add to τ(0,0,−si )Ai the plaquettes in
τ(0,0,−si )Cij , j = 1, 2, . . . , k, together with, for each j , the horizontal plaquettes
in the maximal 0-connected set of horizontal plaquettes that contains τ(0,0,−si )Cij

and elements of which project onto Hij .

We now define the family {Sh : h ∈ δ0} of standard walls by

Sh =
{
τ(0,0,−si )Wi if h is the origin of τ(0,0,−si )Wi ,

Eh if h is the origin of no τ(0,0,−si )Wi .

More precisely, in the first case, Sh = (Ah, Bh) where Ah = τ(0,0,−si )Ai and
Bh = τ(0,0,−si )Bi . That this is an admissible family of standard walls follows from
Lemma 7.125(viii) and from the observation that si = 0 when E(Wi )∩ EL 6= ∅.

Conversely, let {Sh = (Ah, Bh) : h ∈ δ0} be an admissible family of standard
walls. We shall show that there is a unique interface δ corresponding in a certain
way to this family. Let S1, S2 . . . , Sn be the non-empty walls of the family, and
let δi be the unique interface in DL having Si as its only wall.

Consider the partial ordering on the walls given by Si < Sj if int(Si ) ⊆ int(Sj ),
and re-order the non-empty walls in such a way that Si < Sj implies i < j . When
it exists, we take the first index k > 1 such that S1 < Sk and we modify δk as
follows. First, we remove the c-plaquettes that project onto int(S1), and then we
add translates of the plaquettes of A1. This is done by translating these plaquettes
so that the base of S1 is raised (or lowered) to the plane containing the ceiling
that is 0-connected to Sk and that projects on the maximal 0-connected set of
plaquettes in δ0 \ π(Sk) containing π(S1). See Lemma 7.125(viii). Let δ′k denote
the ensuing interface. We now repeat this procedure starting from the set of
standard walls S2, S3, . . . , Sn and interfaces δ2, δ3, . . . , δk−1, δ

′
k, δk+1, . . . , δn . If

no such k exists, we continue the procedure with the reduced sequence of interfaces
δ2, δ3, . . . , δk−1, δk, δk+1, . . . , δn .

We continue this process until we are left with interfaces δ′′il , l = 1, 2, . . . , r ,
having indices that refer to standard walls that are smaller than no other wall. The
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final interface δ is constructed as follows. For each l, we remove from the regular
interface δ0 all horizontal plaquettes contained in int(Sil ), and we replace them by
the plaquettes of δ′′il that project onto int(Sil ).

The final assertion concerning admissible families of groups of walls is straight-
forward. �

We derive next certain combinatorial properties of walls. For S = (A, B) a
standard wall, let N(S) = |A| and5(S) = N(S)− |π(S)|. For an admissible set
F = {S1, S2, . . . , Sm } of standard walls, let

5(F) =
m∑

i=1

5(Si ), N(F) =
m∑

i=1

N(Si ), π(F) =
m⋃

i=1

π(Si ).

(7.128) Lemma. Let S = (A, B) be a standard wall, and D(S) its height.

(i) N(S) ≥ 14
13 |π(S)|. Consequently,5(S) ≥ 1

13 |π(S)| and 5(S) ≥ 1
14 N(S).

(ii) N(S) ≥ 1
5 |S|.

(iii) 5(S) ≥ D(S).

Proof. (i) For each h0 ∈ δ0, let U(h0) = {h ∈ δ0 : h = h0 or h
1∼ h0}. We

call two plaquettes h1, h2 ∈ δ0 separated if U(h1) ∩ U(h2) = ∅. Denote by
Hsep = Hsep(S) ⊆ π(S) a set of pairwise-separated plaquettes in π(S) having
maximum cardinality, and let H = ⋃

h1∈Hsep
[U(h1) ∩ π(S)]. Note that

(7.129) |Hsep| ≥ 1
13 |π(S)|.

For every h0 ∈ π(S), there exists a horizontal plaquette h1 ∈ δS such that
π(h1) = h0. Since A ∪ B contains no c-plaquette of δS , h1 is a w-plaquette,
whence h1 ∈ A. In particular, N(S) ≥ |π(S)|.

For h0 = π(h1) ∈ Hsep where h1 ∈ A, we claim that

(7.130)
∣∣{h ∈ A : either π(h) ⊆ [h0] or π(h) ∈ U(h0)

}∣∣ ≥ |U(h0)∩π(S)|+1.

By (7.129)–(7.130),

N(S) ≥
∑

h0∈Hsep

{
|U(h0) ∩ π(S)| + 1

}
+ |π(S) \ H |

= |H | + |Hsep| + |π(S)| − |H | ≥ 14
13 |π(S)|.

In order to prove (7.130), we argue first that U(h0)∩π(S) contains at least one
(horizontal) plaquette besides h0. Suppose that this is not true. Then U(h0) \ h0
contains the projections of c-plaquettes of δ∗S only. By Lemma 7.125(ii, iii),
these c-plaquettes belong to the same ceiling C and therefore lie in the same
plane. Since h1 is by assumption a w-plaquette, there must be at least one other
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horizontal plaquette of δ∗S projecting onto h0. Only one such plaquette, however,
is 1-connected with the c-plaquettes. Since δ∗S is 1-connected, the other plaquettes
projecting onto h0 must be 1-connected with at least one other plaquette of δ∗S .
Each of these further plaquettes projects into π(C), in contradiction of Lemma
7.125(iv).

We now prove (7.130) as follows. Since h1 is a w-plaquette, there exists
h2 ∈ A ∪ B , h2 6= h1, such that π(h2) = h0. If there exists such h2 belonging
to A, then (7.130) holds. Suppose the contrary, and let h2 be such a plaquette
with h2 ∈ B . Since h1 ∈ A, for every η ∈ U(h0) ∩ π(S), η 6= h0, there exists

η′ ∈ A such that π(η′) ⊆ [η] and η′ 1∼ h1. [If this were false for some η then,
as in the proof of Lemma 7.125(ii), in any configuration with interface δS , there
would exist a path of open edges joining the vertex just above h1 to the vertex just
beneath h1. Since, by assumption, all plaquettes of A ∪ B other than h1, having
projection h0, lie in B , this would contradict the fact that δS is an interface.] If any
such η′ is vertical, then (7.130) follows. Assume that all such η′ are horizontal.

Since h2 ∈ B , there exists h3 ∈ A such that h3
1∼ h2, and (7.130) holds in this

case also.

(ii) The second part of the lemma follows from the observation that each of the
plaquettes in A is 1-connected to no more than four horizontal plaquettes of B .

(iii) Recall from the remark after (7.129) that A contains at least |π(S)| horizontal
plaquettes. Furthermore, A must contain at least D(S) vertical plaquettes, and the
claim follows. �

Finally in this section, we derive an exponential bound for the number of groups
of walls satisfying certain constraints.

(7.131) Lemma. Let h ∈ δ0. There exists a constant K such that: for k ≥ 1, the
number of groups of walls G ∈ Gh satisfying 5(G) = k is no greater than K k .

Proof. Let G = {S1, S2, . . . , Sn} ∈ Gh where the Si = (Ai , Bi ) are non-empty
standard walls and S1 ∈ Sh . For j ∈ δ0, let

Rj =
{

h′ ∈ δ0 : ‖ j, h′‖ ≤
√
ρ( j, δG)

}
\ π(G),

G̃ =
{ n⋃

i=1

(Ai ∪ Bi)

}
∪
{ ⋃

j∈π(G)
Rj

}
.

There exist constants C ′ and C ′′ such that, by Lemma 7.128,

|G̃| ≤ |G| + C ′ ∑

j∈π(G)
ρ( j, δG) ≤ C ′′|G| ≤ 5 · 14C ′′5(G),

where |G| =
∣∣⋃

i (Ai ∪ Bi )
∣∣.

It may be seen that G̃ is a 0-connected set of plaquettes containing h. Moreover,
the 0-connected sets obtained by removing all the horizontal plaquettes h′ ∈ G̃,
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for which there exists no other plaquette h′′ ∈ G̃ with π(h′′) = π(h′), are the
standard walls of G. Hence, the number of such groups of walls with 5(G) = k
is no greater than the number of 0-connected sets of plaquettes containing no more
than 70C ′′k elements including h. It is proved in [103, Lemma 2] that there exists
ν < ∞ such that the number of 0-connected sets of size n containing h is no
larger than νn . Given any such set, there are at most 2n ways of partitioning the
plaquettes between the Ai and the Bi . The claim of the lemma follows. �

7.10 Exponential bounds for group probabilities

The probabilistic expressions of Section 7.8 may be combined with the classifica-
tion of Section 7.9 to obtain an estimate concerning the geometry of the interface.
Let G = {Gh : h ∈ δ0} be a family of groups of walls. If G is admissible,
there exists by Lemma 7.127 a unique corresponding interface δG. We may pick
a random family ζ = {ζh : h ∈ δ0} of groups of walls according to the probability
measure PL induced by φL thus:

PL(ζ = G) =
{
φL(1 = δG) if G is admissible,

0 otherwise.

(7.132) Lemma. Let q ∈ [1,∞), and let p∗ be as in Lemma 7.104. There exist
constants C3, C4 such that

PL
(
ζh′ = Gh′

∣∣ ζh = Gh for h ∈ δ0, h 6= h′) ≤ C3[C4(1 − p)]5(Gh′ ),

for p > p∗, and for all h′ ∈ δ0, Gh′ ∈ Gh′ , L > 0, and for any admissible family
{Gh : h ∈ δ0, h 6= h′} of groups of walls.

Proof. The claim is trivial if G = {Gh : h ∈ δ0} is not admissible, and therefore
we may assume it to be admissible. Let h′ ∈ δ0, and let G′ agree with G except
at h′, where Gh′ is replaced by the empty group Eh′ . Then

(7.133) PL
(
ζh′ = Gh′

∣∣ ζh = Gh for h ∈ δ0, h 6= h′) ≤ φL(δ)

φL(δ
′)
,

where δ = δG and δ′ = δG′ .

In using (7.121) to bound the right side of this expression, we shall require
bounds for |δ| − |δ′|, |δ \ δ| − |δ′ \ δ′|, kδ − kδ′ , and

(7.134)
∑

e∈E(δ)∩EL

fp(e, δ, L)−
∑

e∈E(δ′)∩EL

fp(e, δ
′, L).

It is easy to see from the definition of δ that

|δ| = |δ0| +
∑

h∈δ0

[
N(Gh )− |π(Gh)|

]
,
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and therefore,

(7.135) |δ| − |δ′| = N(Gh′ )− |π(Gh′)| = 5(Gh′).

A little thought leads to the inequality

(7.136) |δ \ δ| − |δ′ \ δ′| ≥ 0,

and the reader may be prepared to omit the explanation that follows. We claim
that (7.136) follows from the inequality

(7.137) |P(δ)| − |P(δ′)| ≥ 0,

where P(δ) (respectively, P(δ
′
)) is the set of plaquettes in δ \ δ (respectively,

δ
′ \ δ′) that project into [π(Gh′)]. In order to see that (7.137) implies (7.136),

we argue as follows. The extended interface δ may be constructed from δ
′

in the
following manner. First, we remove all the plaquettes from δ

′
that project into

[π(Gh′)], and we fill the gaps by introducing the walls of Gh′ one by one along
the lines of the proof of Lemma 7.127. Then we add the plaquettes of δ \ δ that
project into [π(Gh′)]. During this operation on interfaces, we remove P(δ

′
) and

add P(δ), and the claim follows.

By Lemma 7.125(viii), there exists no vertical plaquette of δ
′ \ δ′ that projects

into [π(Gh′)] and is in addition 1-connected to some wall not belonging to Gh′ .
Moreover, since all the horizontal plaquettes of δ

′
belong to the semi-extended

interface δ′∗, those that project onto [π(Gh′)] are c-plaquettes of δ′∗; hence, such
plaquettes lie in δ′. It follows that P(δ

′
) comprises the vertical plaquettes that are

1-connected with π(Gh′).

It is therefore sufficient to construct an injective map T that maps each vertical
plaquette, 1-connected with π(Gh′), to a different vertical plaquette in P(δ). We
noted in the proof of Lemma 7.128(i) that, for every h0 ∈ π(G′

h), there exists
a horizontal plaquette h1 ∈ δ with π(h1) = h0. For every vertical plaquette

hv 1∼ h0, there exists a translate hv
1

1∼ h1. Suppose hv lies above δ0. If hv
1 ∈ δ \ δ,

we set T (hv) = hv
1. If hv

1 ∈ δ, we consider the (unique) vertical plaquette ‘above’
it, which we denote by hv

2. We repeat this procedure up to the first n for which we
meet a plaquette hv

n ∈ δ \ δ, and we set T (hv) = hv
n . When hv lies below δ0, we

act similarly to find a plaquette T (hv) of δ \ δ beneath hv. The resulting T is as
required.

We turn now to the quantity kδ − kδ′ , and we shall use the notation around
(7.101). Note that exactly two of the components (Si

δ,U
i
δ ) are infinite, and these

may be taken as those with indices 1 and 2. For i = 3, 4, . . . , kδ, let H (Si
δ)

be the set of plaquettes that are dual to edges having exactly one endvertex in
Si
δ . The finite component (Si

δ,U
i
δ ) is in a natural way surrounded by a particular
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wall, namely that to which all the plaquettes of H (Si
δ) belong. This follows from

Lemma 7.125(v, viii) and the facts that

Pi =
{
π
(
h(〈x, x + (0, 0, 1)〉)

)
: x ∈ Si

δ

}

is a 1-connected subset of δ0, and that [π(H (Si
δ))] = [Pi ].

Therefore,

(7.138) kδ − kδ′ = kδ′′ − 2,

where δ′′ = δGh′ . It is elementary by Lemma 7.128(i) that

(7.139) kδ′′ ≤ 2N(Gh′ ) ≤ 285(Gh′).

Finally, we estimate (7.134). Let H1, H2, . . . , Hr be the maximal 0-connected
sets of plaquettes in δ0 \π(Gh′), and let δi (respectively, δ′i ) be the set of plaquettes
of δ (respectively, δ′) that project into [Hi ]. Recalling the construction of an
interface from its standard walls in the proof of Lemma 7.127, there is a natural
one–one correspondence between the plaquettes of δi and those of δ′i , and hence
between the plaquettes in U = ⋃r

i=1 δi and those in U ′ = ⋃r
i=1 δ

′
i . We denote by

T the corresponding bijection mapping an edge e with h(e) ∈ ⋃r
i=1 δi to the edge

T (e) with corresponding dual plaquette in
⋃r

i=1 δ
′
i . Note that T (e) is a vertical

translate of e.

If e is such that h(e) ∈ U ,

G(e, δ, EL; T (e), δ′, EL) ≥ ‖π ′(h(e)), π(Gh′)‖ − 1,

where π ′(h) is the earliest plaquette h′′ of δ0 such that π(h) ⊆ [h′′], and

‖h1, H‖ = min
{‖h1, h2‖ : h2 ∈ H

}
.

Let p > p∗. In the notation of Lemmas 7.104 and 7.118,

∣∣∣∣
∑

e∈E(δ)∩EL

fp(e, δ, L)−
∑

e∈E(δ′)∩EL

fp(e, δ
′, L)

∣∣∣∣

(7.140)

≤
∑

e∈E(U )∩EL

∣∣ fp(e, δ, L)− fp(T (e), δ
′, L)

∣∣

+
∑

e∈E(δ\U )∩EL

fp(e, δ, L)+
∑

e∈E(δ′\U ′)∩EL

fp(e, δ
′, L)

≤ C2eγ
∑

e∈E(U )∩EL

exp
(− γ ‖π ′(h(e)), π(Gh′)‖)+ C1

[
N(Gh′ )+ |π(Gh′)|].
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By Lemma 7.128, the second term of the last line is no greater than C55(Gh′) for
some constant C5. Using the same lemma and the definition of a group of walls,
the first term is no larger than

C2eγ
∑

h∈δ0\π(Gh′)

ρ(h, δ) exp
(
−γ ‖h, π(Gh′)‖

)
(7.141)

≤ C2eγ
∑

h∈δ0\π(Gh′)

‖h, π(Gh′ )‖2 exp
(
−γ ‖h, π(Gh′)‖

)

≤ C2eγ
∑

h′′∈π(Gh′)

∑

h∈δ0\π(Gh′)

‖h, h′′‖2 exp
(
−γ ‖h, h′′‖

)

≤ C6|π(Gh′)| ≤ 13C65(Gh′),

for some constant C6.

The required conditional probability is, by (7.121) and (7.133),

p|δ\δ|−|δ′\δ′|(1 − p)|δ|−|δ′|qkδ−kδ′

× exp

( ∑

e∈E(δ)∩EL

fp(e, δ, L)−
∑

e∈E(δ′)∩EL

fp(e, δ
′, L)

)
,

which, by (7.135)–(7.141), is bounded as required. �

7.11 Localization of interface

The principal theorem states in rough terms the following. Let q ∈ [1,∞) and
let p be sufficiently large. With φL -probability close to 1, the interface 1(ω)
deviates from the flat plane δ0 only through local perturbations. An ant living on
1(ω) is able, with large probability, to visit a positive density of the interface via
horizontal meanderings only.

Let h ∈ δ0. For ω ∈ �D
L , we write h ↔ ∞ if there exists a sequence

h = h0, h1, . . . , hr of plaquettes in δ0 such that:

(a) hi
1∼ hi+1 for i = 0, 1, . . . , r − 1,

(b) each hi is a c-plaquette of 1(ω), and

(c) hr = h(e) for some e /∈ EL .

(7.142) Theorem [139]. Let q ∈ [1,∞). For ǫ > 0, there exists p̂ = p̂(ǫ) < 1
such that, if p > p̂,

(7.143) φL(h ↔ ∞) > 1 − ǫ, h ∈ δ0, L ≥ 1.

Since, following Theorem 7.142, h ∈ δ0 is a c-plaquette with high probability,
the vertex of Z3 immediately beneath (respectively, above) the centre of h is joined
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to ∂−6L (respectively, ∂+6L ) with high probability. Theorem 7.87 follows.
Furthermore, since h ↔ ∞ with high probability, such connections may be found
within the plane of Z3 comprising vertices x with x3 = 0 (respectively, x3 = 1).

The existence of non-translation-invariant (conditioned) random-cluster mea-
sures follows from Theorem 7.142, as in the following sketch argument. For
e ∈ E3, let e± = e ± (0, 0, 1), and let ω ∈ �. If h = h(e) ∈ δ0 is a c-plaquette
of 1 = 1(ω), then e is closed, and h(e±) /∈ 1. The configurations in the two
regions above and below 1 are governed by wired random-cluster measures14.
Therefore, under (7.143),

φL(e is open) ≤ ǫ, φL(e
± is open) ≥ (1 − ǫ)p

p + q(1 − p)
,

by stochastic ordering. Note that these inequalities concern the probabilities of
cylinder events. This implies Theorem 7.89.

Our second main result concerns the vertical displacement of the interface,
and asserts the existence of a geometric bound on the tail of the displacement,
uniformly in L. Let δ ∈ DL , (x1, x2) ∈ Z2, and x = (x1, x2,

1
2 ). We define the

displacement of δ at x by

D(x, δ) = sup
{|z − 1

2 | : (x1, x2, z) ∈ [δ]
}
.

(7.144) Theorem [139]. Let q ∈ [1,∞). There exists p̂ < 1 and α(p) satisfying
α(p) > 0 when p > p̂ such that

φL(D(x,1) ≥ z) ≤ e−zα(p), z ≥ 1, (x1, x2) ∈ Z2, L ≥ 1.

Proof of Theorem 7.142. Let h ∈ δ0. We have not so far specified the ordering of
plaquettes in δ0 used to identify the origin of a standard wall or of a group of walls.
We assume henceforth that this ordering is such that: for h1, h2 ∈ δ0, h1 > h2
implies ‖h, h1‖ ≥ ‖h, h2‖.

For any standard wall S there exists, by Lemma 7.125(vi), a unique maximal
infinite 1-connected component I (S) of δ0 \ π(S). Let ω ∈ �D

L . The interface
1(ω) gives rise to a family of standard walls, and h ↔ ∞ if and only if15, for
each such wall S, h belongs to I (S). Suppose on the contrary that h /∈ I (Sj ) for
some such standard wall Sj , for some j ∈ δ0, belonging in turn to some maximal
admissible group Gh′ ∈ Gh′ of walls of 1, for some h′ ∈ δ0. By Lemma 7.128
and the above ordering of δ0,

135(Gh′) ≥ |π(Gh′)| ≥ |π(Sj )| ≥ ‖h, j‖ + 1 ≥ ‖h, h′‖ + 1.

14We have used Lemma 7.117 here.
15This is a consequence of a standard property of Z

2, see [210, Appendix].
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Let K be as in Lemma 7.131, and p∗, C4 as in Lemma 7.132. Let p̃ be
sufficiently large that p̃ > p∗ and that

λ = λ(p) = − 1
13 log[K C4(1 − p)]

satisfies λ( p̃) > 0. By the last lemma, when p > p̃,

1 − φL(h ↔ ∞) ≤
∑

h′∈δ0

PL
(
5(ζh′) ≥ 1

13 [‖h, h′‖ + 1]
)

≤
∑

h′∈δ0

∑

n≥(‖h,h′‖+1)/13

∑

G∈Gh′ :
5(G)=n

PL(ζh′ = G)

≤
∑

h′∈δ0

∑

n≥(‖h,h′‖+1)/13

K nC3[C4(1 − p)]n

≤ C3

∑

h′∈δ0

exp
(
−λ(‖h, h′‖ + 1)

)
≤ C7e−λ,

for appropriate constants Ci . The claim follows on choosing p sufficiently close
to 1. �

Proof of Theorem 7.144. If D(x,1) ≥ z, there exists r satisfying 1 ≤ r ≤ z such
that the following statement holds. There exist distinct plaquettes h1, h2, . . . , hr ∈
δ0, and maximal admissible groups Ghi , i = 1, 2, . . . , r , of walls of 1 such that:
x = (x1, x2,

1
2 ) lies in the interior of one or more standard wall of each Ghi , and

r∑

i=1

5(Ghi ) ≥ z.

Recall Lemma 7.128(iii). Let mi = ⌊ 1
13 (‖x, hi‖ + 1)⌋ where ‖x, h‖ = ‖x − y‖

and y is the centre of h. By Lemma 7.132, and as in the previous proof,

φL(D(x,1) ≥ z)

≤
∑

h1,h2,...,hr
1≤r≤z

PL

(∑

i

5(ζhi ) ≥ z, 5(ζhi ) ≥ mi ∨ 1

)

=
∑

h1,h2,...,hr
1≤r≤z

∞∑

s=z

∑

z1,z2,...,zr :
z1+z2+···+zr =s

zi≥mi ∨1

PL
(
5(ζhi ) = zi for i = 1, 2, . . . , r

)

≤
∑

hi

∑

s≥z

C8[K C4(1 − p)]s
∑

z1,z2,...,zr :
z1+z2+···+zr =s

zi ≥mi∨1

1,
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for some constant C8. The last summation is the number of ordered partitions
of the integer s into r parts, the i th of which is at least mi ∨ 1. By adapting the
classical solution to this enumeration problem when mi = 1 for all i , we find that

∑

z1,z2,...,zr :
z1+z2+···+zr =s

zi ≥mi∨1

1 ≤
(

s − 1 −∑
i (mi ∨ 1)

r − 1

)
≤ 2s−1−∑

i (mi ∨1) ≤ 2s−1−∑
i mi ,

whence, for some C9,

φL(D(x,1) ≥ z) ≤ C9

∞∑

s=z

[2K C4(1 − p)]s
(∑

h∈δ0

2−⌊‖x,h‖/13⌋
)z

, z ≥ 1.

The right side decays exponentially as z → ∞ when 2K C4(1 − p) is sufficiently
small. �
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Chapter 8

Dynamics of Random-Cluster Models

Summary. One may associate time-dynamics with the random-cluster model
in a variety of natural ways. Amongst Glauber-type processes, the Gibbs
sampler is especially useful and is well suited to the construction of a
‘coupling from the past’ algorithm resulting in a sample with the random-
cluster measure as its (exact) law. In the Swendsen–Wang algorithm, one
interleaves transitions of the random-cluster model and the associated Potts
model. The random-cluster model for different values of p may be coupled
together via a certain Markov process on a more general state space. This
provides a mechanism for studying the ‘equilibrium’ model.

8.1 Time-evolution of the random-cluster model

The random-cluster model as studied so far is random in space but not in time.
There are a variety of ways of introducing time-dynamics into the model, and some
good reasons for so doing. The principal reason is that, in our 3 + 1 dimensional
universe, the time-evolution of processes is fundamental. It entails the concepts
of equilibrium and convergence, of metastability, and of chaos. A rigorous theory
of time-evolution in statistical mechanics is one of the major achievements of
modern probability theory with which the names Dobrushin, Spitzer, and Liggett
are easily associated.

There is an interplay between the time-dynamics of an ergodic system and its
equilibrium measure. The equilibrium is determined by the dynamics, and thus,
in models where the equilibrium may itself be hard of access, the dynamics may
allow an entrance. Such difficulties arise commonly in applications of Bayesian
statistics, in situations where one wishes to sample from a posterior distribution
µ having complex structure. One way of doing this is to construct a Markov
chain with invariant measure µ, and to follow the evolution of this chain as it
approaches equilibrium. The consequent field of ‘Monte Carlo Markov chains’ is
now established as a key area of modern statistics. Similarly, the dynamical theory
of the random-cluster model allows an insight into the equilibrium random-cluster
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[8.1] Time-evolution of the random-cluster model 223

measures. It provides in addition a mechanism for studying the way in which the
system ‘relaxes’ to its equilibrium. We note that the simulation of a Markov chain
can, after some time, result in samples whose distribution is close to the invariant
measure µ. Such samples will in general have laws which differ from µ, and it
can be a difficult theoretical problem to obtain a useful estimate of the distance
between the actual sample and µ.

Consider first the random-clustermodel on a finite graph G with given values of
p and q . Perhaps the most obvious type of dynamic is a so-called Glauber process
in which single edges change their states at rates chosen in such a way that the
equilibrium measure is the random-cluster measure on G. These are the spin-flip
processes which, in the context of the Ising model and related systems, have been
studied in many works including Liggett’s book [235]. There is a difficulty in
constructing such a process on an infinite graph, since the natural speed functions
are not continuous in the product topology.

There is a special Glauber process, termed the ‘Gibbs sampler’ or ‘heat-bath
algorithm’, which we describe in Section 8.3 in discrete time. This is particularly
suited to the exposition in Section 8.4 of the method of ‘coupling from the past’.
This beautiful approach to simulation results in a sample having the exact target
distribution, unlike the approximate samples produced by Monte Carlo Markov
chains. The random-cluster model is a natural application for the method when
q ∈ [1,∞), since φG,p,q is monotonic: the model has ‘smallest’ and ‘largest’
configurations, and the target measure is attained at the moment of coalescence of
the two trajectories beginning respectively at these extremes.

The speed of convergence of Glauber processes has been studied in detail for
Ising and related models, and it turns out that the rate of convergence to the unique
invariant measure can be very slow. This occurs for example if the graph is a large
box of a lattice with, say, + boundary conditions, the initial configuration has −
everywhere in the interior, and the temperature is low. The process remains for
a long time close to the − state; then it senses the boundary, and converges duly
to the + state. There is an alternative dynamic for the Ising (and Potts) model,
termed Swendsen–Wang dynamics, which converges rather faster to the unique
equilibrium so long as the temperature is different from its critical value. This
method proceeds by a progressive coupling of the Ising/Potts system with the
random-cluster model, and by interleaving a Markovian transition for these two
systems in turn. It is described in Section 8.5.

The remaining sections of this chapter are devoted to an exposition of Glauber
dynamics on finite and infinite graphs, implemented in such a way as to highlight
the effect of varying the parameter p. We begin in Section 8.6 with the case of
a finite graph, and proceed in Sections 8.7–8.8 to a process on the infinite lattice
which incorporates in a monotone manner a time-evolving random-cluster process
for every value of p ∈ (0, 1). The unique invariant measure of this composite
Markov process may be viewed as a coupling of random-cluster measures on the
lattice for different values of p. One consequence of this approach is a proof of
the left-continuity of the percolation probability for random-cluster models with
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q ∈ [1,∞), see Theorem 5.16. It leads in Section 8.9 to an open question of
‘simultaneous uniqueness’ of infinite open clusters.

8.2 Glauber dynamics

Let G = (V , E) be a finite graph, with � = {0, 1}E as usual. Let p ∈ (0, 1)
and q ∈ (0,∞). We shall construct a reversible Markov chain in continuous time
having as unique invariant measure the random-cluster measure φp,q on �. A
feature of the Glauber dynamics of this section is that the set of permissible jumps
comprises exactly those in which the state of a single edge, e say, changes. To this
end, we recall first the notation of (1.25). For ω ∈ � and e ∈ E , let ωe and ωe be
the configurations obtained by ‘switching e on’ and ‘switching e off’, respectively.

Let X = (X t : t ≥ 0) be a continuous-time Markov chain, [164, Chapter 6],
on the state space � with generator Q = (qω,ω′ : ω,ω′ ∈ �) satisfying

(8.1) qωe,ωe = p, qωe,ωe = (1 − p)q D(e,ωe), ω ∈ �, e ∈ E,

where D(e, ξ) is the indicator function of the event that the endvertices of e are
joined by no open path of ξ . Equations (8.1) specify the rates at which single
edges are acquired or lost by the present configuration. We set qω,ξ = 0 if ω and
ξ differ on two or more edges, and we choose the diagonal elements qω,ω in such
a way that Q, when viewed as a matrix, has row-sums zero, that is,

qω,ω = −
∑

ξ : ξ 6=ω
qω,ξ , ω ∈ �.

Note that X proceeds by transitions in which single edges change their states, it
is not permissible for two or more edge-states to change simultaneously. We say
in this regard that X proceeds by ‘local moves’.

It is elementary that the so-called ‘detailed balance equations’

(8.2) φp,q(ω)qω,ω′ = φp,q(ω
′)qω′,ω, ω, ω′ ∈ �,

hold, whence X is reversible with respect to the random-cluster measure φp,q . It is
easily seen that the chain is irreducible, and therefore φp,q is the unique invariant
measure of the chain and, in particular, X t ⇒ φp,q as t → ∞, where ‘⇒’ denotes
weak convergence. There are of course many Markov chains with generators
satisfying the detailed balance equations (8.2). It is important only that the ratio
qω,ω′/qω′,ω satisfies

(8.3)
qω,ω′

qω′,ω
= φp,q(ω

′)
φp,q(ω)

, ω, ω′ ∈ �.

We call a Markov chain on � a Glauber process if it proceeds by local moves
and has a generator Q satisfying (8.3), see [235, p. 191]. We have concentrated
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here on continuous-time processes, but Glauber processes may be constructed in
discrete time also.

Two extensions of this dynamical structure which have proved useful are as
follows. The evolution may be specified in terms of a so-called graphical repre-
sentation, constructed via a family of independent Poisson processes. This allows
a natural coupling of the measures φp,q for different p and q . Such couplings are
monotone in p when q ∈ [1,∞). One may similarly couple the unconditional
measure φp,q(·) and the conditioned measure φp,q(· | A). Such couplings permit
probabilistic interpretations of differences of the form φp′,q(B | A) − φp,q(B)
when q ∈ [1,∞), p ≤ p′, and A and B are increasing, and this can be useful in
particular calculations, see [39, 151, 152].

One needs to be more careful when G is an infinite graph. In this case, one
may construct a Glauber process on a finite subgraph H of G, and then pass to the
thermodynamic limit as H ↑ G. Such a limit may be justified when q ∈ [1,∞)

using the positive association of random-cluster measures, [152]. We shall discuss
such limits in Section 8.8 in the more general context of ‘coupled dynamics’. For
a reason which will emerge later, we will give the details for the Gibbs sampler
of Section 8.3, rather than for the Glauber process of (8.1). The latter case may
however be treated in an essentially identical manner.

Note that the generator (8.1) of the Markov chain given above depends on the
random variable D(e, ωe), and that this random variable is ‘non-local’ in the sense
that it is not everywhere continuous in ω. It is this feature of non-locality which
leads to an interesting complication when the graph is infinite, linked in part to the
0/1-infinite-cluster property introduced before Theorem 4.31. Further discussion
may be found in [152, 272].

8.3 Gibbs sampler

Once again we take G = (V , E) to be a finite graph, and we let p ∈ (0, 1) and
q ∈ (0,∞). We consider in this section a special Glauber process termed the
Gibbs sampler (or heat-bath algorithm). This is a Markov chain X on the state
space� = {0, 1}E which proceeds by local moves. Its basic rule is as follows. We
choose an edge e at random, and we set the state of e according to the conditional
measure of ω(e) given the current states of the other edges. This may be done
in either discrete or continuous time, we give the details for continuous time here
and shall return to the case of discrete time in Section 8.4.

Let X = (X t : t ≥ 0) be the Markov chain on the state space� with generator
Q = (qω,ω′;ω,ω′ ∈ �) given by

(8.4)

qωe,ωe = φp,q(ω
e)

φp,q(ωe)+ φp,q(ωe)
,

qωe,ωe = φp,q(ωe)

φp,q(ωe)+ φp,q(ωe)
,
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for ω ∈ � and e ∈ E . Thus, each edge is selected at rate 1, and the state of that
edge is changed according to the correct conditional measure. It is evident that
the detailed balance equations (8.2) hold as before, whence X is reversible with
respect to φp,q . By irreducibility, φp,q is the unique invariant measure of the chain
and thus, in particular, X t ⇒ φp,q as t → ∞.

There is a useful way of formulating the transition rules (8.4). With each edge
e is associated an ‘exponential alarm clock’ that rings at the times of a Poisson
process with intensity 1. Suppose that the alarm clock at e rings at time T , and let
U be a random variable with the uniform distribution on the interval [0, 1]. Let
XT − = ω denote the current state of the process. The state of e jumps to the value
XT (e) given as follows:

(8.5)

when ω(e) = 1, we set XT (e) = 0 if U ≤ φp,q(ωe)

φp,q(ωe)+ φp,q (ωe)
,

when ω(e) = 0, we set XT (e) = 1 if U >
φp,q (ωe)

φp,q(ωe)+ φp,q(ωe)
.

The state of e is unchanged if the appropriate inequality is false. It is easily
checked that this rule generates a Markov chain which satisfies (8.4) and proceeds
by local moves. This version of such a chain has two attractive properties. First,
it is a neat way of implementing the Gibbs sampler in practice since it requires
only two random mechanisms: one that samples edges at random, and a second
that produces uniformly distributed random variables.

A second benefit is that it provides a coupling of a variety of such Markov chains
with different values of p and q , and with different initial states. We explain this
next. Suppose that 0 < p1 ≤ p2 < 1 and q1 ≥ q2 ≥ 1. It is easily checked, as in
Section 3.4, that

(8.6)
φp1,q1(ωe)

φp1,q1(ω
e)+ φp1,q1(ωe)

≥ φp2,q2(ξe)

φp2,q2(ξ
e)+ φp2,q2(ξe)

, ω ≤ ξ.

Let U(e) = (Uj (e) : j = 1, 2, . . . ), e ∈ E , be independent families of inde-
pendent random variables each having the uniform distribution on [0, 1]. Let
X i = (X i

t : t ≥ 0), i = 1, 2, be Markov processes on � constructed as follows.
The process X i evolves according to the above rules, with parameters pi , qi , and
using the value Uj (e) at the j th ring of the alarm clock at the edge e. By (8.5)–
(8.6), if X1

0 ≤ X2
0 , then X1

t ≤ X2
t for all t ≥ 0. We have therefore constructed

a coupling which preserves ordering between processes with different parameters
p, q , and with different initial configurations. The key to this ordering is the fact
that the coupled processes utilize the same variables Uj (e). This discussion will
be developed in the next section.
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8.4 Coupling from the past

When performing simulations of the random-cluster model, one is required to
sample from the probability measure φp,q . The Glauber processes of the last
two sections certainly converge weakly to φp,q as t → ∞, but this is not as
good as having a sample with the exact distribution. The Propp–Wilson approach
to sampling termed ‘coupling from the past’, [282], provides a mechanism for
obtaining samples with the correct distribution, and is in addition especially well
suited to the random-cluster model when q ∈ [1,∞). We describe this here.
Some illustrations of the method in practice may be found in [173, 195, 243].

Let G = (V , E) be a finite graph and let p ∈ (0, 1) and q ∈ (0,∞). We shall
later restrict ourselves to the case q ∈ [1,∞), since this will be important in the
subsequent analysis of the algorithm. We provide ourselves first with a discrete-
time reversible Markov chain Z = (Zn : n = 0, 1, 2, . . . ) with state space � and
having unique invariant measure φp,q . The discrete-time Gibbs sampler provides
a suitable example of such a chain, and proceeds as follows, see Section 8.3
and [175]. At each stage, we pick a random edge e, chosen uniformly from E
and independently of all earlier choices, and we make e open with the correct
conditional probability, given the configuration on the other edges. This Markov
chain proceeds by local moves, and has transition matrix5 = (πω,ω′ : ω,ω′ ∈ �)
satisfying

πωe,ωe = 1

|E | · φp,q(ω
e)

φp,q (ωe)+ φp,q(ωe)
,

πωe,ωe = 1

|E | · φp,q(ωe)

φp,q (ωe)+ φp,q(ωe)
,

for ω ∈ � and e ∈ E . A neat way to implement this is to follow the recipe of
the last section. Suppose that Zn = ω. Let en be a random edge of E , and let
Un be uniformly distributed on the interval [0, 1], these variables being chosen
independently of all earlier choices. We obtain Zn+1 by retaining the states of all
edges except possibly that of en , and by setting

(8.7) Zn+1(en) = 0 if and only if Un ≤ φp,q (ωen )

φp,q(ωen )+ φp,q(ωen )
.

The evolution of the chain is determined by the sequences en , Un , and the initial
state Z0. One may make this construction explicit by writing

Zn+1 = ψ(Zn, en,Un)

for some deterministic function ψ : �× E × [0, 1] → �.

We highlight a certain monotonicity of ψ , valid when q ∈ [1,∞). Fix e ∈ E
and u ∈ [0, 1]. The configuration9ω = ψ(ω, e, u), viewed as a function of ω, is
constant on edges f 6= e, and takes values 0, 1 on e with

9ω(e) = 0 if and only if u ≤ φp,q(ωe)

φp,q (ωe)+ φp,q(ωe)
, ω ∈ �.

c©Springer-Verlag 2006



228 Dynamics of Random-Cluster Models [8.4]

As in (8.6), when q ∈ [1,∞),

φp,q(ωe)

φp,q(ωe)+ φp,q(ωe)
≥ φp,q (ξe)

φp,q(ξ e)+ φp,q(ξe)
, ω ≤ ξ,

implying that 9ω(e) ≤ 9ξ (e), and hence

(8.8) ψ(ω, e, u) ≤ ψ(ξ, e, u), ω ≤ ξ.

Let Zν = (Zνn : n = 0, 1, 2, . . . ) be the Markov chain constructed via (8.7) with
initial state Z0 = ν. By (8.8),

(8.9) Zωn ≤ Z ξn for all n, if ω ≤ ξ and q ∈ [1,∞),

which is to say that the coupling is monotone in the initial state: if one such chain
starts below another, then it remains below for all time.

Instead of running the chain Z ‘forwards’ in time in order to approximate the
invariant measure φp,q , we shall run it ‘backwards’ in time in a certain special
manner which results in a sample with the exact target distribution. Let W =
(W (ω) : ω ∈ �) be a vector of random variables such that each W (ω) has the law
of Z1 conditional on Z0 = ω,

P(W (ω) = ξ) = πω,ξ , ω, ξ ∈ �.

Following the scheme described above, we may take W (ω) = ψ(ω, e,U) where
e and U are chosen uniformly at random. Let W−m , m = 1, 2, . . . , be in-
dependent random vectors distributed as W , that is, W−m(·) = ψ(·, em ,Um)

where the set {(em,Um) : m = 1, 2, . . . } comprises independent pairs of inde-
pendent uniformly-distributed random variables. We construct a sequence Y−n ,
n = 1, 2, . . . , of random maps from � to � by the following inductive proce-
dure. First, we define Y0 : � → � to be the identity mapping. Having found
Y0,Y−1,Y−2, . . . ,Y−m for m = 0, 1, 2, . . . , we define

Y−m−1(ω) = Y−m(W−m−1(ω)).

That is, Y−m−1(ω) is obtained from ω by passing in one step to W−m−1(ω), and
then applying Y−m to this new state. The exact dependence structure of this scheme
is an important ingredient of its analysis.

We terminate the process Y at the earliest time M of coalescence,

(8.10) M = min
{
m : Y−m(·) is a constant function

}
.

By the definition of M , the value Y−M = Y−M (ω) does not depend on the choice
of ω. The process of coalescence is illustrated in Figure 8.1. We prove next that
Y−M has law φp,q .
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1

0

m = −6 −5 −4 −3 −2 −1 0

Figure 8.1. An illustration of ‘coupling from the past’ in a situation where the intermediate
states are sandwiched by the extreme states. There are five states in this illustration. The heavy
lines map the evolution of the smallest (0) and largest (1) configurations, and the dotted lines
show the evolution of states that are sandwiched between these extremes.

(8.11) Theorem [282]. The random variable M is almost-surely finite, and

P(Y−M = ω) = φp,q(ω), ω ∈ �.

The above procedure may seem unwieldy in practice, since � will often be
large, and it appears necessary to keep track in (8.10) of the Y−m(ω) for every
ω ∈ �. The reality is simpler at least when q ∈ [1,∞), which we henceforth
assume. By the monotonicity (8.9) of the coupling when q ∈ [1,∞), it suffices
to follow the trajectories of the ‘smallest’ and ‘largest’ configurations, namely
those beginning, respectively, with every edge closed and with every edge open.
The processes starting at intermediate configurations remain sandwiched between
these extremal processes at all future times. Thus one may define M instead by

(8.12) M = min
{
m : Y−m(0) = Y−m(1)

}
,

where 0 and 1 denote the vectors of zeros and ones as before. This brings a
substantial computational advantage, since one is required to calculate only the
Y−m(b) for b = 0, 1, and to find the earliest m at which they are equal.

We make two notes prior to the proof. In classical Monte Carlo experiments,
the time-n measure converges to the target measure as n → ∞. An estimate of the
rate of convergence is necessary in order to know when to cease the process. Such
estimates are not central to coupling-from-the-past, since this method results, after
a finite (random) time, in a sample having the target measure as its exact law. That
said, the method of proof implies a geometric rate of convergence. Secondly, the
implementation of the method is greatly simplified by the monotonicity1.

Proof of Theorem 8.11. We follow [282]. Let q ∈ (0,∞). By elementary prop-
erties of the Gibbs sampler (8.7), we may choose L such that

P(Y−L is a constant function) > 0.

1The method may be implemented successfully in some situations where there is no such
monotonicity, see [243, Chapter 32] for example.
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We extend the notation prior to (8.10) as follows. Let (Y−s,−t : 0 ≤ t ≤ s) be
functions mapping � to � given by:

(i) Y−t,−t is the identity map, for t = 0, 1, 2, . . . ,

(ii) Y−s,−t (ω) = Y−s+1,−t (W−s(ω)), for t = 0, 1, . . . , s − 1.

The map Y−s,−t depends only on the set {(em,Um,W−m ) : t < m ≤ s} of
random variables. Therefore, the maps Y−kL ,−(k−1)L , k = 1, 2, . . . , are inde-
pendent and identically distributed. Since each is a constant function with some
fixed positive probability, there exists almost surely a (random) integer K such
that Y−K L,−(K−1)L is a constant function. It follows that M ≤ K L, whence
P(M < ∞) = 1.

Let C be chosen randomly from � with law φp,q , and write Cm = Y−m(C).
Since the law of C is the unique invariant measure φp,q of the Gibbs sampler, Cm

has law φp,q for all m = 0, 1, 2, . . . . By the definition of M ,

Y−M = Cm on the event {M ≤ m}.

For ω ∈ � and m = 0, 1, 2, . . . ,

P(Y−M = ω) = P(Y−M = ω, M ≤ m)+ P(Y−M = ω, M > m)

= P(Cm = ω, M ≤ m)+ P(Y−M = ω, M > m)

≤ φp,q(ω)+ P(M > m),

and similarly,

φp,q(ω) = P(Cm = ω) ≤ P(Y−M = ω)+ P(M > m).

We combine these two inequalities to obtain that

∣∣P(Y−M = ω)− φp,q(ω)
∣∣ ≤ P(M > m), ω ∈ �,

and we let m → ∞ to obtain the result. �

8.5 Swendsen–Wang dynamics

It is a major target of statistical physics to understand the time-evolution of dis-
ordered systems, and a prime example lies in the study of the Ising model. A
multiplicity of types of dynamics have been proposed. The majority of these
share a property of ‘locality’ in the sense that the evolution involves changes
to the states of vertices in close proximity to one another, perhaps single spin-
flips or spin-exchanges. The state space is generally large, of size 2N where N
is the number of vertices, and the Hamiltonian may have complicated structure.
When subjected to ‘local dynamics’, the process may approach equilibrium quite
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slowly2. Other forms of dynamics are ‘non-local’ in that they permit large moves
around the state space relatively unconstrained by neighbourly relations, and such
processes can approach equilibrium faster. The random-cluster model has played
a role in the development of a simple but attractive system of non-local dynamics
proposed by Swendsen and Wang [310] and described as follows for the Potts
model with q states.

As usual, G = (V , E) is a finite graph, typically a large box in Zd , and we
let q ∈ {2, 3, . . . }. Consider a q-state Potts model on G, with state space 6 =
{1, 2, . . . , q}V and parameter β ∈ (0,∞). The corresponding random-cluster
model has state space � = {0, 1}E and parameter p = 1 − e−β . The Swendsen–
Wang evolution for the Potts model is as follows.

Suppose that, at some time n, we have obtained a configuration σn ∈ 6. We
construct σn+1 as follows.

I. Let ωn ∈ � be given by: for all e = 〈x, y〉 ∈ E ,

if σn(x) 6= σn(y), let ωn(e) = 0,

if σn(x) = σn(y), let ωn(e) =
{

1 with probability p,

0 otherwise,

different edges receiving independent states. The edge-configuration ωn is
carried forward to the next stage.

II. To each cluster C of the graph (V , η(ωn)) we assign an integer chosen
uniformly at random from the set {1, 2, . . . , q}, different clusters receiving
independent labels. Let σn+1(x) be the value thus assigned to the cluster
containing the vertex x .

(8.13) Theorem [310]. The Markov chain σ = (σn : n = 0, 1, 2, . . . ) has as
unique invariant measure the q-state Potts measure on6 with parameter β.

Proof. There is a strictly positive probability that ωn(e) = 0 for all e ∈ E .
Therefore, P(σn+1 = σ | σn = σ ′) > 0 for all σ, σ ′ ∈ 6, so that the chain is
irreducible. The invariance of φp,q is a consequence of Theorem 1.13. �

The Swendsen–Wang algorithm generates a Markov chain (σn : n = 0, 1, . . . ).
It is generally the case that this chain converges to the equilibrium Potts measure
faster than time-evolutions defined via local dynamics. This is especially evident
in the ‘high β’ (or ‘low temperature’) phase, for the following reason. Consider
for example the simulation of an Ising model on a finite box with free boundary
conditions, and suppose that the initial state is +1 at all vertices. If β is large, local
dynamics result in samples that remain close to the ‘+ phase’ for a very long time.
Only after a long delay will the process achieve an average magnetization close
to 0. Swendsen–Wang dynamics, on the other hand, can achieve large jumps in
average magnetization even in a single step, since the spin allocated to a given large

2See [249, 292] for accounts of recent work of relevance.
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cluster of the corresponding random-cluster model is equally likely to be either
of the two possibilities. A rigorous analysis of rates of convergence is however
incomplete. It turns out that, at the critical point, Swendsen–Wang dynamics
approach equilibrium only slowly, [64]. A further discussion may be found in
[136].

Algorithms of Swendsen–Wang type have been described for other statistical
mechanical models with graphical representations of random-cluster-type,see [93,
94]. Related work may be found in [322].

8.6 Coupled dynamics on a finite graph

Let G = (V , E) be a graph, possible infinite. Associated with G there is a family
φG,p,q of random-cluster measures indexed by the parameters p ∈ [0, 1] and
q ∈ (0,∞); we defer a discussion of boundary conditions to the next section.
It has proved fruitful to couple these measures, for fixed q , by finding a family
(Zq(e) : e ∈ E) of random variables taking values in [0, 1] whose ‘level-sets’
are governed by the φG,p,q . It might be the case for example that, for any given
p ∈ (0, 1), the configuration (Zp,q(e) : e ∈ E) given by

Zp,q(e) =
{

1 if Zq(e) ≤ p,

0 otherwise,

has law φG,p,q . Such a coupling has been valuable in the study of percolation
theory (that is, when q = 1), where one may simply take a family of independent
random variables Z(e) with the uniform distribution on the interval [0, 1], see
[154, 178]. The picture for random-cluster measures is more complex owing
to the dependence structure of the process. Such a coupling has been explored
in detail in [152] but we choose here to follow a minor variant which might be
termed a ‘coupled Gibbs sampler’. We shall assume for the moment that G is
finite, returning in the next two sections to the case of an infinite graph G.

Let G = (V , E) be finite, and let q ∈ [1,∞). Let X = [0, 1]E , and let B be
the Borel σ -field of subsets of X , that is, the σ -field generated by the open subsets.
We shall construct a Markov process Z = (Z t : t ≥ 0) on the state space X , and
we do this via a so-called graphical construction. We shall consider the states
of edges chosen at random as time passes, and to this end we provide ourselves
with a family of independent Poisson processes termed ‘alarm clocks’. For each
arrival-time of these processes, we shall require a uniformly distributed random
variable.

(a) For each edge e ∈ E , let A(e) = (An(e) : n = 1, 2, . . . ) be the (increasing)
sequence of arrival times of a Poisson process with intensity 1.

(b) Let (αn(e) : e ∈ E, n = 1, 2, . . . ) be a family of independent random
variables each of which is uniformly distributed on the interval [0, 1].
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We write P for the appropriate probability measure3.

Let e = 〈x, y〉, and let Pe be the set of paths in G having endvertices x and y
but not using the edge e. Let F : E × X → [0, 1] be given by

(8.14) F(e, ν) = inf
π∈Pe

max
f ∈π

ν( f ), e ∈ E, ν ∈ X,

where the infimum of the empty set is taken to be 1. The maximum is taken over
all edges f in the path π , and the infimum is taken over the finite set Pe; we shall
later consider situations in which Pe is infinite.

The state of the edge e may jump only at the times An(e). When it jumps,
it takes a new value which depends on the states of the other edges, and also on
the value of the corresponding αn(e). We describe next the value to which it will
jump.

Suppose that the Poisson alarm clock at edge e rings at time T = AN (e), with
corresponding uniform random variable α = αN (e). Let ν ∈ X , let the current
state of the process be ZT − = ν, and write F = F(e, ν). We define ZT by

(8.15) ZT ( f ) =
{
ν( f ) if f 6= e,

ρ(e) if f = e,

where the new value ρ(e) is given by

(8.16) ρ(e) =





α if α > F,

F if
F

F + q(1 − F)
< α ≤ F,

qα

1 − α + qα
if α ≤ F

F + q(1 − F)
.

Since q ∈ [1,∞),
F

F + q(1 − F)
≤ F.

Here is a more formal definition of the process. Let C(X) be the space of
continuous real-valued functions on X . The generator S of the process is the
mapping S : C(X) → C(X) given by

(8.17) Sg(ν) =
∑

e∈E

∫ 1

0
[g(νu

e )− g(ν)] d He,ν(u), g ∈ C(X), ν ∈ X.

Here, the configuration νu
e ∈ X is given by

νu
e ( f ) =

{
ν( f ) if f 6= e,

u if f = e,

3In order to avoid certain standard difficulties later, we shall assume that the An(e) are distinct,
and that, for each e ∈ E , the set {An(e) : n = 1, 2, . . . } has no accumulation points. We adjust
the probability space accordingly.
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and, by (8.16), the distribution function He,ν(·) : [0, 1] → [0, 1] satisfies

(8.18) He,ν(u) =
{

u if F ≤ u ≤ 1,
u

u + q(1 − u)
if 0 ≤ u < F.

Equation (8.17) is to be interpreted as follows. Suppose the alarm clock at e rings
at time T , and the current state of the process is ν. The local state at e jumps to
a new value ρ(e) which (conditional on ν) does not depend on its previous value
and has distribution function He,ν.

There follows the main theorem of this section. The proof is based on that to
be found in [152] and is deferred until later in the section.

(8.19) Theorem. The Markov process Z = (Z t : t ≥ 0) has a unique invariant
measure µ and, in particular, Z t ⇒ µ as t → ∞.

The purpose of the above construction is to achieve a level-set representation
of evolving random-cluster processes on G. Let p ∈ [0, 1], and recall that � =
{0, 1}E . We define two ‘projection operators’ 5p,5p : X → � by

5pν(e) =
{

1 if ν(e) ≤ p,

0 if ν(e) > p,
e ∈ E, ν ∈ X,(8.20)

5pν(e) =
{

1 if ν(e) < p,

0 if ν(e) ≥ p,
e ∈ E, ν ∈ X,(8.21)

and point out that

5pν ≤ 5pν, p ∈ [0, 1], ν ∈ X,(8.22)

5p1ν1 ≤ 5p2ν2, 5p1ν1 ≤ 5p2ν2, p1 ≤ p2, ν1 ≥ ν2.(8.23)

In writing ν1 ≥ ν2, we are using the partial order ≥ on X given by: ν1 ≥ ν2 if and
only if ν1(e) ≥ ν2(e) for all e ∈ E . A source of possible confusion later is that
fact that 5pν and 5pν are decreasing functions of ν.

We concentrate next on the projected processes 5p Z = (5p Z t : t ≥ 0) and
5p Z = (5p Z t : t ≥ 0). An important difference between these two processes
will become clear in the next section when we introduce boundary conditions.

(8.24) Theorem [152]. Let p ∈ (0, 1).

(a) The process 5p Z = (5p Z t : t ≥ 0) is a Markov chain on the state space
� with unique invariant distribution φp,q , and it is reversible with respect
to φp,q . Furthermore,

5p1 Z t ≤ 5p2 Z t for all t , if p1 ≤ p2. (8.25)

(b) Statement (a) is valid with the operator5p replaced throughout by 5p .

This theorem provides a coupling of the random-cluster measures φp,q for fixed
q ∈ [1,∞) and varying p. We make two notes concerning the parameter q . First,
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the above construction may be extended in order to couple together random-cluster
processes with different values of p and different values of q ∈ [1,∞). Secondly,
some of the arguments of this section may be re-cast in the ‘non-FKG’ case when
q ∈ (0, 1).

It is noted that the level-set processes are reversible, unlike the process Z .

Proof of Theorem 8.24. (a) We begin with a calculation involving the function F
defined in (8.14). Let e ∈ E , ν ∈ X , and let γ = 5pν ∈ �. We claim that

(8.26) F(e, ν) > p if and only if γ = 5pν ∈ De,

where De ⊆ � is the set of configurations in which the endvertices of e are
joined by no open path of E \ {e}. This may be seen from (8.14) by noting that:
F(e, ν) > p if and only if, for every π ∈ Pe, there exists an edge f ∈ π such
that ν( f ) > p.

The projected process 5p Z changes its value only when Z changes its value.
Assume that Z t = ν and 5p Z t = 5pν = γ . Let γ ′ ∈ �. By the discussion
around (8.16)–(8.18), the rate at which 5p Z jumps subsequently to the new state
γ ′ depends only on:

(i) the arrival-times of the Poisson processes A(e) subsequent to t ,

(ii) the associated values of the random variables α, and

(iii) the set Fν = {e ∈ E : F(e, ν) > p} of edges.

By (8.26), Fν = {e ∈ E : γ ∈ De}, which depends on γ only and not further on
ν. It follows that 5p Z = (5p Z t : t ≥ 0) is a time-homogeneous Markov chain
on �. This argument is expanded in the following computation of the jump rates.

Let Q = (qγ,ω : γ, ω ∈ �) denote the generator of the process 5p Z . Since Z
proceeds by local moves,

qγ,ω = 0 if H (γ, ω) ≥ 2,

where H denotes Hamming distance. It remains to calculate the terms qγe,γ e and
qγ e,γe for γ ∈ � and e ∈ E . Consider first qγe,γ e . By (8.17),

P
(
5p Z t+h = γ e

∣∣5p Z t = γe
)

= h He,ν(p)+ o(h) as h ↓ 0,

whence, by (8.18) and (8.26),

(8.27) qγe,γ e = He,ν(p) =
{ p

p + q(1 − p)
if γ ∈ De,

p if γ /∈ De.

By a similar argument,

(8.28) qγ e,γe = 1 − He,ν(p) =





q(1 − p)

p + q(1 − p)
if γ ∈ De,

1 − p if γ /∈ De.
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Therefore,

qγe,γ e

qγ e,γe

= He,ν(p)

1 − He,ν(p)
=





p

q(1 − p)
if γ ∈ De,

p

1 − p
if γ /∈ De,

(8.29)

= φp,q (γ
e)

φp,q(γe)
.

It follows as in (8.3) that the detailed balance equations hold, and the process5p Z
is reversible with respect to φp,q . That φp,q is the unique invariant measure is a
consequence of the irreducibility of the chain. Inequality (8.25) follows by (8.23).

(b) A similar argument is valid with 5p replaced by 5p , and (8.26) by

(8.30) F(e, ν) ≥ p if and only if γ = 5pν ∈ De,

and on replacing He,ν(p) by

He,ν(p−) = lim
u↑p

He,ν(u)

in the calculations (8.27)–(8.29). �

We turn now to the proof of Theorem 8.19, which is preceeded by a lemma.
The product space X = [0, 1]E is equipped with the Borel σ -field B. An event
A ∈ B is called increasing if it has the property that ν′ ∈ A whenever there exists
ν ∈ A such that ν ≤ ν′, and it is called decreasing if its complement is increasing.
For ζ ∈ X , let Z ζ = (Z ζt : t ≥ 0) denote the above Markov process with initial
state Z0 = ζ .

(8.31) Lemma.

(a) If ζ ≤ ν then Z ζt ≤ Zνt for all t .

(b) Let E be an increasing event in B. The function gb(t) = P(Zb
t ∈ E) is

non-decreasing in t if b = 0, and is non-increasing if b = 1.

Proof of Lemma 8.31. (a) This follows from the transition rules (8.15)–(8.16)
together with the fact that F(e, ν) is non-decreasing in ν.

(b) Using conditional expectation,

gb(s + t) = P
{
P(Zb

s+t ∈ E | Zb
s )
}
, b = 0, 1.

By the time-homogeneity of the processes (A, α), the fact that 0 ≤ Zb
s ≤ 1, and

part (a),

gb(s + t)

{ ≥ gb(t) if b = 0,

≤ gb(t) if b = 1.
�
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Proof of Theorem 8.19. In order to prove the existence of a unique invariant
probability measure µ, we shall prove that Z t converges weakly as t → ∞, and
we shall write µ for the weak limit. By Lemma 8.31(a),

(8.32) Z0
t ≤ Zνt ≤ Z1

t , t ≥ 0, ν ∈ X.

By Lemma 8.31(b), Zb
t is stochastically increasing in t if b = 0, and stochastically

decreasing if b = 1. It therefore suffices to show that

(8.33) Z1
t − Z0

t ⇒ 0 as t → ∞.

Let ǫ > 0, and write E = {k/N : k = 1, 2, . . . , N − 1} where N is a positive
integer satisfying N−1 < ǫ. Then

P
(|Z1

t (e)− Z0
t (e)| > ǫ for some e ∈ E

) ≤
∑

e∈E

∑

p∈E

P
(
Z0

t (e) < p < Z1
t (e)

)
.

Now,

P
(
Z0

t (e) < p < Z1
t (e)

)
≤ P(5p Z0

t (e) = 1)− P(5p Z1
t (e) = 1)

→ 0 as t → ∞

by the ergodicity of the Markov chain 5p Z , see Theorem 8.24. �

8.7 Box dynamics with boundary conditions

In the last section, we constructed a Markov process Z on the state space X =
[0, 1]E for a finite edge-set E . In moving to an infinite graph, we shall require a
discussion of boundary conditions. Let d ≥ 1 and X = [0, 1]E

d
, a compact metric

space when equipped with the Borel σ -field B generated by the open sets.

Since our target is to study processes on the lattice Ld = (Zd ,Ed ), we shall
assume for convenience that our finite graphs are boxes in this lattice. Let 3 be
such a box. For ζ ∈ X , let

(8.34) X ζ3 =
{
ν ∈ X : ν(e) = ζ(e) for e /∈ E3

}
.

As in (8.14), we define F : Ed × X → R by

(8.35) F(e, ν) = inf
π∈Pe

max
f ∈π

ν( f ), e = 〈x, y〉 ∈ Ed , ν ∈ X,

where Pe is the (infinite) set of all (finite) paths of Ed \ {e} that join x to y.
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Let q ∈ [1,∞). We provide ourselves4 with a family of independent Poisson
processes A(e) = (An(e) : n = 1, 2, . . . ), e ∈ Ed , with intensity 1, and an
associated collection (αn(e) : e ∈ Ed , n = 1, 2, . . . ) of independent random
variables with the uniform distribution on [0, 1]. Let ζ ∈ X . The above variables
may be used as in the last section to construct a family of coupled Markov processes
Z ζ3 = (Z ζ3,t : t ≥ 0) taking values in X ζ3 and indexed by the pair 3, ζ . The

process Z ζ3 has generator Sζ3 given by (8.17)–(8.18) for ν ∈ X ζ3 and with F =
F(e, ν) given in (8.35).

As in Lemma 8.31(a),

(8.36) Z ζ3,t ≤ Zν3,t , ζ ≤ ν, t ≥ 0.

For ν, ζ ∈ X and a box3, we denote by (ν, ζ ) [= (ν, ζ )3 ∈ X] the composite
configuration that agrees with ν on E3 and with ζ off E3. We sometimes suppress
the subscript 3 when using this notation. For example, the expression Z (ν,ζ )1,t
denotes the value of the process on the box1 at time t , with initial value (ν, ζ )1.
Finally, with 5p , 5p given as in (8.20)–(8.21), we write ϒ p

3 for the set of all
ζ ∈ X with the property that 5p[(1, ζ )3] has at most one infinite cluster.

(8.37) Theorem. Let ζ ∈ X and let 3 be a box of Ld . The Markov process
Z (ν,ζ )3 = (Z (ν,ζ )3,t : t ≥ 0), viewed as a process on (X,B), has a unique invariant

measure µζ3 and, in particular, Z (ν,ζ )3,t ⇒ µ
ζ
3 as t → ∞.

We turn as before to the projected processes5p Z ζ3 and5p Z ζ3. A complication
arises in the case of the first of these, depending on whether or not ζ ∈ ϒ p

3.

(8.38) Theorem. Let p ∈ (0, 1), ζ ∈ X, and let 3 be a box of Ld .

(a) The process 5p Z ζ3 = (5p Z ζ3,t : t ≥ 0) is a Markov chain on the state

space5p X ζ3 with unique invariant measure φ
5pζ

3,p,q , and it is reversible with
respect to this measure. Furthermore,

5p1 Z ζ3,t ≤ 5p2 Z ζ3,t for t ≥ 0, if p1 ≤ p2. (8.39)

(b) Assume that ζ ∈ ϒ p
3. Statement (a) is valid with the operator5p replaced

throughout by 5p .

We note two further facts for future use. First, there is a sample-path mono-
tonicity of the graphical representation which will enable us to pass to the limit of
the processes Z ζ3 as3 ↑ Zd . Secondly, if ν and ζ are members of X that are close

to one another, then so are Z (ν,b)3,t and Z (ζ,b)3,t , for b ∈ {0, 1}. These observations
are made formal as follows.

4We make the same assumption as in the footnote on page 233.
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(8.40) Lemma.
(a) Let 3 and 1 be boxes satisfying 3 ⊆ 1. Then:

Z (ζ,0)3,t ≤ Z (ζ,0)1,t , ζ ∈ X, t ≥ 0, (8.41)

Z (ζ,1)3,t ≥ Z (ζ,1)1,t , ζ ∈ X, t ≥ 0. (8.42)

(b) Let 3 be a box, b ∈ {0, 1}, and ν, ζ ∈ X. Then:

∣∣Z (ν,b)3,t (e)− Z (ζ,b)3,t (e)
∣∣ ≤ max

f ∈E3

{
|ν( f )− ζ( f )|

}
, t ≥ 0, e ∈ E3.

(8.43)

Proof of Theorem 8.38. (a) The projected process (5p Z ζ3,t : t ≥ 0) takes values

in the state space �
5pζ

3 = 5p X ζ3. The proof now follows that of Theorem
8.24(b), the key observation being that (8.30) remains valid with De the set of all
configurations in� = {0, 1}E

d
such that the endvertices of e are joined by no open

path of Ed \ {e}.
(b) The claim will follow as in Theorem 8.24(a) once we have proved (8.26) for
ν ∈ ϒ p

3. We are thus required to show that:

(8.44) for ν ∈ ϒ p
3, F(e, ν) > p if and only if γ = 5pν ∈ De.

Let e ∈ E3 and ν ∈ X . If F(e, ν) > p, then 5pν ∈ De. Suppose conversely
that ν ∈ ϒ

p
3 and 5pν ∈ De. By the definition (8.20) of 5pν, the function

µ : Pe → [0, 1] given by

µ(π) = max
f ∈π

ν( f ), π ∈ Pe,

satisfies
µ(π) > p, π ∈ Pe.

By (8.35), F(e, ν) ≥ p. Suppose F(e, ν) = p. There exists an infinite sequence
(πn : n = 1, 2, . . . ) of distinct paths in Pe such that µ(πn) > p and µ(πn) → p
as n → ∞. Let E be the set of edges belonging to infinitely many of the paths
πn . Now,

ν( f ) ≤ lim
n→∞µ(πn) = p, f ∈ E ,

so that 5pν( f ) = 1 for f ∈ E .

Write e = 〈x, y〉, and let C(x) (respectively, C(y)) denote the set of vertices of
Ld joined to x (respectively, y) by paths comprising edges f with 5pν( f ) = 1.
By a counting argument, we have that x (respectively, y) lies in some infinite path
of E , and therefore |C(x)| = |C(y)| = ∞. Since ν ∈ ϒ p

3, 5pν has at most one
infinite cluster. Therefore, C(x) = C(y), whence 5pν /∈ De, a contradiction.
This proves that F(e, ν) > p, as required for (8.44). �
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Proof of Theorem 8.37. This follows the proof of Theorem 8.19, with Theorem
8.38 used in place of Theorem 8.24. �

Proof of Lemma 8.40. (a) We shall consider (8.41), inequality (8.42) being exactly
analogous. Certainly,

0 = Z (ζ,0)3,t (e) ≤ Z (ζ,0)1,t (e), e ∈ Ed \ E3.

Let e ∈ E3, and note that Z (ζ,0)
3,0 (e) = Z (ζ,0)

1,0 (e), since 3 ⊆ 1. It suffices to

check that, at each ring of the alarm clock on the edge e, the process Z (ζ,0)3,· (e)

cannot jump above Z (ζ,0)1,· (e). As in Lemma 8.31(a), this is a consequence of the
transition rules (8.15)–(8.16) on noting that F(e, ν) is non-decreasing in ν.

(b) Let b ∈ {0, 1} and ν, ζ ∈ X . It suffices to show that

(8.45) Mt = max
f ∈E3

{∣∣Z (ν,b)3,t ( f )− Z (ζ,b)3,t ( f )
∣∣}

is a non-increasing function of t . Now, Mt is constant except when an alarm clock
rings. Suppose that AN (e) = T for some N ≥ 1 and e ∈ E3. It is enough to
show that

(8.46)
∣∣Z (ν,b)3,T (e)− Z (ζ,b)3,T (e)

∣∣ ≤ MT −.

By (8.35),
∣∣F(e, ξ)− F(e, ξ ′)

∣∣ ≤ max
f ∈Ed

{
|ξ( f )− ξ ′( f )|

}
, ξ, ξ ′ ∈ X,

and (8.46) follows by (8.16). �

8.8 Coupled dynamics on the infinite lattice

The reader is reminded of the assumption that q ∈ [1,∞). We have constructed
two Markov processes Zb

3 = (Zb
3,t : t ≥ 0) on the state space X = [0, 1]E

d
,

indexed by the finite box 3 and the boundary condition b ∈ {0, 1}. Similar pro-
cesses may be constructed on the infinite lattice Ld by passing to limits ‘pathwise’,
and exploiting the monotonicity in 3 of the processes Zb

3.

The following (monotone) limits exist by Lemma 8.40,

(8.47) Z (ζ,0)t = lim
3↑Zd

Z (ζ,0)3,t , Z (ζ,1)t = lim
3↑Zd

Z (ζ,1)3,t ,

and satisfy

(8.48) Z (ζ,0)t ≤ Z (ζ,1)t , ζ ∈ X, t ≥ 0.
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We write in particular

(8.49) Z0
t = Z (0,0)t , Z1

t = Z (1,1)t .

It is proved in this section that the processes Zb = (Zb
t : t ≥ 0), b = 0, 1,

are Markovian, and that their level-set invariant measures are the free and wired
random-cluster measures φb

p,q . The arguments of this section are those of [152],
where closely related results are obtained.

The state space X = [0, 1]E
d

is a compact metric space equipped with the Borel
σ -field B generated by the open sets. Let B(X) denote the space of bounded
measurable functions from X to R, and C(X) the space of continuous functions.

We now introduce two transition functions and semigroups, as follows5. For
b ∈ {0, 1} and t ≥ 0, let

(8.50) Pb
t (ζ, A) = P(Z (ζ,b)t ∈ A), ζ ∈ X, A ∈ B,

and let Sb
t : B(X) → B(X) be given by

(8.51) Sb
t g(ζ ) = P(g(Z (ζ,b)t )), ζ ∈ X, g ∈ B(X).

(8.52) Theorem. Let b ∈ {0, 1}. The process Zb = (Zb
t : t ≥ 0) is a Markov

process with Markov transition functions (Pb
t : t ≥ 0).

(8.53) Theorem. There exists a translation-invariant probability measure µ on
(X,B) that is the unique invariant measure of each of the two processes Z0, Z1.
In particular, Z 0

t , Z1
t ⇒ µ as t → ∞.

By the last theorem and monotonicity (see (8.36) and (8.47)),

(8.54) Z (ζ,b)t ⇒ µ as t → ∞, ζ ∈ X, b = 0, 1.

The ‘level-set processes’ of Z0
t and Z1

t are given as follows. Let p ∈ (0, 1), and
write

(8.55) L0
p,t = 5p Z1

t , L1
p,t = 5p Z0

t , t ≥ 0,

where the projections5p and5p are defined in (8.20)–(8.21). Note the apparent
reversal of boundary conditions in (8.55).

5A possible alternative to the methodology of this section might be the ‘martingale method’
described in [186, 235]. For general accounts of the theory of Markov processes, the reader may
consult the books [51, 113, 235, 299].

c©Springer-Verlag 2006



242 Dynamics of Random-Cluster Models [8.8]

(8.56) Theorem.
(a) Let b ∈ {0, 1} and p ∈ (0, 1). The process Lb

p is a Markov process on the

state space � = {0, 1}E
d
, with as unique invariant measure the random-

cluster measure φb
p,q on Ld . The process Lb

p is reversible with respect to

φb
p,q .

(b) The measures φb
p,q , b = 0, 1, are ‘level-set’ measures of the invariant mea-

sure µ of Theorem 8.53 in the sense that, for A ∈ F ,

φ0
p,q (A) = µ

(
{ζ : 5pζ ∈ A}

)
, φ1

p,q(A) = µ
(
{ζ : 5pζ ∈ A}

)
. (8.57)

We make several remarks before proving the above theorems. First, the invari-
ant measures φ0

p,q and φ1
p,q of Theorem 8.56 are identical if and only if p /∈ Dq ,

where Dq is that of Theorem 4.63.

Secondly, with µ as in Theorem 8.53, and e ∈ Ed , let J : [0, 1] → [0, 1] be
given by

(8.58) J (x) = µ
(
{ζ ∈ X : ζ(e) = x}

)
, x ∈ [0, 1].

Thus, J is the atomic component of the marginal measure of µ at the edge e and,
by translation-invariance, it does not depend on the choice of e. We recall from
(4.61) the edge-densities

hb(p, q) = φb
p,q(e is open), b = 0, 1.

(8.59) Proposition. It is the case that

J (p) = h1(p, q)− h0(p, q), p ∈ (0, 1).

We deduce by Theorem 4.63 that p ∈ Dq if and only if J (p) 6= 0, thereby
providing a representation of Dq in terms of atoms of the weak limit µ. This may
be used to prove the left-continuity of the percolation probability θ0(·, q). See
Theorem 5.16(a), the proof of which is included at the end of the current section.

As discussed after Theorem 4.63, it is believed that there exists Q = Q(d)
such that

Dq =
{

∅ if q < Q,

{pc(q)} if q > Q,

and it is a first-rate challenge to prove this. The above results provide some
incomplete probabilistic justification for such a claim, as follows. The set Dq is
the set of atoms of the one-dimensional marginal measure of µ. Such atoms arise
presumably through an accumulation of edges ehaving the same value Zb

t (e). Two
edges e and f acquire the same state in the process Z by way of transitions at some
time T for which, say, the alarm clock at e rings and F = F(e, ZT −) = ZT −( f ).
Discounting events with probability zero, this can occur only when the new state
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at e is at the (unique) atom of the function He,ν in (8.18), where ν = ZT −. The
size of this atom is

F − F

F + q(1 − F)

which is an increasing function of q . This is evidence that the number of pairs e,
f of edges having the same state increases with q .

Finally, we describe the transition rules of the projected processes L0
p and L1

p. It
turns out that the transition mechanisms of these two chains differ in an interesting
but ultimately unimportant regard. It is convenient to summarize the following
discussion by writing down the two infinitesimal generators.

Let e = 〈x, y〉 ∈ Ed . As in (8.35), let Pe be the set of all paths of Ed \ {e} that
join x to y. Let Qe be the set of all pairs α = (α1, α2, . . . ), β = (β1, β2, . . . ) of
vertex-disjoint semi-infinite paths (where αi and βj are the vertices of these paths)
with α1 = x and β1 = y; we require αi 6= βj for all i, j . Thus Qe comprises
pairs (α, β) of paths and, for ω ∈ �, we call an element (α, β) of Qe open if all
the edges of both α and β are open.

For b = 0, 1, let Gb be the linear operator, with domain a suitable subset of
C(�), given by
(8.60)

Gbg(ω) =
∑

e∈Ed

[
qb
ω,ωe {g(ωe)− g(ω)} + qb

ω,ωe
{g(ωe)− g(ω)}], ω ∈ �,

where

qb
ω,ωe = p(1 − 1Db

e
)+ p

p + q(1 − p)
1Db

e
,(8.61)

qb
ω,ωe

= 1 − qb
ω,ωe = (1 − p)(1 − 1Db

e
)+ q(1 − p)

p + q(1 − p)
1Db

e
,(8.62)

with

D0
e = {no path in Pe is open},(8.63)

D1
e = {no element in Pe ∪ Qe is open}.(8.64)

Note that Gbg is well defined for all cylinder functions g, since the infinite sum
in (8.60) may then be written as a finite sum. However, Gbg is not generally
continuous when q ∈ (1,∞), even for cylinder functions g. For example, let
q ∈ (1,∞), let g be the indicator function of the event that a given edge e is open,
and let ω be a configuration satisfying:

(a) ω(e) = 1,

(b) no path in Pe is open in ω,

(c) some pair (α, β) in Qe is open in ω.

Then Gbg(ω) = −qb
ω,ωe

. However, qb
ω,ωe

is discontinuous at ω for b = 0, 1
since, for every finite box 3, there exists ρ ∈ � agreeing with ω on E3 such that
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qb
ρ,ρe

6= qb
ω,ωe

. However, the set of configurations satisfying (a), (b), (c) has zero
φb

p,q -probability since such configurations have two or more infinite open clusters
(see the remark following Theorem 4.34). One may see that the Markov transition
functions of L0

p and L1
p are not Feller, see Proposition 8.90.

We shall make use of the following two lemmas in describing the transition
rules of the processes L0

p and L1
p . Let G : Ed × X → [0, 1] be given by

(8.65) G(e, ν) = inf
π∈Pe∪Qe

sup
f ∈π

ν( f ), e ∈ Ed , ν ∈ X.

Here, Pe contains certain paths π , and Qe contains certain pairs π = (α, β) of
paths; for π = (α, β) ∈ Qe, the infimum in (8.65) is over all edges f lying in the
union of α and β.

(8.66) Lemma. Let e ∈ Ed , ν ∈ X, and let (ν3 : 3 ⊆ Zd) be a family of elements
of X indexed by boxes3.

(a) If ν3 ↓ ν as3 ↑ Zd , then

F(e, ν3) ↓ F(e, ν) as 3 ↑ Zd . (8.67)

(b) If ν3 ∈ X0
3 and ν3 ↑ ν as 3 ↑ Zd , then

F(e, ν3) ↑ G(e, ν) as3 ↑ Zd . (8.68)

(8.69) Lemma. Let e ∈ Ed and ν ∈ X. Then:

(i) p ≤ F(e, ν) if and only if 5pν ∈ D0
e ,

(ii) p < G(e, ν) if and only if 5pν ∈ D1
e .

Consider the process L0
p = 5p Z1

t . Since Z1
t is the decreasing limit of Z (1,1)3,t ,

(8.70) L0
p,t = lim

3↑Zd
5p Z (1,1)3,t .

Fix t ≥ 0, and write ζ3 = Z (1,1)3,t and ζ = lim3↑Zd ζ3, so that

(8.71) L0
p,t = 5pζ = lim

3↑Zd
5pζ3.

Let e ∈ Ed , and assume first that ζ is such that 5pζ(e) = 0. At what rate does
the state of e change from 0 to 1 in the process L0

p? Since ζ(e) ≥ p, we have that

ζ3(e) ≥ p for all3. The process5p Z (1,1)3,· acquires6 the edge e at rate He,ζ3(p−)
given by (8.18) with F = F(e, ζ3). Now,

He,ζ3(p−) =
{

p if p > F(e, ζ3),
p

p + q(1 − p)
if p ≤ F(e, ζ3),

6We speak of a process ‘acquiring’ (respectively, ‘losing’) the edge e when the state of e
changes from closed to open (respectively, open to closed).
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which by Lemma 8.66(a) converges as 3 ↑ Zd to

He,ζ (p−) =
{

p if p > F(e, ζ ),
p

p + q(1 − p)
if p ≤ F(e, ζ ).

Thus, by Lemma 8.69(i), L0
p acquires the edge e at rate

(8.72)

{ p if 5pζ /∈ D0
e ,

p

p + q(1 − p)
if 5pζ ∈ D0

e .

Assume next that ζ is such that 5pζ(e) = 1, and consider the rate at which
L0

p loses the edge e. Since ζ(e) < p, we have that ζ3(e) < p for all large 3. As

above,5p Z (1,1)3,· loses e at rate 1 − He,ζ3(p−), whence L0
p loses e at rate

(8.73)





1 − p if 5pζ /∈ D0
e ,

q(1 − p)

p + q(1 − p)
if 5pζ ∈ D0

e .

These calculations are in agreement with (8.60) with b = 0.

We turn next to the process L1
p,t = 5p Z0

t . This time, Z0
t is the increasing limit

of Z0
3,t as 3 ↑ Zd , and

(8.74) L1
p,t = lim

3↑Zd
5p Z (0,0)3,t .

The above argument is followed, noting that decreasing limits are replaced by
increasing limits, 5p by5p , F(e, ν) by G(e, ν), and D0

e by D1
e . The conclusion

is in agreement with (8.60) with b = 1.

Proof of Lemma 8.66. (a) Let e ∈ Ed and ν3 ↓ ν as3 ↑ Zd . Certainly F(e, ν3)
is non-increasing in 3, whence the limit

λ = lim
3↑Zd

F(e, ν3)

exists and satisfies λ ≥ F(e, ν). We prove next that

(8.75) λ ≤ F(e, ν).

Since F(e, ν3) ≥ λ for all 3, by (8.35),

∀π ∈ Pe, ∀3, ∃ f ∈ π with ν3( f ) ≥ λ.

Since all paths in Pe are finite, this implies

∀π ∈ Pe, ∃ f ∈ π with ν( f ) ≥ λ,
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which implies (8.75). We deduce as required that λ = F(e, ν).

(b) Let e = 〈x, y〉 ∈ Ed . Suppose ν3 ∈ X0
3 and ν3 ↑ ν as 3 ↑ Zd . We prove

first that the increasing limit

(8.76) λ = lim
3↑Zd

F(e, ν3)

satisfies

(8.77) λ ≥ G(e, ν).

Let δ ∈ (0, 1), and suppose G(e, ν) > δ; we shall deduce that λ > δ, thus
obtaining (8.77).

A finite set S of edges of Ld is called a cutset (for e) if:

(i) e /∈ S,

(ii) every path in Pe contains at least one edge of S,

(iii) S is minimal with the two properties above, in the sense that no strict subset
of S satisfies (i) and (ii).

We claim that:

(8.78) there exists a cutset S with ν( f ) > δ for all f ∈ S,

and we prove this as follows. First, we write G(e, ν) = min{A, B} where

(8.79) A = F(e, ν) = inf
π∈Pe

max
f ∈π

ν( f ), B = inf
π∈Qe

sup
f ∈π

ν( f ).

Since G(e, ν) > δ, we have that A, B > δ. For w ∈ Zd , let Cw(ν) denote the set
of vertices of Ld that are connected to w by paths π of Ld satisfying:

(a) π does not contain the edge e, and

(b) every edge f of π satisfies ν( f ) ≤ δ.

If x ∈ Cy(ν), then there exists π ∈ Pe with ν( f ) ≤ δ for all f ∈ π , which
contradicts the fact that A > δ. Therefore x /∈ Cy(ν). Furthermore, either Cx(ν)

or Cy(ν) (or both) is finite, since if both were infinite, then there would exist
π = (α, β) ∈ Qe with ν( f ) ≤ δ for all f in α and β, thereby contradicting the
fact that B > δ. We may suppose without loss of generality that Cx(ν) is finite,
and we let R be the subset of Ed \ {e} containing all edges g with exactly one
endvertex in Cx (ν). Certainly ν(g) > δ for all g ∈ R, and additionally every path
in Pe contains some edge of R. However, R may fail to be minimal with the last
property, in which case we replace R by a subset S ⊆ R that is minimal. The set
S is the required cutset, and (8.78) is proved.

Since S is finite and ν( f ) > δ for all f ∈ S,

for all large 3 and all f ∈ S, ν3( f ) > δ,
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∂3

x

α3

w1

w2

γ
y

β3

Figure 8.2. A path from x to y may be constructed from two disjoint infinite paths.

and therefore (using the finiteness of S again)

for all large 3, F(e, ν3) > δ,

implying that λ > δ as required for (8.77).

We prove secondly that

(8.80) λ ≤ G(e, ν),

by proving in turn that λ≤ A andλ ≤ B . Thatλ ≤ A is an immediate consequence
of the assumption ν3 ≤ ν, so we concentrate on the inequality λ ≤ B . For π =
(α, β) ∈ Qe, where α has endvertex x , and β has endvertex y, let α3 (respectively,
β3) denote the initial segment of α (respectively, β) joining x (respectively, y) to
the earliest vertexw1 ofα (respectively,w2, ofβ) lying in ∂3. Sincew1, w2 ∈ ∂3
and w1 6= w2, there exists a path γ joining w1 to w2 and using no other vertex of
3. We denote by π ′ the path comprising α3, followed by γ , followed by β3 taken
in reverse order; note that π ′ ∈ Pe, and denote by Pe,3 the set of all π ′ ∈ Pe

obtainable in this way from any π = (α, β) ∈ Qe. See Figure 8.2. Now,

F(e, ν3) ≤ inf
π ′∈Pe,3

max
f ∈π ′

ν3( f ) since Pe,3 ⊆ Pe

= inf
π ′∈Pe,3

max
f ∈π ′∩E3

ν3( f ) since ν3( f ) = 0 for f /∈ E3

≤ inf
π ′∈Pe,3

max
f ∈π ′∩E3

ν( f ) since ν3 ≤ ν

≤ inf
π∈Qe

max
f ∈π∩E3

ν( f )

≤ inf
π∈Qe

sup
f ∈π

ν( f ) = B,

where we have used the fact that every π ′ ∈ Pe,3 arises in the above manner from
some π ∈ Qe. Inequality (8.80) follows. �
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Proof of Lemma 8.69. (i) By (8.35), p ≤ F(e, ν) if and only if every π ∈ Pe

contains some edge f with ν( f ) ≥ p, which is to say that 5pν ∈ D0
e .

(ii) Suppose that p < G(e, ν). For π ∈ Pe ∪Qe, there exists an edge f ∈ π such
that ν( f ) > p. Therefore,5pν ∈ D1

e .

Suppose conversely that 5pν ∈ D1
e . It is elementary that p ≤ G(e, ν). Sup-

pose in addition that p = G(e, ν), and we shall derive a contradiction. Let
e = 〈x, y〉, and let Cx (ν) (respectively, Cy(ν)) be the set of vertices attainable
from x (respectively, y) along open paths of 5pν not using e. Since 5pν ∈ D1

e ,
Cx (ν) and Cy(ν) are disjoint. We shall prove that Cx (ν) (and similarly Cy(ν)) is
infinite. Since p = G(e, ν), there exists an infinite sequence (αn : n = 1, 2, . . . )
of distinct (finite or infinite) paths of Ed \ {e} with endvertex x such that

(8.81) sup
f ∈αn

ν( f ) ↓ p as n → ∞.

If |Cx(ν)| < ∞, there exists some edge g 6= e, having exactly one endvertex in
Cx (ν), and belonging to infinitely many of the paths αn . By (8.81), any such g
has ν(g) ≤ p, in contradiction of the definition of Cx (ν). Therefore Cx (ν) (and
similarly Cy(ν)) is infinite.

Since Cx (ν) and Cy(ν) are disjoint and infinite, there exists π = (α, β) ∈ Qe

such that ν( f ) ≤ p for f ∈ α∪β, in contradiction of the assumption5pν ∈ D1
e .

The proof is complete. �

Proof of Theorem 8.52. Let b ∈ {0, 1}. The transitions of the process (Zb
t :

t ≥ 0) are given in terms of families of independent doubly-stochastic Poisson
processes. In order that Zb

t be a Markov process, it suffices therefore to prove that
the conditional distribution of (Zb

s+t : t ≥ 0), given (Zb
u : 0 ≤ u ≤ s), depends

only on Zb
s .

Here is an informal proof. We have that Zb
s+t = lim3↑Zd Zb

3,s+t , where the

processes Zb
3,s+t are given in terms of a graphical representation of compound

Poisson processes. It follows that, given (Zb
3,u, Zb

u : 0 ≤ u ≤ s, 3 ⊆ Zd),

(Zb
s+t : t ≥ 0) has law depending only on the family (Zb

3,s : 3 ⊆ Zd). Write

ζ3 = Zb
3,s and ζ = lim3↑Zd ζ3 = Zb

s . We need to show that the (conditional)

law of (Zb
s+t : t ≥ 0) does not depend on the family (ζ3 : 3 ⊆ Zd) further than

on its limit ζ . Lemma 8.40(b) is used for this.

Let s, t ≥ 0 and ν ∈ X . Denote by Y (ν,b)3,s+t the state (in Xb
3) at time s + t

obtained from the evolution rules given prior to (8.36), starting at time s in state
(ν, b) = (ν, b)3.

Suppose that b = 0, so that ζ3 ↑ ζ as3 → Zd . Let ǫ > 0 and let1 be a finite
box. There exists a box 3′ such that 3′ ⊇ 1 and

ζ(e)− ǫ ≤ ζ3(e) ≤ ζ(e), e ∈ E1, 3 ⊇ 3′.

By Lemma 8.40(b),

Y (ζ,b)1,s+t − ǫ ≤ Y (ζ3,b)1,s+t ≤ Y (ζ3,b)3,s+t ≤ Y (ζ,b)3,s+t , 3 ⊇ 3′.
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Now, Y (ζ3,b)3,s+t = Zb
3,s+t , and we pass to the limits as 3 ↑ Zd , 1 ↑ Zd , ǫ ↓ 0, to

obtain that

(8.82) lim
3↑Zd

Y (ζ,b)3,s+t = Zb
s+t ,

implying as required that Zb
s+t depends on ζ but not further on the family (ζ3 :

3 ⊆ Zd). The same argument is valid when b = 1, with the above inequalities
reversed and the sign of ǫ changed.

The Markov transition function of Zb
t is the family (Qb

s,t : 0 ≤ s ≤ t) given by

Qb
s,t(ζ, A) = P(Zb

t ∈ A | Zb
s = ζ ), ζ ∈ X, A ∈ B.

In the light of the remarks above and particularly (8.82),

Qb
s,t (ζ, A) = Qb

0,t−s(ζ, A)

= P(Z (ζ,b)t−s ∈ A) = Pb
t−s(ζ, A). �

Proof of Theorem 8.53. As in Lemma 8.31, the limits

ψb(A) = lim
t→∞ P(Zb

t ∈ A), b = 0, 1,

exist for any increasing event A ∈ B. The space X is compact, and the increasing
events are convergence-determining, and therefore Z0

t and Z1
t converge weakly

as t → ∞. It suffices to show that

Z1
t − Z0

t ⇒ 0 as t → ∞.

Since we are working with the product topology on X , it will be enough to show
that, for ǫ > 0 and f ∈ Ed ,

(8.83) P
(|Z1

t ( f )− Z0
t ( f )| > ǫ

) → 0 as t → ∞.

Let D = Dq be as in Theorem 4.63, and let ǫ > 0. Pick a finite subset E of
D = (0, 1)\D such that every interval of the form (δ, δ+ ǫ) contains some point
of E , as δ ranges over [0, 1 − ǫ). By Theorem 4.63,

(8.84) φ0
p,q = φ1

p,q , p ∈ E .
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For f ∈ Ed ,

P
(
|Z1

t ( f )− Z0
t ( f )| > ǫ

)

≤
∑

p∈E

P
(
Z0

t ( f ) ≤ p ≤ Z1
t ( f )

)

≤
∑

p∈E

P
(
Z0
3,t ( f ) ≤ p ≤ Z1

3,t ( f )
)

for all boxes3

=
∑

p∈E

P
(
5p Z0

3,t ( f ) = 1, 5p Z1
3,t ( f ) = 0

)

→
∑

p∈E

[
φ1
3,p,q(Jf )− φ0

3,p,q(Jf )
]

as t → ∞

→
∑

p∈E

[
φ1

p,q(Jf )− φ0
p,q(Jf )

]
as 3 ↑ Zd

= 0 by (8.84),

where Jf is the event that f is open.

The translation-invariance of the limit measure µ is a consequence of the fact
that the limits in (8.47)–(8.48) do not depend on the way in which the increasing
limit 3 ↑ Zd is taken. �

Proof of Theorem 8.56. (a) That the projected processes (Lb
p,t : t ≥ 0), b = 0, 1,

are Markovian follows from Theorem 8.52 and the discussion after Lemma 8.69.

Let A ∈ F be increasing. As in Lemma 8.31, the limits

ψb
p (A) = lim

t→∞ P(Lb
p,t ∈ A)

exist for b = 0, 1. Since L0
p,t ≤ L1

p,t ,

(8.85) ψ0
p (A) ≤ ψ1

p (A) for increasing A ∈ F .

Let A ∈ F be an increasing cylinder event. Then

ψ0
p (A) = lim

t→∞ P(L0
p,t ∈ A)

≥ lim
t→∞ P(5p Z1

3,t ∈ A) since L0
p,t ≥ 5p Z1

3,t

= φ0
3,p,q(A) by Theorem 8.38

→ φ0
p,q(A) as 3 → Zd ,

and similarly

(8.86) ψ1
p(A) ≤ φ1

p,q(A).
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Let Dq be given as in Theorem 4.63. Since φ0
p,q = φ1

p,q for p /∈ Dq , we have by
(8.85)–(8.86) that

φ0
p,q(A) = ψ0

p (A) = ψ1
p (A) = φ1

p,q (A), p /∈ Dq .

Since F is generated by the increasing cylinder events, φb
p,q is the unique invariant

measure of Lb
p whenever p /∈ Dq .

In order to show that

φ0
p,q(A) = ψ0

p (A), φ1
p,q(A) = ψ1

p (A),

for all p and any increasing cylinder event A, it suffices to show thatψ0
p (A) is left-

continuous in p, and ψ1
p (A) is right-continuous (the conclusion will then follow

by Proposition 4.28). We confine ourselves to the case of ψ0
p (A), since the other

case is exactly similar.

Let p ∈ (0, 1), and let A ∈ F be an increasing cylinder event. Let

Bp = {ζ ∈ X : 5pζ ∈ A}, Cp = {ζ ∈ X : 5pζ ∈ A},

be the corresponding events in B, and note from the definitions of5p and5p that
Bp is decreasing and open, and that Cp is decreasing and closed. Furthermore,
Cp−ǫ ⊆ Bp for ǫ > 0, and

(8.87) Bp \ Cp−ǫ → ∅ as ǫ ↓ 0.

By stochastic monotonicity, the limit limt→∞ P(Z1
t ∈ Bp) exists and, by weak

convergence (see Theorem 8.53),

lim
t→∞ P(Z1

t ∈ Bp) ≥ µ(Bp).

We claim further that P(Z1
t ∈ Bp) ≤ µ(Bp) for all t , whence

(8.88) P(Z1
t ∈ Bp) → µ(Bp) as t → ∞.

Suppose on the contrary that

P(Z1
T ∈ Bp) > µ(Bp)+ η for some T and η > 0.

Now Z1
t ≤st Z1

T for t ≥ T , and hence

P(Z1
t ∈ Cp−ǫ) > µ(Cp−ǫ)+ 1

2η for some ǫ > 0 and all t ≥ T ,

by (8.87). Since Cp−ǫ is closed, this contradicts the fact that Z1
t ⇒ µ.
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For h > 0,

ψ0
p (A)− ψ0

p−h(A) = lim
t→∞

[
P(Z1

t ∈ Bp)− P(Z1
t ∈ Bp−h)

]

= µ(Bp \ Bp−h) by (8.88).

The sets Bp and Bp−h are open, and Bp \Bp−h → ∅ as h ↓ 0. Henceψ0
p−h (A) →

ψ0
p (A) as h ↓ 0.

In the corresponding argument for ψ1
p(A), the set Bp is replaced by the de-

creasing closed event Cp , and the difference Bp \ Bp−h is replaced by Cp+h \ Cp .

We prove finally that L0
p,t is reversible with respect to φ0

p,q ; the argument

is similar for L1
p,t . Let f and g be increasing non-negative cylinder functions

mapping � to R, and let U0
3,t (respectively, U0

t ) be the transition semigroup of

the process5p Z1
3,t (respectively, L0

p,t = 5p Z1
t ). For 3 ⊆ 1,

f (η)U0
3,t g(η) ≤ f (η)U0

1,t g(η) ≤ f (η)U0
t g(η), η ∈ �,

by Lemmas 8.31 and 8.40. Therefore,

φ0
1,p,q

(
f (η)U0

3,t g(η)
)

≤ φ0
1,p,q

(
f (η)U0

1,t g(η)
)

≤ φ0
p,q

(
f (η)U0

t g(η)
)
, 3 ⊆ 1,

since φ0
1,p,q ≤st φ

0
p,q . Let 1 ↑ Zd and 3 ↑ Zd , and deduce by the monotone

convergence theorem that

(8.89) φ0
1,p,q

(
f (η)U0

1,t g(η)
) → φ0

p,q

(
f (η)U0

t g(η)
)

as 1 ↑ Zd .

The left side of (8.89) is unchanged when f and g are exchanged, by the reversibil-
ity of 5p Z1

1,t , see Theorem 8.38. Therefore, the right side is unchanged by this
exchange, implying the required reversibility (see [235, p. 91]).

(b) It suffices to prove (8.57) for increasing cylinder events A, since such events
generate F . For such A, (8.57) follows from (8.88) in the case of φ0

p,q , and

similarly for φ1
p,q . �

Proof of Proposition 8.59. This is a consequence of Theorem 8.56(b). �

(8.90) Proposition. Let q ∈ (1,∞) and p ∈ (0, 1). The Markov processes L0
p

and L1
p are not Feller processes.

Proof. For simplicity we take d = 2 and b = 0; a similar argument is valid for
d > 2 and/or b = 1. Let e be the edge with endvertices (0, 0) and (1, 0), and let
Je be the indicator function of the event that e is open. We shall show that the
function U0

s Je : � → R is not continuous for sufficiently small positive values
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1

3

e

Figure 8.3. In the inner square, edges other than e are open if and only if they are in the dark
shaded area. In the light grey area 3 \1, all edges have the same state, namely 0 for ω0 and
1 for ω1. The endvertices of e are joined by an open path of E3 \ {e} in ω1 but not in ω0.

of s, where (U0
s : s ≥ 0) is the transition semigroup of L0

p . Let V be the set of

vertices x = (x1, x2) ∈ Z2 satisfying

either x1 ≥ |x2| + 1 or −x1 ≥ |x2|,
and let EV (∋ e) be the set of edges with both endvertices in V . See Figure 8.3.
Let n be a positive integer, and 1 the box [−n, n]2. Let ω0, ω1 ∈ � be the
configurations given by

ωb( f ) =





1 if f ∈ E1 ∩ EV ,

0 if f ∈ E1 \ EV ,

b otherwise.

Note that ω0 and ω1 depend on n, and also that ω1 /∈ De but ω0 ∈ De, where De

is the event that there exists no open path of E2 \ {e} joining the endvertices of e.
We shall couple together two processes, with respective initial configurations ω0,
ω1, and we claim that there exists a non-zero time interval during which, with a
strictly positive probability, the lower of these two processes remains in De and
the upper process remains in its complement.

For b = 0, 1, let K b
3,t be the process 5p Z (ζ

b,1)
3,t for some ζ b ∈ X satis-

fying ωb = 5pζ
b; the value of ζ b is otherwise immaterial. We write K b

t =
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lim3↑Zd K b
3,t , a limit which exists by the usual monotonicity. We claim that there

exist ǫ, η > 0, independent of the value of n, such that

(8.91) P
(
K 1
η (e) = 1, K 0

η(e) = 0
)
> ǫ.

Inequality (8.91) implies that

P(K 1
η (e) = 1)− P(K 0

η (e) = 1) > ǫ,

irrespective of the value of n, and therefore that the semigroup U0
s is not Feller.

In order to prove (8.91), we use a percolation argument. Let η > 0. As in
Section 8.6, we consider a family of rate-1 alarm clocks indexed by E2. For each
edge f , we set B f = 0 if the alarm clock at f does not ring during the time-interval
[0, η], and B f = 1 otherwise. Thus, (B f : f ∈ E2) is a family of independent
Bernoulli variables with common parameter 1 − e−η. Choose η sufficiently small
such that

1 − e−η < 1
4 ,

noting that 1
4 is less than the critical probability of bond percolation on the square

lattice (see Chapter 6 and [154]). Routine percolation arguments may now be used
to obtain the existence of ǫ′ > 0 such that, for all boxes3 containing [−2n, 2n]2,

P
(
K 1
3,t /∈ De, K 0

3,t ∈ De, for all t ∈ [0, η]
∣∣Gη

)
> ǫ′ P-a.s.,

where Gη is the σ -field generated by the ringing times of the alarm clock at e up
to time t , together with the associated values of α (in the language of Section 8.6).

Suppose that the alarm clock at e rings once only during the time-interval [0, η],
at the random time T , say. By (8.72)–(8.73), there exists ǫ′′ = ǫ′′(p, q) > 0 such
that: there is (conditional) probability at least ǫ′′ that, for all 3 ⊇ [−2n, 2n]2, the
edge e is declared closed at time T in the lower process K 0

3,T but not in the upper

process K 1
3,T . The conditioning here is over all values of the doubly-stochastic

Poisson processes indexed by edges other than e. Therefore,

P
(
K 1
3,η(e) = 1, K 0

3,η(e) = 0
)
> ǫ′ǫ′′ηe−η,

for all 3 containing [−2n, 2n]2. Let3 ↑ Zd to obtain (8.91) with an appropriate
value of ǫ. �

Proof of Theorem 5.16(a). This was deferred from Section 5.2. We follow the
argument of [36] as reported in [154]. For p ∈ (0, 1] and ζ ∈ X , we say that an
edge e is p-open if5pζ(e) = 1, which is to say that ζ(e) < p. Let Cp = Cp(ζ ) be
the p-open cluster of Ld containing the origin, and note that Cp′ ⊆ Cp if p′ ≤ p.

By Theorem 8.56(b),

θ0(p, q) = µ(|Cp| = ∞),
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where µ is given in Theorem 8.53. Therefore,

θ0(p, q)− θ0(p−, q) = lim
p′↑p

µ
(|Cp| = ∞, |Cp′ | < ∞)(8.92)

= µ
(
|Cp | = ∞, |Cp′ | < ∞ for all p′ < p

)
.

Assume that p > pc(q), and suppose |Cp | = ∞. If pc(q) < α < p, there exists
(almost surely) anα-open infinite cluster Iα, and furthermore Iα is (almost surely) a
subgraph of Cp , by the 0/1-infinite-cluster property of the 0-boundary-condition
random-cluster measures. Therefore, there exists a p-open path π joining the
origin to some vertex of Iα . Such a path π has finite length and each edge e in π
satisfies ζ(e) < p, whence β = max{ζ(e) : e ∈ π} satisfies β < p. If p′ satisfies
p′ ≥ α and β < p′ < p then there exists a p′-open path joining the origin to
some vertex of Iα , so that |Cp′ | = ∞. However, p′ < p, implying that the event
on the right side of (8.92) has probability zero. �

8.9 Simultaneous uniqueness

One of the key facts for supercritical percolation is the (almost-sure) uniqueness
of the infinite open cluster, which may be stated in the following form. Let φp be

the percolation (product) measure on � = {0, 1}E
d

where d ≥ 2. We have that:

(8.93) for all p ∈ [0, 1], φp has the 0/1-infinite-cluster property.

It has been asked whether or not there exists a unique infinite cluster simultaneously
for all values of p. This question may be formulated as follows. First, we couple
together the percolation processes for different values of p by defining

ηp(e) =
{

1 if U(e) < p,

0 otherwise,

where the U(e), e ∈ Ed , are independent and uniformly distributed on the interval
[0, 1]. Let I (ω) be the number of infinite open clusters in a configuration ω ∈
�. It is proved in [13] that there exists a deterministic non-decreasing function
i : [0, 1] → {0, 1} such that

(8.94) P
(
I (ηp) = i(p) for all p ∈ [0, 1]

) = 1,

a statement to which we refer as ‘simultaneous uniqueness’. By (8.93) and the
definition of the critical probability pc,

i(p) =
{

0 if p < pc,

1 if p > pc.

It is an open question to prove the conjecture that i(pc) = 0 irrespective of the
number d of dimensions. See the discussion in [154, Section 8.2].

Simultaneous uniqueness may be conjectured for the random-cluster model
also, using the coupling of the last section.
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(8.95) Conjecture (Simultaneous uniqueness). Let q ∈ [1,∞), and consider
the coupling µ of the random-cluster measures φb

p,q on Ld with parameter q.
There exist non-decreasing functions iq , i ′

q : [0, 1] → {0, 1} such that

µ
(
I (5pζ ) = iq(p) and I (5pζ ) = i ′

q(p), for all p ∈ [0, 1]
)
= 1.

It must be the case that iq(p) = i ′
q(p) for p 6= pc(q).

Here is a sufficient condition for simultaneous uniqueness. For r ∈ (0, 1) and
a box 3, let E3(r) be the subset of the configuration space X containing all ν
with ν(e) < r for all e ∈ E3. Thus, E3(r) is the event that every edge in E3 is
open in the configuration5rν. By [13, Thm 1.8], it suffices to show that µ has a
property termed ‘positive finite energy’. This is in turn implied by:

(8.96) µ(E3(r) | T3) > 0, µ-a.s.

for all r ∈ (0, 1) and boxes3. Here as earlier, T3 is the σ -field generated by the
states of edges not belonging to E3. It seems reasonable in the light of Theorem
4.17(b) to conjecture the stronger inequality

µ(E3(r) | T3) ≥
(

r

r + q(1 − r)

)|E3|
, µ-a.s.
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Chapter 9

Flows in Poisson Graphs

Summary. The random-cluster partition function with integer q on a graph
G may be transformed into the mean flow-polynomial of a ‘Poissonian’ ran-
dom graph obtained from G by randomizing the numbers of edges between
neighbouring pairs. This leads to a flow representation for the two-point
Potts correlation function, and extends to general q the so-called ‘random-
current expansion’ of the Ising model. In the last case, one may derive the
Simon–Lieb inequality together with largely complete solutions to the prob-
lems of exponential decay and the continuity of the phase transition. It is
an open problem to adapt such methods to general Potts and random-cluster
models.

9.1 Potts models and flows

The Tutte polynomial is a function of two variables (see Section 3.6). For suitable
values of these variables, one obtains counts of colourings, forests, and flows,
together with other combinatorial quantities, in addition to the random-cluster
and Potts partition functions. The algebra of the Tutte polynomial may be used
to obtain representations of the Potts correlation functions, which have in turn
the potential to explain the decay of correlations in the two phases of an infinite-
volume Potts measure. It is thus that many beautiful results have been derived
for the Ising model (when q = 2), see [3, 5, 9]. The cases q ∈ {3, 4, . . . },
and more generally q ∈ (1,∞), remain largely unexplained. We summarize this
methodology in this chapter, beginning with the definition of a flow on a directed
graph.

Let H = (W, F) be a finite graph with vertex-set W and edge-set F , and let
q ∈ {2, 3, . . . }. We permit H to have multiple edges and loops. To each edge
e ∈ F we allocate a direction, turning H thus into a directed graph denoted by
EH = (W, EF). When the edge e = 〈u, v〉 ∈ F is directed from u to v, we write
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Ee = [u, v〉 for the corresponding directed edge1, and we speak of u as the tail and
v as the head of Ee. It will turn out that the choices of directions are immaterial to
the principal conclusions that follow. A function f : EF → {0, 1, 2, . . . , q − 1} is
called a mod-q flow on EH if

(9.1)
∑

Ee∈ EF :
Ee has head w

f (Ee)−
∑

Ee∈ EF :
Ee has tail w

f (Ee) = 0 mod q , for all w ∈ W ,

which is to say that flow is conserved (modulo q) at every vertex. A mod-q flow
f is called non-zero if f (Ee) 6= 0 for all Ee ∈ EF . We write CH (q) for the number
of non-zero mod-q flows on EH . It is standard (and an easy exercise) that CH (q)
does not depend on the directions allocated to the edges of H , [313]. The function
CH (q), viewed as a function of q , is called the flow polynomial of H .

The flow polynomial of H is an evaluation of its Tutte polynomial. Recall from
Section 3.6 the (Whitney) rank-generating function and the Tutte polynomial,

WH (u, v) =
∑

F ′⊆F

ur(H ′)vc(H ′), u, v ∈ R,(9.2)

TH (u, v) = (u − 1)|W |−k(H)WH
(
(u − 1)−1, v − 1

)
,(9.3)

where r(H ′) = |W | − k(H ′) is the rank of the subgraph H ′ = (W, F ′), c(H ′) =
|F ′| − |W | + k(H ′) is its co-rank, and k(H ′) is the number of its connected
components (including isolated vertices). Note that

(9.4) WH (u, v) = (u/v)|W | ∑

F ′⊆F

v|F ′ |(v/u)k(H
′), u, v 6= 0.

The flow polynomial of H satisfies

CH (q) = (−1)|F |WH (−1,−q)(9.5)

= (−1)c(H)TH (0, 1 − q), q ∈ {2, 3, . . . }.

See [40, 313]. When the need for a different notation arises, we shall write C(H ; q)
for CH (q), and similarly for other polynomials.

We return now to the random-cluster and Potts models on the finite graph
G = (V , E). It is convenient to allow a separate parameter for each edge of G,
and thus we let J = (Je : e ∈ E) be a vector of non-negative numbers, and we take
β ∈ (0,∞). For q ∈ {2, 3, . . . }, the q-state Potts measure on the configuration
space 6 = {1, 2, . . . , q}V is written in this chapter as

(9.6) πβJ,q(σ ) = 1

ZP
exp

{∑

e∈E

β Je(qδe(σ )− 1)

}
, σ ∈ 6,

1This is not a good notation since H may have multiple edges.
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where, for e = 〈x, y〉 ∈ E ,

δe(σ ) = δσx ,σy =
{

1 if σx = σy,

0 otherwise,

and ZP is the partition function

(9.7) ZP =
∑

σ∈6
exp

{∑

e∈E

β Je(qδe(σ )− 1)

}
.

This differs slightly from (1.5)–(1.6) in that different edges e may have different
interactions Je, and these interactions have been ‘re-parametrized’ by the factor
q . The reason for defining πβJ,q thus will emerge in the calculations that follow.

The corresponding two-point correlation function is given as in (1.14) by

(9.8) τβJ,q(x, y) = πβJ,q(σx = σy)− 1

q
, x, y ∈ V .

We shall work often with the quantity qτβJ,q(x, y) = πβJ,q(qδσx ,σy − 1) and, for
ease of notation in the following, we write

(9.9) σ(x, y) = qτβJ,q(x, y), x, y ∈ V ,

thereby suppressing reference to the parameters βJ and q . Note that, for the Ising
case with q = 2, σ(x, y) is simply the mean of the product σxσy of the Ising spins
at x and at y, see (1.7).

From the graph G = (V , E)we construct next a certain random graph. For any
vector m = (m(e) : e ∈ E) of non-negative integers, let Gm = (V , Em) be the
graph with vertex set V and, for each e ∈ E , with exactly m(e) edges in parallel
joining the endvertices of the edge e [the original edge e is itself removed]. Note
that

(9.10) |Em | =
∑

e∈E

m(e).

Let λ = (λe : e ∈ E) be a family of non-negative reals, and let P =
(P(e) : e ∈ E) be a family of independent random variables such that P(e)
has the Poisson distribution with parameter λe. We now consider the random
graph G P = (V , E P ), which we call a Poisson graph with intensity λ. Write Pλ

and Eλ for the corresponding probability measure and expectation operator.

For x, y ∈ V , x 6= y, we denote by Gx,y
P the graph obtained from G P by

adding an edge with endvertices x , y. If x and y are already adjacent in G P ,
we add exactly one further edge between them. Potts-correlations and flows are
related by the following theorem2.

2The relationship between flows and correlation functions has been explored also in [112,
246, 247].
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(9.11) Theorem [146, 157]. Let q ∈ {2, 3, . . . } and λe = β Je. Then

(9.12) σ(x, y) = Eλ(C(G
x,y
P ; q))

Eλ(C(G P; q))
, x, y ∈ V .

This formula takes an especially simple form when q = 2, since non-zero
mod-2 flows necessarily take the value 1 only. A finite graph H = (W, F) is
called even if the degree of every vertex w ∈ W is even. It is elementary that
CH (2) = 1 (respectively, CH (2) = 0) if H is even (respectively, not even), and
therefore

(9.13) Eλ(CH (2)) = Pλ(H is even).

By (9.12), for any graph G,

(9.14) σ(x, y) = Pλ(G
x,y
P is even)

Pλ(G P is even)
,

when q = 2. Observations of this sort have led to the so-called ‘random-
current’ expansion for Ising models, thereby after some work [3, 5, 9] yielding
proofs amongst other things of the exponential decay of correlations in the high-
temperature regime. We return to the case q = 2 in Sections 9.2–9.4.

Whereas Theorem 9.11 concerns Potts models only, there is a random-cluster
generalization. We restrict ourselves here to the situation in which every edge has
the same parameter p, but we note that the result is easily generalized to allowing
different parameters for each edge. Recall that φG,p denotes product measure on
� = {0, 1}E with density p.

(9.15) Theorem [146, 157]. Let p ∈ [0, 1) and q ∈ (0,∞). Let λe = λ for all
e ∈ E, where p = 1 − e−λq .

(a) For x, y ∈ V ,

(q − 1)φG,p,q(x ↔ y) = Eλ
(
(−1)c(EP ∪〈x,y〉)T (Gx,y

P ; 0, 1 − q)
)

Eλ
(
(−1)c(EP )T (G P; 0, 1 − q)

) , (9.16)

where c(F) is the co-rank of the graph (V , F). In particular,

(q − 1)φG,p,q(x ↔ y) = Eλ(C(G
x,y
P ; q))

Eλ(C(G P ; q))
, q ∈ {2, 3, . . . }. (9.17)

(b) For q ∈ {2, 3, . . . },

φG,p(q
k(ω)) = (1 − p)|E |(q−2)/qq |V |Eλ(C(G P; q)). (9.18)

When q = 2, equation (9.18) reduces by (9.13) to

(9.19) φG,p(2k(ω)) = 2|V |Pλ(G P is even).
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This may be simplified further. Let ζ(e) = P(e) modulo 2. It is easily seen that
G P is even if and only if Gζ is even, and that the ζ(e), e ∈ E , are independent
Bernoulli variables with

Pλ(ζ(e) = 1) = 1
2 (1 − e−2λ) = 1

2 p.

Equation (9.18) may therefore be written as

(9.20) φG,p(2k(ω)) = 2|V |φG,p/2(the open subgraph of G is even).

Proof of Theorem 9.11. Since the parameter β appears always with the multiplica-
tive factor Je, we may without loss of generality take β = 1.

We begin with a calculation involving the Potts partition function ZP given in
(9.7). Let Z+ = {0, 1, 2, . . . } and consider vectors m = (me : e ∈ E) ∈ ZE

+. By
a Taylor expansion in the variables Je,

exp

{
−
∑

e∈E

Je

}
ZP =

∑

m∈Z
E+

(∏

e∈E

J me
e

me!
e−Je

)
∂m ZP

∣∣∣
J=0

(9.21)

= Eλ

(
∂ P ZP

∣∣∣
J=0

)

where

∂m ZP =
(∏

e∈E

∂me

∂ J me
e

)
ZP, m ∈ ZE

+.

By (9.7) with β = 1, and similarly to the proof of Theorem 1.10(a),

∂m ZP

∣∣∣
J=0

=
∑

σ∈6

∏

e∈E

(qδe(σ )− 1)me(9.22)

=
∑

σ∈6

∏

e∈Em

(qδe(σ )− 1)

=
∑

σ∈6

∏

e∈Em

∑

ne∈{0,1}
[−δne,0 + δne,1qδe(σ )]

=
∑

n∈{0,1}Em

∑

σ∈6
(−1)|{e: ne=0}|q |{e: ne=1}|

( ∏

e∈Em

δe(σ )
ne

)

=
∑

n∈{0,1}Em

(−1)|{e: ne=0}|q |{e: ne=1}|qk(m,n),

where k(m, n) is the number of connected components of the graph obtained from
Gm after deletion of all edges e with ne = 0. Therefore, by (9.4)–(9.5),

∂m ZP

∣∣∣
J=0

= (−1)|Em | ∑

n∈{0,1}Em

(−q)|{e: ne=1}|qk(m,n)(9.23)

= (−1)|Em |q |V |WGm (−1,−q)

= q |V |C(Gm; q).
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Combining (9.21)–(9.23), we conclude that

(9.24) exp

{
−
∑

e∈E

Je

}
ZP = q |V |Eλ(C(G P ; q)).

Note in passing that equation (9.18) follows as in (1.12).

Let x, y ∈ V . We define the unordered pair f = (x, y), and write δ f (σ ) =
δσx ,σy for σ ∈ 6. Then

σ(x, y) = πβJ,q(qδ f (σ )− 1)(9.25)

= 1

ZP

∑

σ∈6
(qδ f (σ )− 1) exp

{∑

e∈E

β Je(qδe(σ )− 1)

}
.

By an analysis parallel to (9.21)–(9.24),

exp

{
−
∑

e∈E

Je

}∑

σ∈6
(qδ f (σ )− 1) exp

{∑

e∈E

β Je(qδe(σ )− 1)

}
(9.26)

= q |V |Eλ(C(G
x,y
P ; q)),

and (9.12) follows by (9.24) and (9.25). �

Proof of Theorem 9.15. This theorem may be proved directly, but we shall derive
it from Theorem 9.11.

(a) Equation (9.17) holds by Theorems 1.16 and 9.11. By (9.5), equation (9.16)
holds for q ∈ {2, 3, . . . }. Since both sides are the ratios of polynomials in q and
e−λq of finite order, (9.16) is an identity in q ∈ (0,∞).

(b) This was noted after (9.24) above. �

9.2 Flows for the Ising model

Henceforth in this chapter we assume that q = 2, and we begin with a reminder.
Let H = (W, F) be a finite graph, and let degF (w) denote the degree of the vertex
w. We call H an even graph if degF (w) is even for everyw ∈ W . Let EH = (V , EF)
be a directed graph obtained from H by assigning a direction to each edge in F .
Since a non-zero mod-2 flow on EH may by definition take only the value 1,

(9.27) CH (2) =
{

1 if H is even,

0 otherwise.

Consider the Ising model on a finite graph G = (V , E)with parameters λe = β Je,
e ∈ E . As in (9.14),

(9.28) σ(x, y) = 2τλ,2(x, y) = Pλ(G
x,y
P is even)

Pλ(G P is even)
.
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The value of such a representation will become clear in the following discussion,
which is based on material in [3, 234, 300]. In advance of this, we make a remark
concerning (9.28). In deciding whether G P or Gx,y

P is an even graph, we need
only know the numbers P(e) when reduced modulo 2. That is, we can work with
ζ ∈ � = {0, 1}E given by ζ(e) = P(e) mod 2. Since P(e) has the Poisson
distribution with parameter λe, ζ(e) has the Bernoulli distribution with parameter

p′
e = Pλ(P(e) is odd) = 1

2 (1 − e−2λe).

We obtain thus from (9.28) that

(9.29) σ(x, y) = φp′(∂ζ = {x, y})
φp′(∂ζ = ∅)

,

where p′ = (p′
e : e ∈ E), φp′ denotes product measure on � with edge-densities

p′
e, and

∂ζ =
{
v ∈ V :

∑

e: e∼v
ζ(e) is odd

}
, ζ ∈ �,

where the sum is over all edges e incident to v.

Let M = (Me : e ∈ E) be a sequence of disjoint finite sets indexed by E ,
and let me = |Me|. As noted in the last section, the vector M may be used to
construct a multigraph Gm = (V , Em) in which each e ∈ E is replaced by me

edges in parallel; we may take Me to be the set of such edges. For x, y ∈ V , we
write ‘x ↔ y in m’ if x and y lie in the same component of Gm . We define the
set ∂M of sources of M by

(9.30) ∂M =
{
v ∈ V :

∑

e: e∼v
me is odd

}
.

For example, Gm is even if and only if ∂M = ∅. From the vector M we construct a
vector N = (Ne : e ∈ E) by deleting each member of each Me with probability 1

2 ,
independently of all other elements. That is, we let Bi , i ∈ ⋃e Me, be independent
Bernoulli random variables with parameter 1

2 , and we set

Ne = {i ∈ Me : Bi = 1}, e ∈ E .

Let PM denote the appropriate probability measure.

The following technical lemma is pivotal for the computations that follow.

(9.31) Theorem. Let M and m be as above. If x, y ∈ V are such that x 6= y and
x ↔ y in m then, for A ⊆ V ,

PM (∂N = {x, y}, ∂(M \ N) = A
)

= PM(∂N = ∅, ∂(M \ N) = A △ {x, y}
)
.
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Proof. Take Me to be the set of edges of Gm parallel to e, and assume that x ↔ y
in m. Let A ⊆ V . Let M be the set of all vectors n = (ne : e ∈ E) with ne ⊆ Me

for e ∈ E . Let α be a fixed path of Gm with endvertices x , y, viewed as a set of
edges, and consider the map ρ : M → M given by

ρ(n) = n △ α, n ∈ M.

The map ρ is one–one, and maps {n ∈ M : ∂n = {x, y}, ∂(M \ n) = A}
to {n′ ∈ M : ∂n′ = ∅, ∂(M \ n′) = A △ {x, y}}. Each member of M is
equiprobable under PM , and the claim follows. �

Let λ = (λe : e ∈ E) be a vector of non-negative reals, and recall the Poisson
graph with parameter λ. The following is a fairly immediate corollary of the last
theorem. Let M = (Me : e ∈ E) and M ′ = (M ′

e : e ∈ E) be vectors of disjoint
finite sets satisfying Me∩M ′

f = ∅ for all e, f ∈ E , and let me = |Me|, m′
e = |M ′

e|,
e ∈ E , be independent random variables such that each me and m′

e have the Poisson
distribution with parameter λe. Let M ∪ M ′ = (Me ∪ M ′

e : e ∈ E), and write
P for the appropriate probability measure. The following lemma is based on the
so-called switching lemma of [3].

(9.32) Corollary (Switching lemma). If x , y ∈ V are such that x 6= y and x ↔ y
in m + m′ then, for A ⊆ V ,

P
(
∂M = {x, y}, ∂M ′ = A

∣∣M ∪ M ′)

= P
(
∂M = ∅, ∂M ′ = A △ {x, y}

∣∣M ∪ M ′), P-a.s.

Proof. Conditional on the sets Me ∪ M ′
e, e ∈ E , the sets Me are selected by the

independent removal of each element with probability 1
2 . The claim follows from

Theorem 9.31. �

We present two applications of Corollary 9.32 to the Ising model, as in [3]. For
m = (me : e ∈ E) ∈ ZE

+, let

(9.33) ∂m =
{
v ∈ V :

∑

e: e∼v
me is odd

}
,

as in (9.30). In our study of the correlation functions τλ,2(x, y), we shall as before
write

σ(x, y) = 2τλ,2(x, y) = πλ,2(2δσx ,σy − 1), x, y ∈ V .

By (9.29),

(9.34) σ(x, y) = Pλ(∂P = {x, y})
Pλ(∂P = ∅)

.

Let QA denote the law of P conditional on the event {∂P = A}, that is,

QA(E) = Pλ(P ∈ E | ∂P = A).

We shall require two independent copies P1, P2 of P with potentially different
conditionings, and thus we write QA;B = QA × QB .
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(9.35) Theorem [3]. Let x, y, z ∈ V be distinct vertices. Then:

σ(x, y)2 = Q∅;∅(x ↔ y in P1 + P2),

σ (x, y)σ (y, z) = σ(x, z)Q{x,z};∅(x ↔ y in P1 + P2).

Proof. By (9.34) and Corollary 9.32,

σ(x, y)2 = Pλ × Pλ(∂P1 = {x, y}, ∂P2 = {x, y})
Pλ(∂P = ∅)2

= Pλ × Pλ(∂P1 = {x, y}, ∂P2 = {x, y}, x ↔ y in P1 + P2)

Pλ(∂P = ∅)2

= Pλ × Pλ(∂P1 = ∂P2 = ∅, x ↔ y in P1 + P2)

Pλ(∂P = ∅)2

= Q∅;∅(x ↔ y in P1 + P2).

Similarly,

σ(x, y)σ (y, z)

= Pλ × Pλ(∂P1 = {x, y}, ∂P2 = {y, z})
Pλ(∂P = ∅)2

= Pλ × Pλ(∂P1 = ∅, ∂P2 = {x, z}, x ↔ y in P1 + P2)

Pλ(∂P = ∅)2

= Pλ(∂P2 = {x, z})
Pλ(∂P = ∅)

· Pλ × Pλ

(
x ↔ y in P1 + P2

∣∣ ∂P1 = ∅, ∂P2 = {x, z}
)

= σ(x, z)Q{x,z};∅(x ↔ y in P1 + P2). �

Theorem 9.35 leads to an important correlation inequality known as the ‘Simon
inequality’. Let x, z ∈ V be distinct vertices. A subset W ⊆ V is said to separate
x and z if x, z /∈ W and every path from x to z contains some vertex of W .

(9.36) Corollary (Simon inequality) [300]. Let x, z ∈ V be distinct vertices,
and let W separate x and z. Then

σ(x, z) ≤
∑

y∈W

σ(x, y)σ (y, z).

Proof. By Theorem 9.35,

∑

y∈W

σ(x, y)σ (y, z)

σ (x, z)
=
∑

y∈W

Q{x,z};∅(x ↔ y in P1 + P2)

= Q{x,z};∅
(
|{y ∈ W : x ↔ y in P1 + P2}|

)
.
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Assume that the event ∂P1 = {x, z} occurs. On this event, x ↔ z in P1 + P2.
Since W separates x and z, the set {y ∈ W : x ↔ y in P1 + P2} is non-empty
on this event. Therefore, its mean cardinality is at least one under the measure
Q{x,z};∅, and the claim follows. �

The Ising model on G = (V , E) corresponds as described in Chapter 1 to a
random-cluster measure φG,p,q with q = 2. By Theorem 1.10, if λe = λ for all e,

σ(x, y) = 2τλ,2(x, y) = φG,p,q(x ↔ y),

where p = 1 − e−λq and q = 2. Therefore, the Simon inequality3 may be written
in the form

(9.37) φG,p,q(x ↔ z) ≤
∑

y∈W

φG,p,q(x ↔ y)φG,p,q(y ↔ z)

whenever W separates x and z. It is a curious fact that this inequality holds also
when q = 1, as noticed by Hammersley [177]; see [154, Chapter 6]. It may be
conjectured that it holds whenever q ∈ [1, 2].

The Simon inequality has an important consequence for the random-cluster
model with q = 2 on an infinite lattice, namely that the two-point correlation
function decays exponentially whenever it is summable. Let φp,q be the random-
cluster measure on Ld where d ≥ 2. We shall consider only the case p < pc(q),
and it is therefore unnecessary to mention boundary conditions.

(9.38) Corollary [300]. Let d ≥ 2, q = 2, and let p be such that

(9.39)
∑

x∈Zd

φp,q(0 ↔ x) < ∞.

There exists γ = γ (p, q) ∈ (0,∞) such that

φp,q(0 ↔ z) ≤ e−‖z‖γ (p,q), z ∈ Zd .

By the corollary, condition (9.39) is both necessary and sufficient for exponen-
tial decay. Related results for exponential decay appear in Section 5.4–5.6.

Proof. We use the Simon inequality in the form (9.37) as in [177, 300]. Let
3n = [−n, n]d and ∂3n = 3n \3n−1, and take q = 2. By (9.37) with G = 3n ,
and Proposition 5.12,

(9.40) φp,q (x ↔ z) ≤
∑

y∈W

φp,q(x ↔ y)φp,q(y ↔ z),

3In association with related inequalities of Hammersley [177] and Lieb [234], see Theorem
9.44(b), this is an example of what is sometimes called the Hammersley–Simon–Lieb inequality.
The Simon inequality is a special case of the Boel–Kasteleyn inequalities, [56, 57].
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for x, z ∈ Zd and any finite separating set W .

By (9.39), there exists c ∈ (0, 1) and N ≥ 1 such that
∑

x∈∂3N

φp,q(0 ↔ x) < c.

For any integer k > 1 and any vertex z ∈ ∂3kN , we have by progressive use of
(9.40) and the translation-invariance of φp,q (see Theorem 4.19(b)) that

φp,q(0 ↔ z)

≤
∑

x1:
‖x1‖=N

φp,q (0 ↔ x1)φp,q(x1 ↔ z)

≤
∑

x1:
‖x1‖=N

∑

x2:
‖x2−x1‖=N

φp,q(0 ↔ x1)φp,q(x1 ↔ x2)φp,q(x2 ↔ z)

≤
∑

x1:
‖x1‖=N

· · ·
∑

xk :
‖xk−xk−1‖=N

φp,q(0 ↔ x1) · · ·φp,q(xk−1 ↔ xk)φp,q(xk ↔ z)

≤ ck .

Therefore, there exists g > 0 such that

φp,q(0 ↔ z) ≤ e−‖z‖g if ‖z‖ is a multiple of N .

More generally, let z ∈ Zd and write ‖z‖ = k N + l where 0 ≤ l < N . By (9.40),

φp,q(0 ↔ z) ≤
∑

x :
‖x‖=kN

φp,q(0 ↔ x)φp,q(x ↔ z) ≤ e−kNg .

Furthermore, φp,q(0 ↔ z) < 1 for z 6= 0, and the claim follows. �

We close this section with an improvement of the Simon inequality due to Lieb
[234]. This improvement may seem at first sight to be slender, but it leads to a
significant conclusion termed the ‘vanishing of the mass gap’.

We first re-visit Theorem 9.31. As usual, G = (V , E) is a finite graph, and we
partition E as E = F ∪ H , where F ∩ H = ∅. Let M = (Me : e ∈ E) be a vector
of disjoint finite sets with cardinalities me = |Me|. We write M F = (Me : e ∈ F)
and define the vector mF by

mF
e =

{
me if e ∈ F,

0 otherwise,

and similarly for M H and m H . It is elementary that m = mF + m H , and that the
sets of sources of M F and M H are related by

(9.41) ∂M F △ ∂M H = ∂M.

As before Theorem 9.31, we select subsets Ne from the Me by deleting each
member independently at random with probability 1

2 . For given M , the associated
probability measure is denoted by PM .
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(9.42) Theorem. Let F, H , M, and m be as above. If x, y ∈ V are such that
x 6= y and x ↔ y in mF then, for A ⊆ V ,

PM (∂N F = {x, y}, ∂N H = ∅, ∂(M \ N) = A
)

= PM(∂N F = ∅, ∂N H = ∅, ∂(M \ N) = A △ {x, y}
)
.

Proof. This follows that of Theorem 9.31. Let α be a fixed path of GmF with
endvertices x and y, and consider the map ρ(n) = n △ α, n ∈ M. This map is a
one–one correspondence between the two subsets of M corresponding to the two
events in question. �

We obtain as in the switching lemma, Corollary 9.32, the following corollary
involving the two independent random vectors M and M ′, each being such that
me = |Me| and m′

e = |M ′
e| have the Poisson distribution with parameter λ ∈

[0,∞). The proof follows that of Corollary 9.32.

(9.43) Corollary. Let E be partitioned as E = F ∪ H . If x , y ∈ V are such that
x 6= y and x ↔ y in mF + m′F then, for A ⊆ V ,

P
(
∂M F = {x, y}, ∂M H = ∅, ∂M ′ = A

∣∣M ∪ M ′)

= P
(
∂M F = ∅, ∂M H = ∅, ∂M ′ = A △ {x, y}

∣∣M ∪ M ′), P-a.s.

Let P1 and P2 be independent copies of the Poisson field P , with inten-
sity λ ∈ [0,∞), and let E be partitioned as E = F ∪ H . We write QA,B;C
for the probability measure governing the pair P1, P2 conditional on the event
{∂P F

1 = A} ∩ {∂P H
1 = B} ∩ {∂P2 = C}. We recall from (9.28) that σ(x, y)

denotes a certain correlation function associated with the graph G = (V , E), and
we write σ F (x, y) for the quantity defined similarly on the smaller graph (V , F).

(9.44) Theorem. Let x, y, z ∈ V be distinct vertices, and let F ⊆ E.

(a) We have that

σ F (x, y)σ (y, z) = σ(x, z)Q∅,∅;{x,z}(x ↔ z in P F
1 + P F

2 ).

(b) Lieb inequality [234]. Let W separate x and z, and let F be the set of edges
with at least one endvertex not separated by W from x. Then

σ(x, z) ≤
∑

y∈W

σ F (x, y)σ (y, z).

The sets W and F of part (b) are illustrated in Figure 9.1. By the random-cluster
representation of Theorem 1.16 and positive association,

σ F (x, y) = φG,p,q(x ↔ y | all edges in E \ F are closed)

≤ φG,p,q(x ↔ y) = σ(x, y),
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W

y

x

Figure 9.1. Every path from x to y passes through W . The edges inside W comprise F .

where q = 2 and p = 1 − e−2λ as before. Therefore, the Lieb inequality is a
strengthening of the Simon inequality.

Proof. (a) Since F and H are disjoint, P F
1 and P H

1 are independent random
vectors. As in the proof of Theorem 9.35, by Corollary 9.43,

σ F (x, y)σ (y, z)

= Pλ × Pλ(∂P F
1 = {x, y}, ∂P H

1 = ∅, ∂P2 = {y, z})
Pλ(∂P F

1 = ∅)Pλ(∂P H
1 = ∅)Pλ(∂P2 = ∅)

= Pλ × Pλ(∂P F
1 = ∂P H

1 = ∅, ∂P2 = {x, z}, x ↔ y in P F
1 + P F

2 )

Pλ(∂P F
1 = ∅)Pλ(∂P H

1 = ∅)Pλ(∂P2 = ∅)

= σ(x, z) · Pλ × Pλ(∂P F
1 = ∂P H

1 = ∅, ∂P2 = {x, z}, x ↔ y in P F
1 + P F

2 )

Pλ(∂P F
1 = ∅)Pλ(∂P H

1 = ∅)Pλ(∂P2 = {x, z})
= σ(x, z)Q∅,∅;{x,z}(x ↔ y in P F

1 + P F
2 ),

(b) Evidently,

∑

y∈W

σ F (x, y)σ (y, z)

σ (x, z)
=
∑

y∈W

Q∅,∅;{x,z}(x ↔ y in P F
1 + P F

2 )

= Q∅,∅;{x,z}
(|{y ∈ W : x ↔ y in P F

1 + P F
2 }|)

≥ 1,

since, conditional on ∂P2 = {x, z}, P2 contains (almost surely) a path from x to
z, and any such path necessarily intersects W . �

We return now to the question of exponential decay, which we formulate in the
context of the random-cluster model on Zd with q = 2. By Theorem 9.44(b) with
W = ∂3k as before, φp,q(0 ↔ z) decays exponentially as ‖z‖ → ∞ if and only
if

(9.45)
∑

x∈∂3k

φ3k ,p,q(0 ↔ x) < 1 for some k ≥ 1,
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where q = 2. Condition (9.45) is a ‘finite-volume condition’ in that it uses
probability measures on finite graphs only. We arrive thus at the following result,
sometimes termed the ‘vanishing of the mass gap’. Let q = 2 and

ψ(p, q) = lim
n→∞

{
− 1

n
logφ0

p,q(0 ↔ ∂3n)

}

as in Theorem 5.45. It is clear thatψ(p, q) is non-increasing in p, andψ(p, q) = 0
if p > pc(q). One of the characteristics of a first-order phase transition is the
(strict) exponential decay of free-boundary-condition connectivity probabilities at
the critical point, see Theorems 6.35(c) and 7.33.

(9.46) Theorem (Vanishing mass gap) [234]. Let q = 2. Then ψ(p, q)
decreases to 0 as p ↑ pc(q). In particular, ψ(pc(q), q) = 0.

Proof. We consider only values of p satisfying ǫ < p < 1 − ǫ where ǫ > 0 is
fixed and small. Let k ≥ 1, and let η(ω) be the set of open edges of a configuration
ω. By Theorem 3.12 and the Cauchy–Schwarz inequality, with q = 2 throughout,

0 ≤ d

dp

∑

x∈∂3k

φ3k ,p,q(0 ↔ x)

≤
∑

x∈∂3k

1

ǫ(1 − ǫ)
covk(|η|, 1{0↔x})

≤
∑

x∈∂3k

1

ǫ(1 − ǫ)

√
φ3k ,p,q(|η|2)

≤ C1k2d−1,

for some constant C1 = C1(ǫ), where covk denotes covariance with respect to
φ3k ,p,q . Therefore, for ǫ < p < p′ < 1 − ǫ,

∑

x∈∂3k

φ3k ,p′,q(0 ↔ x) ≤ C1k2d−1(p′ − p)+
∑

x∈∂3k

φ3k ,p,q(0 ↔ x).

It follows that, if (9.45) holds for some p ∈ (ǫ, 1−ǫ), then it holds for some p′ > p.
That is, if φp,q (0 ↔ z) decays exponentially as ‖z‖ → ∞, then the same holds
for some p′ satisfying p′ > p. The set {p ∈ (0, 1) : ψ(p, q) > 0} is therefore
open. Since ψ(p, q) = 0 for p > pc(q), we deduce that ψ(pc(q), q) = 0.

By Theorem 4.28(c) and the second inequality of (5.46), ψ(p, q) is the limit
from above of upper-semicontinuous functions of p. Therefore, ψ(p, q) is itself
upper-semicontinuous, and hence left-continuous. �

Could some of the results of this section be valid for more general values of q
than simply q = 2? It is known that the mass gap vanishes when q = 1, [154,
Thm 6.14], and does not vanish for sufficiently large values of q (and any d ≥ 2),
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see [224] and Section 7.5. Therefore, Theorem 9.44(b) is not generally true for
large q . It seems possible that the conclusions hold for sufficiently small q , but
this is unproven.

One may ask whether the weaker Simon inequality, Corollary 9.36, might hold
for more general values of q . The following example would need to be assimilated
in any such result.

(9.47) Example4. Let G = (V , E) be a cycle of length m, illustrated in Figure
9.2. We work with the partition function

(9.48) Y =
∑

ω∈�

(
p

1 − p

)|η(ω)|
qk(ω),

where � = {0, 1}E as usual. Since

k(ω) =
{

1 if η(ω) = E,

m − |η(ω)| otherwise,

we have that

Y =
m−1∑

j=0

(
m

j

)
α j qm− j + αmq = (α + q)m − αm + αmq(9.49)

= Qm + (q − 1)αm .

where
α = p

1 − p
, Q = q + α.

Let x, y ∈ V , let P1, P2 be the two paths joining x and y, and let k and l be
their respective lengths. Configurations which contain P1 but not P2 contribute

Y1 =
l−1∑

j=0

(
l

j

)
αk+ j qm−k− j = αk

l−1∑

j=0

(
l

j

)
α j q l− j = αk(Ql − αl )

to the summation of (9.48), with a similar contribution Y2 from configurations
containing P2 but not P1. The single configuration containing both P1 and P2
contributes Y12 = qαm to the summation. Therefore,

φp,q (x ↔ y) = Y1 + Y2 + Y12

Y
(9.50)

= (α/Q)k + (α/Q)l + (q − 2)(α/Q)m

1 + (q − 1)(α/Q)m
.

4Calculations by S. Janson, on 11 March 2003 at Melbourn.
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w1

x y

w2

Figure 9.2. A cycle of length 8 with four marked vertices.

Consider now the specific example illustrated in Figure 9.2. Take m = 8, let
x , y be opposite one another, and let w1,w2 be the intermediate vertices indicated
in the figure. For fixed q and small α, by (9.50),

(9.51) φp,q(x ↔ y) = 2

(
α

Q

)4

+ (q − 2)

(
α

Q

)8

+ O(α12).

[A corresponding expression is valid for fixed α and large q .] Similarly,

φp,q(x ↔ wj ) = φp,q(wj ↔ y) =
(
α

Q

)2

+
(
α

Q

)6

+ O(α8), j = 1, 2.

Hence,

2∑

j=1

φp,q(x ↔ wj )φp,q(wj ↔ y) = 2

{(
α

Q

)2

+
(
α

Q

)6

+ O(α8)

}2

(9.52)

= 2

(
α

Q

)4

+ 4

(
α

Q

)8

+ O(α10).

Comparing (9.51)–(9.52), we see that

φp,q (x ↔ y) >
2∑

j=1

φp,q (x ↔ wj )φp,q(wj ↔ y)

if q > 6 and α is sufficiently small. This may be compared with (9.37).
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9.3 Exponential decay for the Ising model

In the remaining two sections of this chapter, we review certain aspects of the
mathematics of the Ising model in two and more dimensions. Several of the
outstanding problems for Potts and random-cluster models have rigorous solutions
in the Ising case, when q = 2, and it is a challenge of substance to extend such
results (where valid) to the case of general q ∈ [1,∞). Our account of the
Ising model will be restricted to the work of Aizenman, Barsky, and Fernández
as reported in two major papers [5, 9], of which we begin in this section with
the first. The principal technique of these papers is the so-called ‘random-current
representation’, that is, the representation of the Ising random field in terms of
non-zero mod-2 flows. See, for example, the representation (9.28) for the two-
point correlation function. Without more ado, we state the main theorem in the
language of the random-cluster model.

(9.53) Theorem (Finite susceptibility for q = 2 random-cluster model) [5].
Let p ∈ [0, 1], q = 2, d ≥ 2, and let φ1

p,q be the wired random-cluster measure

on Ld . The open cluster C at the origin satisfies

φ1
p,q(|C|) < ∞, p < pc(q).

This implies exponential decay, by Theorem 9.38: if p < pc(q), the connec-
tivity function φ1

p,q(0 ↔ z) decays exponentially to zero as ‖z‖ → ∞. When

d = 2, it implies that pc(2) =
√

2/(1 +
√

2), see Theorem 6.18.

(9.54) Theorem (Mean-field bound) [5]. Under the conditions stated in Theorem
9.53, there exists a constant c = c(d) > 0 such that the percolation probability
θ1(p, q) = φ1

p,q(0 ↔ ∞) satisfies

(9.55) θ1(p, 2) ≥ c(p − pc)
1
2 , p > pc = pc(2).

Through the use of scaling theory (see [154, Chapter 9]), one is led to predictions
concerning the existence of critical exponents for quantities exhibiting singularities
at the critical point pc(q). It is believed in particular that the function θ(·, 2)
possesses a critical exponent5 in that there exists b ∈ (0,∞) satisfying

(9.56) θ1(p, 2) = |p − pc|b(1+o(1)) as p ↓ pc = pc(2).

If this is true, then b ≤ 1
2 by Theorem 9.54. It turns out that the latter inequality

is sharp in the sense that, when d ≥ 4, it is satisfied with equality; see Theorem
9.58. The value b = 1

2 is in addition the ‘mean-field’ value of the critical exponent,

5We write b rather than the more usual β for the critical exponent associated with the perco-
lation probability, in order to avoid duplication with the inverse-temperature of the Ising model.

c©Springer-Verlag 2006



274 Flows in Poisson Graphs [9.4]

as we shall see in Section 10.7 in the context of the random-cluster model on a
complete graph.

Proofs of the above theorems may be found in [5], and are omitted from the
current work since they are Ising-specific and have not (yet) been generalized to
the random-cluster setting for general q . The key ingredient is the random-current
representation of the last section, utilized with ingenuity.

Nevertheless, included here is the briefest sketch of the approach; there is a
striking similarity to, but also striking differences from, that used to prove corre-
sponding results for percolation, see [4], [154, Section 5.3]. First, one introduces
an external field h into the ferromagnetic Ising model with inverse-temperature
β. This amounts in the context of the random-cluster model to the inclusion of a
special vertex called by some the ‘ghost’, to which every vertex is joined by an
edge with parameter γ = 1 − e−βh . One works on a finite box 3 with ‘toroidal’
boundary conditions. An important step in the proof is the following differential
inequality for the mean spin-value M3(β, h) at the origin:

(9.57) M3 ≤ tanh(βh)
∂M3

∂(βh)
+ M2

3

(
β
∂M3

∂β
+ M3

)
.

The proof of this uses the random-current representation.

Equation (9.57) is complemented by two further differential inequalities:

∂M3

∂β
≤ J M3

∂M3

∂(βh)
,

∂M3

∂(βh)
≤ M3

βh
.

Using an analysis presented in [4] for percolation, the three inequalities above
imply Theorem 9.54.

9.4 The Ising model in four and more dimensions

Just as two-dimensional systems have special properties, so there are special argu-
ments valid when the number d of dimensions is sufficiently large. For example,
percolation in 19 and more dimensions is rather well understood through the work
of Hara and Slade and others, [23], [154, Section 10.3], [179, 303], using the
so-called ‘lace expansion’. One expects that results for percolation in high dimen-
sions will be extended in due course to d > 6, and even in part to d ≥ 6. Key
to this work is the so-called ‘triangle condition’, namely that T (pc) < ∞ where
pc = pc(1) and

T (p) =
∑

x,y∈Zd

φp(0 ↔ x)φp(x ↔ y)φp(y ↔ 0).

The situation for the Ising model, and therefore for the q = 2 random-cluster
model, is also well understood, but this time under the considerably less restrictive
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assumption that d ≥ 4. The counterpart of the triangle condition is the ‘bubble
condition’, namely that B(βc) < ∞ where, in the usual notation of the Ising model
without external field,

B(β) =
∑

x∈Zd

〈σ0 σx 〉2.

In the language of the random-cluster model with p = 1−e−β , the corresponding
quantity is

B(β) =
∑

x∈Zd

φ0
p,2(0 ↔ x)2.

Once again, one introduces an external field and then establishes a differential
inequality via the random-current representation. We state the main result in the
language of the random-cluster model.

(9.58) Theorem (Critical exponent for q = 2 random-cluster model) [9].
Let q = 2 and d ≥ 4. We have that

θ1(p, q) = (p − pc)
1
2 (1+o(1)) as p ↓ pc = pc(2).

Thus, the critical exponent b exists when d ≥ 4, and it takes its ‘mean-field’
value b = 1

2 . This implies in particular that the percolation probability θ1(p, 2) is
a continuous function of p at the critical value pc(2). Continuity has been proved
by classical methods in two dimensions6, and there remains only the d = 3 case
for which the continuity of θ1(·, 2) is as yet unproved. In summary, it is proved
when d 6= 3 that the phase transition is of second order, and this is believed to be
so when d = 3 also.

Similarly to the results of the last section, Theorem 9.58 is proved by an anal-
ysis of the model parametrized by the two variables β, h. This yields several
further facts including an exact critical exponent for the behaviour of the Ising
magnetization M(β, h) with β = βc and h ↓ 0, namely

M(βc, h) = h
1
3 (1+o(1)) as h ↓ 0.

We refer the reader to [5, 9] for details of the random-current representation
in practice, for proofs of the above results and of more detailed asymptotics, and
for a more extensive bibliography. The random-current representation is a key
ingredient in the derivation of a lace expansion for the Ising model with either
nearest-neighbour or spread-out interactions, [288]. This has led to asymptotic
formulae for the two-point correlation function when d > 4. A broader perspective
on phase transitions may be found in [118].

6Note added at reprinting: a probabilistic proof can be found in [329, 330].
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Chapter 10

On Other Graphs

Summary. Exact solutions are known for the random-cluster models on
complete graphs and on regular trees, and these provide theories of mean-
field-type. There is a special argument for the complete graph which utilizes
the theory of Erdős–Rényi random graphs, and leads to exact calculations
valid for all values of q ∈ (0,∞). The transition is of first order if and only
if q ∈ (2,∞). The (non-)uniqueness of random-cluster measures on a tree,
when subject to a variety of boundary conditions, may be studied via an
iterative formula permitting exact calculations of the critical value and the
percolation probability. There is a discussion of the random-cluster model
on a general non-amenable graph.

10.1 Mean-field theory

The theory of phase transitions addresses primarily singularities associated with
spaces of finite dimension. There are two reasons for considering a ‘mean-field’
theory in which the number d of dimensions may be considered to take the value
∞. Firstly, the major problems confronting the mathematics lie in the geometrical
constraints imposed by finite-dimensional Euclidean space; a solution for ‘infinite
dimension’ can cast light on the case of finite dimension. The second reason is
the desire to understand better the d-dimensional process in the limit of large d .
One is led thus to the problems of establishing the theory of a process viewed
as ∞-dimensional, and to proving that this is the limit in an appropriate sense
of the d-dimensional process. Progress is well advanced on these two problems
for percolation (see [154, Chapter 10]) but there remains much to be done for the
random-cluster model.

Being informed by progress for percolation, it is natural to consider as mean-
field models the random-cluster models on complete graphs and on an infinite tree.
In the former case, we consider the model on the complete graph Kn on n vertices,
and we pass to the limit as n → ∞. The vertex-degrees tend to ∞ as n → ∞,
and some re-scaling is done in order to establish a non-trivial limit. The correct
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way to do this is to set p = λ/n for fixed λ > 0. The consequent theory may be
regarded as an extension of the usual Erdős–Rényi theory of random graphs, [61,
194]. This model is expounded in Section 10.2. The main results are described
in Section 10.3, and are proved in Sections 10.4–10.6. The nature of the phase
transition is discussed in Section 10.7, and the consequences for large deviations
of cluster-counts are presented in Section 10.8. The principal reference1 is [62],
of which heavy use is made in this chapter.

The random-cluster model on a finite tree is essentially trivial. Owing to the
absence of circuits, a random-cluster measure thereon is simply a product measure.
The tree is a more interesting setting when it is infinite and subjected to boundary
conditions. There is a continuum of random-cluster measures indexed by the set
of possible boundary conditions. The present state of knowledge is summarized in
Sections 10.9–10.11. The relevant references are [160, 167, 196] but the current
treatment is fundamentally different.

Trees are examples of graphs whose boxes have surface/volume ratios bounded
away from 0. Such graphs are termed ‘non-amenable’ and, subject to further
conditions, they may have three phases rather than the more usual two. A brief
account of this phenomenon may be found in Section 10.12.

10.2 On complete graphs

Let n ≥ 1, and let Kn = (V , V (2)) be the complete graph on the vertex set V =
Vn = {1, 2, . . . , n}, with edge-set the set V (2) of all

(n
2

)
pairs of unordered elements

of V . We shall consider the random-cluster measure on Kn with parameters
p ∈ (0, 1) and q ∈ (0,∞). We define the ‘weight function’

(10.1) P̃n,p,q (F) = p|F |(1 − p)(
n
2)−|F |qk(V ,F), F ⊆ V (2),

where k(V , F) denotes the number of components of the graph (V , F). The
partition function is

(10.2) Zn,p,q =
∑

F⊆V (2)

P̃n,p,q (F)

and the random-cluster measure on subsets of V (2) is then given by

(10.3) φn,p,q(F) = P̃n,p,q (F)

Zn,p,q
, F ⊆ V (2).

Thus, for any given n, p, q , the measure φn,p,q is the law of a random graph with n
vertices which we denote by Gn,p,q . We sometimes write φn,p,q(F) as φV ,p,q(F).

1The random-cluster model on the complete graph is related to the ‘first-shell’ model of
Whittle, [317, 318].
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λc(q)

q
2 4 6 8 10

1

2

3

4

5

Figure 10.1. The critical value λc(q). There is a discontinuity in the second derivative at the
value q = 2.

In order to facilitate the notation later, we have chosen to take as sample space the
set of subsets of V (2) rather than the vector space {0, 1}V (2) .

The random-cluster measure of (10.3) has two parameters, p and q . When
q = 1, we recover the usual Erdős–Rényi model usually denoted by Gn,p , see
[61, 194]. When q ∈ {2, 3, . . . }, the random-cluster model corresponds in the
usual way to a Potts model on the complete graph Kn with q states and with
inverse-temperature β = − log(1 − p).

The principal technique for analysing the mean-field Potts model relies heavily
upon the assumption that q is an integer, see [324]. This technique is invalid for
general real values of q , and one needs a new method in order to understand the
full model. The principal extra technique, described in Section 10.3, is a method
whereby properties of Gn,p,q may be studied via corresponding properties of
the usual random graph Gn,p . Unlike the case of lattice systems, this allows
an essentially complete analysis of the asymptotic properties of random-cluster
measures on Kn for all values of p ∈ (0, 1) and q ∈ (0,∞). Results for φn,p,q are
obtained using combinatorial estimates, and no use is made of the FKG inequality.

As in the Erdős–Rényi theory of the giant component when q = 1, we set
p = λ/n where λ is a positive constant, and we study the size of the largest
component of the ensuing graph Gn,λ/n,q in the limit as n → ∞. It turns out that
there is a critical value of λ, depending on the value of q , that marks the arrival of
a ‘giant component’ of the graph. This critical value is given by

(10.4) λc(q) =





q if q ∈ (0, 2],

2

(
q − 1

q − 2

)
log(q − 1) if q ∈ (2,∞),

and is plotted in Figure 10.1
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It will turn out that the proportion of vertices in the largest component is roughly
constant, namely θ(λ, q), for large n. It is convenient to introduce a definition of
θ immediately, namely

(10.5) θ(λ, q) =
{

0 if λ < λc(q),

θmax if λ ≥ λc(q),

where θmax is the largest root of the equation

(10.6) e−λθ = 1 − θ

1 + (q − 1)θ
.

The roots of (10.6) are illustrated in Figure 10.2.

We note some of the properties of θ(λ, q). Firstly, θ(λ, q) > 0 if and only if

either: λ > λc(q),

or: λ = λc(q) and q > 2,

see Lemma 10.12. Secondly, for all q ∈ (0,∞), θ(λ, q) is non-decreasing in λ,
and it follows that θ(·, q) is continuous if q ∈ (0, 2], and has a unique (jump)
discontinuity at λ = λc(q) if q ∈ (2,∞). This jump discontinuity corresponds to
a phase transition of first order.

We say that ‘almost every (a.e.) Gn,p,q satisfies property 5’, for a given
sequence p = pn and a fixed q , if

φn,p,q(Gn,p,q has5) → 1 as n → ∞.

We summarize the main results of the following sections as follows.

(a) If 0 < λ < λc(q) and q ∈ (0,∞), then almost every Gn,λ/n,q has largest
component of order log n.

(b) If λ > λc(q) and q ∈ (0,∞), then almost every Gn,λ/n,q consists of a
‘giant component’ of order θ(λ, q)n, together with other components of
order log n or smaller.

(c) If λ = λc(q) and q ∈ (0, 2], then almost every Gn,λ/n,q has largest compo-
nent of order n2/3.

The behaviour of Gn,λ/n,q with q ∈ (2,∞) and λ = λn → λc(q) has been studied
further in the combinatorial analysis of [238].

There are two main steps in establishing the above facts. The first is to establish
the relation (10.6) by studying the size of the largest component of Gn,λ/n,q. When
q ∈ (2,∞), (10.6) has three solutions for large λ, see Figure 10.2. In order to
decide which of these is the density of the largest component, we shall study the
number of edges in Gn,λ/n,q . That is to say, we shall find the function ψ(λ, q)
such that almost every Gn,λ/n,q has (order) ψ(λ, q)n edges. It will turn out that
the function ψ(·, q) is discontinuous at the critical point of a first-order phase
transition.

The material presented here for the random-cluster model on Kn is taken from
[62]. See also [238].
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θ(λ, q)

q = 1.2

λ

θ(λ, q)

q = 2

λ

θ(λ, q)

q = 4

λ

1 2 3 4 5 6 7 8

-0.5

0

0.5

1

1 2 3 4 5 6 7 8

-0.5

0

0.5

1

1 2 3 4 5 6 7 8

-0.5

0

0.5

1

Figure 10.2. The roots of equation (10.6) are plotted against λ in the three cases q = 1.2,
q = 2, q = 4. There is always a root θ = 0, and there is a further root which is drawn here.
The latter has been extended into the lower half-plane (of negative θ ), although this region has
no apparent probabilistic significance.
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10.3 Main results for the complete graph

Let q ∈ (0,∞) and p = λ/n where λ is a positive constant. For ease of notation,
we shall sometimes suppress explicit reference to q . We shall make heavy use of
the critical value λc(q) given in (10.4), and the function θ(λ) = θ(λ, q) defined
in (10.5)–(10.6). The properties of roots of (10.6) will be used in some detail, but
these are deferred until Lemma 10.12. For the moment we note only that θ(λ) = 0
if and only if: either λ < λc(q), or λ = λc(q) and q ≤ 2.

There are three principal theorems dealing respectively with the subcritical case
λ < λc(q), the supercritical case λ > λc(q), and the critical case λ = λc(q). In
the matter of notation, for a sequence (Xn : n = 1, 2, . . . ) of random variables,
we write Xn = Op( f (n)) if Xn/ f (n) is bounded in probability:

P
(|Xn | ≤ f (n)ω(n)

) → 1 as n → ∞

for any sequence ω(n) satisfying ω(n) → ∞ as n → ∞. Similarly, we write
Xn = op( f (n)) if Xn/ f (n) → 0 in probability as n → ∞:

P
(
|Xn| ≤ f (n)/ω(n)

)
→ 1 as n → ∞

for some sequence ω(n) satisfying ω(n) → ∞. Convergence in probability is

denoted by the symbol
P→.

(10.7) Theorem (Subcritical case) [62]. Let q ∈ (0,∞) and λ < λc(q).

(a) Almost every Gn,λ/n,q comprises trees and unicyclic components only.

(b) There are Op(1) unicyclic components with a total number Op(1) of vertices.

(c) The largest component of almost every Gn,λ/n,q is a tree with orderα log n+
Op(log log n), where

1

α
= − log(λ/q)+ λ

q
− 1 > 0.

(d) The number of edges in Gn,λ/n,q is λn/(2q)+ op(n).

(10.8) Theorem (Supercritical case) [62]. Let q ∈ (0,∞) and λ > λc(q).

(a) Almost every Gn,λ/n,q consists of a giant component, trees, and unicyclic
components.

(b) The number of vertices in the giant component is θ(λ)n + op(n), and the
number of edges is

λθ(λ)

{
1

q
+
(

1

2
− 1

q

)
θ(λ)

}
n + op(n).

(c) The largest tree in almost every Gn,λ/n,q has order α log n + op(log n),
where

1

α
= − logβ + β − 1 > 0, β = λ

q
(1 − θ(λ)).
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(d) There are Op(1) unicyclic components with a total number Op(1) of vertices.

(e) The number of edges in Gn,λ/n,q is

λ

2q

[
1 + (q − 1)θ(λ)2

]
n + op(n).

(10.9) Theorem (Critical case) [62]. Let q ∈ [1, 2] and λ = λc(q).

(a) Almost every Gn,λ/n,q consists of trees, unicyclic components, and Op(1)
components with more than one cycle.

(b) The largest component has order op(n).

(c) The total number of vertices in unicyclic components is Op(n2/3).

(d) The largest tree has order Op(n2/3).

More detailed asymptotics are available for Gn,λ/n,q by looking deeper into the
proofs. The last theorem has been extended to the cases q ∈ (0, 1) and q ∈ (2,∞)

in [238], where a detailed combinatorial analysis has been performed.

The giant component, when it exists, has order approximately θ(λ)n, with θ(λ)
given by (10.5)–(10.6). We study next the roots of (10.6). Note first that θ = 0
satisfies (10.6) for all λ and q , and that all strictly positive roots satisfy 0 < θ < 1.
Let

(10.10) f (θ) = 1

θ

[
log{1 + (q − 1)θ} − log(1 − θ)

]
, θ ∈ (0, 1),

and note that θ ∈ (0, 1) satisfies (10.6) if and only if f (θ) = λ. Here are two
elementary lemmas concerning the function f .

(10.11) Lemma. The function f is strictly convex on (0, 1), and satisfies f (0+) =
q and f (1−) = ∞.

(a) If q ∈ (0, 2], the function f is strictly increasing.

(b) If q ∈ (2,∞), there exists θmin ∈ (0, 1) such that f is strictly decreasing
on (0, θmin) and strictly increasing on (θmin, 1).

Proof. If t > −1 then (1 + tθ)−1 is a strictly convex function of θ on (0, 1).
Hence, the function

f (θ) =
∫ q−1

−1

dt

1 + tθ

is strictly convex. Furthermore,

lim
θ↑1

log

(
1 + (q − 1)θ

1 − θ

)
= lim

ǫ↓0
log

(
q − (q − 1)ǫ

ǫ

)
= ∞,

implying that f (1−) = ∞. Applying Taylor’s theorem about the point θ = 0, we
find that

f (θ) = 1

θ

[
(q − 1)θ − 1

2 (q − 1)2θ2 + θ + 1
2θ

2 + O(θ3)
]

= q + 1
2 q(2 − q)θ + O(θ2),
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f (θ)

q > 2

q = 2

1 ≤ q < 2

θ
10.25 0.5 0.75 1

2

4

6

8

Figure 10.3. Sketches of the function f (θ) in the three cases 1 ≤ q < 2, q = 2, and q > 2.
The respective values of q can be read off from the y-axis, since f (0+) = q. Note that f is
strictly increasing if and only if q ≤ 2, and f ′(0) = 0 when q = 2. Recall that the positive
roots of (10.6) are obtained by intersecting the graph of f by the horizontal line f (θ) = λ.

whence f (0+) = q and f ′(0+) = 1
2 q(2 − q). These facts imply parts (a) and

(b) of the lemma. �

In Figure 10.3 is plotted f against θ in the three cases q ∈ [1, 2), q = 2, and
q ∈ (2,∞). Since θ ∈ (0, 1) is a root of (10.6) if and only if f (θ) = λ, Lemma
10.11 has the following consequence.

(10.12) Lemma. The non-negative roots of equation (10.6) are given as follows,
in addition to the root θ = 0.

(a) Let q ∈ (0, 2].

(i) If 0 < λ ≤ λc(q) = q, there exists a unique root θ = 0.

(ii) If q < λ, there exists a unique positive root θmax(λ), which satisfies
θmax(q+) = 0.

(b) Let q ∈ (2,∞), and let λmin = f (θmin)where θmin is given in Lemma 10.11.

(i) If 0 < λ < λmin, there exists a unique root θ = 0.

(ii) If λ = λmin, then θmin is the unique positive root.

(iii) If λmin < λ < q, there exist exactly two positive roots, θ1(λ) and
θmax(λ).

(iv) If λ ≥ q, there exists a unique positive root θmax(λ).

We shall see later that λmin < λc(q) < q when q > 2, and that the function
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θ(λ) of Theorems 10.7–10.9 satisfies

(10.13) θ(λc(q)) =





0 if q ≤ 2,
q − 2

q − 1
if q > 2.

Furthermore, we shall obtain in Section 10.6 the following result for the asymptotic
behaviour of the partition function Zn,λ/n,q as n → ∞. This will find application
in Section 10.8 to large deviations for the cluster-count of the random-cluster
measure.

(10.14) Theorem (Existence of pressure) [62]. If q ∈ (0,∞) and λ ∈ (0,∞),

1

n
log Zn,λ/n,q → η(λ) as n → ∞,

where the ‘pressure’ η(λ) = η(λ, q) is given by

(10.15) η(λ) = g(θ(λ))

2q
− q − 1

2q
λ+ log q

and g(θ) is given as in (10.46) by

g(θ) = −(q − 1)(2 − θ) log(1 − θ)− [2 + (q − 1)θ ] log[1 + (q − 1)θ ].

The proofs of Theorems 10.7–10.9 and 10.14 are given in Section 10.6 for
q ∈ (1,∞). For proofs in the case q ∈ (0, 1), the reader is referred to [62].

10.4 The fundamental proposition

There is a fundamental technique which allows the study of Gn,p,q via the prop-
erties of the usual random graph GN,p,1. Let r ∈ [0, 1] be fixed. Given a random
graph Gn,p,q , we colour each component either red (with probability r ) or green
(with probability 1 − r ); different components are coloured independently of one
another. The union of the red components is called the red subgraph of Gn,p,q , and
the green components form the green subgraph. Let R be the set of red vertices,
that is, the (random) vertex-set of the red subgraph. We see in the next lemma that
the (conditional) distribution of the red subgraph is a random-cluster measure.

(10.16) Proposition. Let V1 be a subset of V = {1, 2, . . . , n} with cardinality
|V1| = n1. Conditional on the event {R = V1}, the red subgraph of Gn,p,q is
distributed as GV1,p,rq , and the green subgraph is distributed as GV \V1,p,(1−r)q .
Furthermore, the red subgraph is conditionally independent of the green subgraph.

Proof. Set V2 = V \ V1, n2 = |V2| = n − n1, and let Ei ⊆ V (2)
i for i = 1, 2.

With k(U, F) the number of components of the graph (U, F),

k(V , E1 ∪ E2) = k(V1, E1)+ k(V2, E2).
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Therefore, the probability that the red graph is (V1, E1) and the green graph is
(V2, E2) equals

{
p|E1∪E2|(1 − p)(

n
2)−|E1∪E2|qk(V ,E1∪E2)

Zn,p,q

}
r k(V1,E1)(1 − r)k(V2,E2)

= cφV1,p,rq(E1)φV2,p,(1−r)q(E2),

for some positive constant c = c(n, p, q, n1). Hence, conditional on R = V1
and the green subgraph being (V2, E2), the probability that the red subgraph is
(V1, E1) is precisely φV1,p,rq (E1). �

In this context, we shall write N rather than n1 for the (random) number of
red vertices. Thus N is a random variable, and GN,p,rq is a random graph on a
random number of vertices.

If q ∈ [1,∞) and r = q−1, the red subgraph is distributed as GN,p . Much is
known about such a random graph, see [61, 194]. By studying the distribution of
N and using known facts about GN,p , one may deduce much about the structure
of Gn,p,q . Similarly, in order to study the random-cluster model with q ∈ (0, 1),
one applies Proposition 10.16 to Gn,p with r = q , obtaining that the red subgraph
is distributed as GN,p,q . By using known facts about Gn,p , together with some
distributional properties of N , we may derive results for Gm,p,q with m large. The
details of the q ∈ (0, 1) case are omitted but may be found in [62].

Here is a corollary which will be of use later.

(10.17) Lemma. Let q ∈ [1,∞). For any sequence p = pn , almost every Gn,p,q

has at most one component with order at least n3/4.

Proof. Let L = L(G) be the number of components of a random graph G having
order at least n3/4. Suppose L ≥ 2, and pick two of these in some arbitrary way.
With probability r2 both of these are coloured red. Setting r = q−1, we find by
[61, Thm VI.9] that

r2φn,p,q(L ≥ 2) ≤
∑

n3/4≤m≤n

φm,p,1(L ≥ 2)φn,p,q(|R| = m)

≤ max
n3/4≤m≤n

φm,p,1(L ≥ 2)

→ 0 as n → ∞. �
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10.5 The size of the largest component

We assume henceforth that q ∈ [1,∞). Let 2nn denote the number of vertices
in the largest component of Gn,λ/n,q , and note that 0 < 2n ≤ 1. If two or more
‘largest components’ exist, we pick one of these at random. All other components
are called ‘small’ and, by Lemma 10.17, all small components of almost every
Gn,λ/n,q have orders less than n3/4.

Consider the colouring scheme of Proposition 10.16 with r = q−1, and suppose
that Gn,λ/n,q has components of order 2nn, ν2, ν3, . . . , νk where k is the total
number of components and we shall assume that νi ≤ n3/4 for i ≥ 2. The number
of red vertices in the small components has conditional expectation

k∑

i=2

νir = r(1 −2n)n

and variance
k∑

i=2

ν2
i r(1 − r) ≤

k∑

i=2

ν2
i ≤ n max

i≥2
νi ≤ n7/4.

Hence, there is a total of r(1−2n)n +op(n) red vertices in the small components.

Since the largest component may or may not be coloured red, there are two
possibilities for the red graph:

(i) with probability r , it has

2nn + r(1 −2n)n + op(n) = [r + (1 − r)2n]n + op(n)

vertices, of which 2nn belong to the largest component,

(ii) with probability 1 − r , it has r(1 −2n)n + op(n) vertices, and the largest
component has order less than n3/4.

In the first case, the red graph is distributed as a supercritical Gn′,λ′/n′ graph, and
in the second case as a subcritical Gn′′,λ′′/n′′ graph. Here, n′ and n′′ are random
integers and, with probability tending to 1, λ′ = n′ p > 1 > λ′′ = n′′ p. This
leads to the next lemma.

(10.18) Lemma. If λ > q ≥ 1, there exists θ0 > 0 such that 2n ≥ θ0 for almost
every Gn,λ/n,q .

Proof. The assertion is well known when q = 1, see for example [61, Thm VI.11].
Therefore, we may assume q > 1 and thus r < 1.

Let θ0 = (λ− q)/(2λ), πn = φn,p,q(2n < θ0), and ǫ > 0. By considering the
event that the largest component is not coloured red, we find that, with probability
at least (1 − r)πn + o(1), the number N of red vertices satisfies

N ≥ r(1 − θ0)n − ǫn,
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and there are no red components of order at least n3/4. When this happens,

(10.19) N p ≥ λ[r(1 − θ0)− ǫ] = 1

2
+ λ

2q
− ǫλ > 1

for ǫ sufficiently small, and we pick ǫ accordingly. Conditional on the value N ,
almost every GN,p has a component of order at least δN (≥ δn/λ by (10.19)) for
some δ > 0. Therefore, (1 − r)πn → 0 as n → ∞. �

(10.20) Lemma. If q ∈ [1,∞) then, for any sequence λ = λn ,

e−λn2n − 1 −2n

1 + (q − 1)2n

P→ 0 as n → ∞.

Proof. For q = 1 and constant λ = λn , this follows from the well known fact that

2n
P→ θ where e−λθ = 1 − θ , see [61, Thm VI.11] and the remark after [61, Thm

V.7]. The case of varying λn is not hard to deduce by looking down convergent
subsequences. We may express this by writing

e−pn2nn + 2nn

n
− 1

P→ 0 when q = 1,

for the random graph Gn,pn and any sequence (pn). Applying this to the red
subgraph, on the event that it contains the largest component of Gn,λ/n,q , we
obtain for general q ∈ [1,∞) that

e−λ2n + 2n

r + (1 − r)2n
− 1 = e−p2nn + 2nn

N
− 1 + op(1)

P→ 0 as n → ∞,

where N is the number of red vertices. The claim follows. �

Combining these lemmas, we arrive at the following theorem.

(10.21) Theorem [62].
(a) If q ∈ [1, 2] and λ ≤ q, or if q ∈ (2,∞) and λ < λmin where λmin is given

in Lemma 10.12(b), then 2n
P→ 0 as n → ∞.

(b) If q ∈ [1,∞) and λ > q, then2n
P→ θ(λ)where θ(λ) is the unique (strictly)

positive solution of (10.6).

This goes some way towards proving Theorems 10.7–10.8. Overlooking for
the moment the more detailed asymptotical claims of those theorems, we note that
the major remaining gap is when q ∈ (2,∞) and λmin ≤ λ ≤ q . In this case,
by Lemma 10.20, 2n is approximately equal to one of the three roots of (10.6)
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(including the trivial root θ = 0). Only after the analysis of the next two sections
shall we see which root is the correct one for given λ.

Proof. The function

φ(θ) = e−λθ − 1 − θ

1 + (q − 1)θ

is continuous on [0, 1], and the set Z of zeros of φ is described in Lemma 10.12.

Since φ(2n)
P→ 0, by Lemma 10.20, it follows that, for all ǫ > 0,

φn,p,q
(
2n ∈ Z + (−ǫ, ǫ)

)
→ 1 as n → ∞.

Under the assumption of (a), Z contains the singleton 0, and the claim follows.
Under (b), Z contains a unique strictly positive number θ(λ), and the claim follows
by Lemma 10.18. �

We turn now to the number of edges in the largest component. Let9nn denote
the number of edges of Gn,p,q . We pick one of its largest components at random,
and write4nn for the number of its edges. Let q ∈ (1,∞). Arguing as in Sections
10.4–10.5 with r = q−1, almost every Gn,p,q has at most n3/4 edges in each small
component (a ‘small’ component is any component except the largest, picked
above)2. Furthermore, the total number of red edges in the small components is
r(9n −4n)n + op(n). Hence, the red subgraph has either:

(i) with probability r , [2n + r(1 −2n)]n + op(n) vertices and
[4n + r(9n − 4n)]n + op(n) edges, or

(ii) otherwise, r(1 −2n)n + op(n) vertices and r(9n −4n)n + op(n) edges.

Assume that p = O(n−1). Since almost every GN,p has

(
N

2

)
p + Op(N p1/2) = 1

2 N2 p + op(N)

edges, the following two equations follow from the two cases above,

[
4n + r(9n −4n)

]
n = 1

2

[
2n + r(1 −2n)

]2
n2 p + op(n),(10.22)

r(9n −4n)n = 1
2 [r(1 −2n)]

2n2 p + op(n),(10.23)

yielding when p = λ/n that

4n + r(9n − 4n) = 1
2λ
[
2n + r(1 −2n)

]2 + op(1),(10.24)

r(9n − 4n) = 1
2λ[r(1 −2n)]2 + op(1).(10.25)

We solve for 4n and 9n , and let n → ∞ to obtain the next theorem.

2One needs here the corresponding result for q = 1, which follows easily from the corre-
sponding result for the number of vertices used above, together with results on the components
having more edges than vertices given in [61, 192, 193].
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(10.26) Theorem [62]. If q ∈ (1,∞) and λ ∈ (0,∞) then, as n → ∞,

9n − λ

2q

[
1 + (q − 1)22

n

] P→ 0,(10.27)

4n − λ

q
2n
[
1 + ( 1

2 q − 1)2n
] P→ 0.(10.28)

Whereas we proved this theorem under the assumption that q > 1, its conclu-
sions are valid for q = 1 also, by [61, Thms VI.11, VI.12].

10.6 Proofs of main results for complete graphs

The results derived so far are combined next with a new argument in order to prove
Theorems 10.7–10.9 for q ∈ [1,∞). The results are well known when q = 1
(see [61, Chapters V, VI] and [239]), and we assume henceforth that q ∈ (1,∞).
The acyclic part of a graph is the union of all components that are trees, and the
cyclic part is the union of the remaining components. A graph is called cyclic if
its acyclic part is empty. We begin by showing that the cyclic part of almost every
Gn,λ/n,q consists principally of the largest component only (when this component
is cyclic).

(10.29) Lemma. The numbers of vertices and edges in the small cyclic compo-
nents of Gn,λ/n,q are op(n).

Proof. Let k be an integer satisfying k ≥ q . In the colouring scheme of Section
10.4 with r = q−1, we introduce the refinement that each component is coloured
dark red with probability k−1 and light red with probability r − k−1. Let M be
the number of edges in the small cyclic components of Gn,λ/n,q .

By a symmetry argument, with probability at least k−1, at least M/k of these
edges are coloured dark red. To see this, let Mi be the number of such edges
coloured χi when each component is coloured by a random colour from the set
{χ1, χ2, . . . , χk}, each such colour having equal probability. If

φn,p,q(Mi ≥ M/k) <
1

k
, i = 1, 2, . . . , k,

then
φn,p,q(Mi ≥ M/k for some i) < 1,

in contradiction of the equality
∑k

i=1 Mi = M .

Therefore, with probability at least r/k, the red subgraph contains the largest
component together with small cyclic components having at least M/k edges. The
result now follows from the known case q = 1, see [60], [61, Thm VI.11]. �

Let P̃n,p,q (m, j, k, l) be the sum of P̃n,p,q(F) over edge-sets F that define a
graph with |F | = m edges and a cyclic part with j components, k vertices, and l
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edges. Since such graphs have an acyclic part with n − k vertices and m − l edges,
and therefore n − k − m + l components, we obtain
(10.30)

P̃n,p,q(m, j, k, l) =
(

n

k

)
c( j, k, l) f (n − k,m − l)pm(1 − p)(

n
2)−mqn−k−m+l+ j

where c( j, k, l) is the number of cyclic graphs with j components, k labelled
vertices, and l edges, and f (n,m) is the number of forests with n labelled vertices
and m edges.

Assume now that n → ∞, that λ = np > 0 and q ∈ [1,∞) are fixed, and that

(10.31) m/n → ψ, k/n → θ, l/n → ξ, j/n → 0,

where θ ≥ 0 satisfies (10.6), and

ξ = λ

q
θ
[
1 + ( 1

2 q − 1)θ
]
,(10.32)

ψ = ξ + λ

2q
(1 − θ)2.(10.33)

See (10.27) and (10.28). If λ > q , we assume also that θ > 0, see Lemma 10.18
and Theorem 10.21(b).

Since

f (n,m) ≤
((n

2

)

m

)
,

the total number of graphs with m edges on n vertices,

P̃n,p,q (m, j, k, l)
(10.34)

≤
(

n

k

)
c( j, k, l)

((n−k
2

)

m − l

)
pm(1 − p)(

n
2)−mqn−k−m+l+ j

=
(

n

k

)
c( j, k, l)

(
n − k

2

)m−l ( e

m − l

)m−l

pmqn−k−m+l e− 1
2λn+o(n)

= c( j, k, l)

(
n

k

)(
(n − k)2eλ

2(m − l)n

)m−l

plqn−k−m+l e− 1
2λn+o(n)

= plc( j, k, l)

(
n

k

)(
(1 − θ)2λ

2(ψ − ξ)

)m−l

qn−k−m+l exp
(
m − l − 1

2λn + o(n)
)

= ple−lc( j, k, l)

(
n

k

)
qn−k exp

(
m − 1

2λn + o(n)
)
,

where we used (10.33) in the last step.
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We shall be interested only in values of λ and roots θ of (10.6) satisfying

(10.35) either θ > 0, or θ = 0 and λ ≤ q .

We claim that, under these assumptions, (10.34) is an equality in that

(10.36) P̃n,p,q (m, j, k, l) = ple−lc( j, k, l)

(
n

k

)
qn−k exp

(
m − 1

2λn + o(n)
)
.

To see this when either θ > 0, or θ = 0 and λ < q , set n0 = n−k and m0 = m−l,
and observe that

m0

n0
= m − l

n − k
→ ψ − ξ

1 − θ
= λ

2q
(1 − θ) <

1

2
,

where we have used the fact that, by (10.6),

λθ < eλθ − 1 = qθ

1 − θ
, θ ∈ (0,∞).

Hence in this case, the ‘fixed edge-number’ random graph Gn0,m0 has average
vertex-degree not exceeding 1 − ǫ for some positive constant ǫ independent of
n,m, k, l. Therefore, there exists δ > 0 such that

P(Gn0,m0 is a forest) > δ,

and hence

f (n0,m0) > δ

((n0
2

)

m0

)
.

This implies (10.36), via (10.30) and (10.34). When θ = 0 and λ = q , we have
that m0/n0 → ψ = 1

2 , and hence

(10.37) f (n0,m0) =
((n0

2

)

m0

)
eo(n),

implying (10.36). To see (10.37) note that, with 0 < ǫ < 1
4 and s ≍ ǫn,

f (n0,m0) ≥ (n0 − 1)s−1 f (n0 − s,m0 − s + 1)

≥ e−ǫnns
0

( (n0−s
2

)

m0 − s + 1

)

≥ e2 log(1−ǫ)n
((n0

2

)

m0

)
,

for large n, by counting only forests where vertex 1 is an endvertex of an isolated
path of length s − 1.
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We estimate c( j, k, l) next. Suppose first that θ = 0. Then c( j, k, l) is no
greater than the total number of graphs with k vertices and l edges, that is,

ple−lc( j, k, l) ≤
( p

e

)l
(

k2

2

)l
1

l !
≤
(
λn

l

)l

= exp
[
l{logλ− log(l/n)}

]
= eo(n).

Equality holds here for some suitable triple j, k, l: just set j = k = l = 0, for
which ple−lc( j, k, l) = 1. It is easily checked that

(n
k

)
= eo(n) when θ = 0, and

therefore,

(10.38) ple−lc( j, k, l) ≤
(

n

k

)−1

eo(n)

with equality for some suitable j, k, l.

Our estimate of c( j, k, l)when θ > 0 uses the fact that P̃n,p,q(· ) is a probability
measure when q = 1. Suppose θ > 0, define n1 = n1(θ) = ⌊θn + r(1 − θ)n⌋
where r = q−1 as usual, and set

m1 = l + r(m − l)+ o(n) = [ξ + r(ψ − ξ)]n + o(n),

λ1 = [θ + r(1 − θ)]λ.

Then,

m1

n1
→ ψ1 = ξ + r(ψ − ξ)

θ + r(1 − θ)
= 1

2
λ1,(10.39)

k

n1
→ θ1 = θ

θ + r(1 − θ)
,(10.40)

l

n1
→ ξ1 = ξ

θ + r(1 − θ)
,

j

n1
→ 0.(10.41)

It is easy to check the analogues of (10.6) and (10.32)–(10.33), namely,

(10.42) e−λ1θ1 = 1 − θ1, ξ1 = λ1θ1(1 − 1
2θ1), ψ1 = ξ1 + 1

2λ1(1 − θ1)
2.

Now, (10.36) is valid with q = 1, since θ > 0. Hence,

1 ≥ P̃n1,p1,1(m1, j, k, l)(10.43)

= pl
1e−lc( j, k, l)

(
n1

k

)
exp

(
m1 − 1

2λ1n1 + o(n)
)

= ple−lc( j, k, l)

(
n1

k

)
eo(n)
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by (10.39), where p1 = λ1/n1 = p(1 + O(n−1)). Therefore,

(10.44) ple−lc( j, k, l) ≤
(

n1

k

)−1

eo(n).

We claim that there exist suitable j, k, l such that equality holds in (10.44). To
see this, note that Gn1,p1 has

(n1
2

)
p1 + op(n1) edges, a giant component with

θ1n1 + op(n1) vertices and ξ1n1 + op(n1) edges, Op(1) unicyclic components
with a total of Op(1) vertices and edges, and no other cyclic components, see [61,
Thm VI.11]. By considering the number of possible combinations of values of
m1, j, k, l satisfying the above constraints, there exist m1, j, k, l such that

P̃n1,p1,1(m1, j, k, l) ≥ n−4

for all large n. Combining this with (10.43), equality follows in (10.44) for some
suitable j, k, l.

In conclusion, whatever the root θ of (10.6) (subject to (10.35)), inequality
(10.44) holds with equality for some suitable j, k, l, and where n1 = n1(0) is
interpreted as n (that is, when θ = 0). We substitute (10.44) into (10.34) to obtain

P̃n,p,q (m, j, k, l)
(10.45)

≤
(

n1

k

)−1(n

k

)
qn−k exp

(
m − 1

2λn + o(n)
)

= nn

(n − k)n−k

(n1 − k)n1−k

nn1
1

qn−k exp

(
λ

2q
[1 + (q − 1)θ2]n − 1

2λn + o(n)

)

=
[

[r(1 − θ)]r(1−θ)

(1 − θ)1−θ [θ + r(1 − θ)]θ+r(1−θ)

× q1−θ exp

(
λ

2q
[1 + (q − 1)θ2] − 1

2λ+ o(1)

)]n

= exp

(
n

[
g(θ)

2q
− q − 1

2q
λ+ log q + o(1)

])
,

where

(10.46) g(θ) = −(q − 1)(2 − θ) log(1 − θ)− [2 + (q − 1)θ ] log[1 + (q − 1)θ ].

We have used (10.32)–(10.33) in order to obtain the second line of (10.45). To
pass to the last line, we used the fact that θ is a root of (10.6), thus enabling the
substitution

exp

(
λ

2q
[1 + (q − 1)θ2]

)
= eλ/(2q)

{
1 + (q − 1)θ

1 − θ

}(q−1)θ/(2q)

.
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In addition, equality holds in (10.45) for at least one suitable choice of j, k, l.
Let θ∗ = θ∗(λ) be the root3 of (10.6) that maximizes g(θ) and satisfies (10.35).
By (10.45) and the equality observed above,

Zn,p,q =
∑

m, j,k,l

P̃n,p,q (m, j, k, l)(10.47)

≥ exp

{
n

[
g(θ∗)

2q
− q − 1

2q
λ+ log q + o(1)

]}
,

whence

(10.48) lim inf
n→∞

{
1

n
log Zn,p,q

}
≥ g(θ∗)

2q
− q − 1

2q
λ+ log q.

On the other hand, by Lemmas 10.18 and 10.20, there exists a root θ of (10.6)
satisfying (10.35), and a function ω(n) satisfying ω(n) → ∞, such that

(10.49) lim inf
n→∞ φn,p,q

(|2n − θ | < ω(n)−1) > 0.

For such θ there exist, by Lemma 10.29 and Theorem 10.26, sequences m, j, k, l
satisfying (10.31)–(10.33) such that

1 ≥ P̃n,p,q(m, j, k, l)

Zn,p,q
≥ n−4

for all large n (this is shown by considering the number of possible combinations of
m, j, k, l satisfying (10.31)–(10.33) and the above-mentioned results). By (10.45),

(10.50) lim sup
n→∞

{
1

n
log Zn,p,q

}
≤ g(θ)

2q
− q − 1

2q
λ+ log q,

which, by (10.48), implies g(θ) ≥ g(θ∗), and therefore θ = θ∗. Theorem 10.14
follows by (10.48) and (10.50). Furthermore, θ∗ is the only root of (10.6) satisfying
(10.35) such that (10.49) holds for some ω(n). Therefore,

(10.51) 2n
P→ θ∗ as n → ∞.

Next we calculate θ∗(λ). As in Theorem 10.21, when q ∈ [1, 2], θ∗(λ) is the
largest non-negative root of (10.6). Assume that q ∈ (2,∞). By a straightforward
computation,

g(0) = g

(
q − 2

q − 1

)
= 0, g′(0) = 0,

g′′(θ) = −q(q − 1)[q − 2 − 2(q − 1)θ ]θ

(1 − θ)2[1 + (q − 1)θ ]2
.

3We shall see that there is a unique such θ∗, except possibly when λ = λc(q) and q > 2.
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Therefore, g′′(θ) has a unique zero in (0, 1), at the point θ = 1
2 (q − 2)/(q − 1).

At this point, g′(θ) has a negative minimum. It follows that g(θ) < 0 on (0, θ0),
and g(θ) > 0 on (θ0, 1) where θ0 = (q − 2)/(q − 1).

Substituting θ0 into (10.6), we find that θ0 satisfies (10.6) if

λ = λc(q) = 2

(
q − 1

q − 2

)
log(q − 1),

and, for this value of λ, the three roots of (10.6) are 0, 1
2θ0, θ0. Therefore,

λmin < λc(q) < q , and

θ∗ =
{

0 if λ < λc(q),

θmax(λ) if λ > λc(q).

This completes the proof of the assertions concerning the order of the largest
component. The claims concerning the numbers of edges in Gn,p,q and in the
largest component follow by Theorem 10.26. Proofs of the remaining assertions
about the structure of Gn,p,q are omitted, but may be obtained easily using the
colouring argument and known facts for Gn,p , see [61, 239].

10.7 The nature of the singularity

It is an important problem of statistical physics to understand the nature of the
singularity at a point of phase transition. For the mean-field random-cluster model
on a complete graph, the necessary calculations may be performed explicitly, and
the conclusions are as follows.

Let q ∈ [1,∞) be fixed, and consider the functions θ(λ), given in (10.5), and
ψ(λ), ξ(λ) defined by

ψ(λ) = λ

2q

[
1 + (q − 1)θ(λ)2

]
, ξ(λ) = λ

q

[
θ(λ)+ ( 1

2 q − 1)θ(λ)2
]
,

describing the order of the giant component, and the numbers of edges in the graph
and in its giant component, respectively. All three functions are non-decreasing
on (0,∞). In addition, ψ is strictly increasing, while θ(λ) and ξ(λ) equal 0 for
λ < λc and are strictly increasing on [λc,∞).

A fourth function of interest is the pressure η(λ) given in Theorem 10.14.
These four functions are real-analytic on (0,∞) \ {λc}. At the singularity λc, the
following may be verified with reasonable ease.

(a) Let q ∈ [1, 2). Then θ , ψ , ξ , and η are continuous at the point λc(q) = q .
The functions θ and ξ have discontinuous first derivatives at λc, with

θ ′(λc−) = ξ ′(λc−) = 0, θ ′(λc+) = ξ ′(λc+) = 2

q(2 − q)
.
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In particular,

θ(λ) ∼ 2(λ− λc)

q(2 − q)
as λ ↓ λc.

Similarly, ψ ′ and η′′ are continuous, but ψ ′′ and η′′′ have discontinuities at
λc, except when q = 1.

(b) Let q = 2. Once again, θ , ψ , ξ , and η are continuous at the point λc. In
this case,

θ(λ) ∼ ξ(λ) ∼ [ 3
2 (λ− λc)

] 1
2 as λ ↓ λc.

Thus, θ ′(λc+) = ξ ′(λc+) = ∞. The function ψ ′ has a jump at λc in that
ψ ′(λc−) = 1

4 ,ψ ′(λc+) = 1. Also, η′ is continuous, but η′′ has a jump at λc

in that η′′(λc−) = 0, η′′(λc+) = 3
8 . The functionsψ and η are real-analytic

on (0, λc] and on [λc,∞).

(c) Let q ∈ (2,∞). Then θ , ψ , and ξ have jumps at λc, and it may be checked
that ψ(λc−) = λc/(2q) < 1

2 < ψ(λc+). The pressure η is continuous at
λc, but its derivative η′ has a jump at λc,

η′(λc−) = −q − 1

2q
, η′(λc+) = − 2q − 3

2q(q − 1)
.

10.8 Large deviations

The partition function Zn,p,q of (10.2) may be written4 as the exponential expec-
tation

Zn,p,q = φn,p,1(q
k(ω)).

This suggests a link, via a Legendre transform, to the theory of large deviations of
the cluster-count k(ω) in a random-cluster model. We summarize the consequent
theory in this section, and we refer the reader to [62] for the proofs. Related
arguments concerning the random-cluster model on a lattice may be found in
[298].

Let5 q ∈ [1,∞), λ ∈ (0,∞), and let Cn be the number of components of
the graph Gn,λ/n,q . Our target is to show how the exact calculation of pressure in
Theorem 10.14 may be used to estimate probabilities of the formφn,p,q(Cn ≤ αn)
andφn,p,q(Cn ≥ βn) for given constantsα,β. When q = 1, this gives information
about the probabilities of large deviations of Cn in an Erdős–Rényi random graph.

As in the language of large-deviation theory, [99, 164], let

3n,λ,q(ν) = logφn,p,q(e
νCn/n), ν ∈ R,

4See (3.59) also.
5The conclusions of this section are valid when q ∈ (0, 1) also, see [62].
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and note that

3n,λ,q(ν) = log

{
Zn,λ/n,qeν/n

Zn,λ/n,q

}
,

whence

(10.52)
1

n
3n,λ,q(nν) → 3λ,q(ν) = η(λ, qeν)− η(λ, q) as n → ∞,

where η(λ, q) denotes the pressure function of Theorem 10.14. The Legendre
transform 3∗

λ,q of3λ,q is given by

(10.53) 3∗
λ,q(x) = sup

ν∈R

{
νx −3λ,q(ν)

}
, x ∈ R.

It may be proved directly, or see [99, Lemma 2.3.9], that3λ,q and3∗
λ,q are convex

functions, and that

(10.54) 3∗
λ,q(x) = δx −3λ,q(δ) if 3′

λ,q(δ) = x .

Since we have an exact formula for3λ,q, see (10.15) and (10.52),we may compute
its derivative whenever it exists. Consequently,

3∗
λ,q(x)

{
< ∞ if x ∈ [0, 1],

= ∞ otherwise.

A large-deviation principle (LDP) may be established for n−1Cn in terms of the
‘rate function’3∗

λ,q . The details of the LDP depend on the set of points x at which
3∗
λ,q is strictly convex, and we investigate this next. There is a slight complication

arising from the discontinuity of the phase transition when q ∈ (2,∞). The
function

(10.55) κ(λ, q) = q
∂η

∂q
,

turns out to play a central role. This derivative exists except when λ = λc(q) and
q ∈ (2,∞), and satisfies

κ(λ, q) = lim
n→∞

{
1

n
φn,λ/n,q(Cn)

}
(10.56)

= 1 − θ(λ)− [1 − θ(λ)]2 λ

2q
.

When λ = λc(q) and q ∈ (2,∞), the limits

κ±(λ, q) = q
∂η

∂q
(λ, q±)
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exist with κ−(λ, q) < κ+(λ, q). Also, κ−(λ, q) is given by (10.56), and

κ+(λ, q) = 1 − λ

2q
.

Details of the above calculations may be found in [62].

We write Fλ,q for the set of ‘exposed points’ of 3∗
λ,q , and one may see after

some work that

(10.57) Fλ,q =
{
(0, 1) if λ ≤ 2,

(0, 1) \ [κ−(λ, Q), κ+(λ, Q)] if λ > 2,

where Q is chosen to satisfy λ = λc(Q). The following LDP is a consequence of
the Gärtner–Ellis theorem, [99, Thm 2.3.6].

(10.58) Theorem (Large deviations) [62]. Let q ∈ [1,∞) and λ ∈ (0,∞).

(a) For any closed subset F of R,

lim sup
n→∞

{
1

n
logφn,p,q(n

−1Cn ∈ F)

}
≤ − inf

x∈F
3∗
λ,q(x).

(b) For any open subset G of R,

lim inf
n→∞

{
1

n
logφn,p,q(n

−1Cn ∈ G)

}
≥ − inf

x∈G∩Fλ,q
3∗
λ,q(x).

Of especial interest are the cases when F takes the form [0, α] or [β, 1], analysed
as follows using Theorem 10.58.

(i) Let q ∈ [1, 2]. Then, as n → ∞,

1

n
logφn,p,q(Cn ≤ αn) → −3∗

λ,q(α), (10.59)

1

n
logφn,p,q(Cn ≥ βn) → −3∗

λ,q(β), (10.60)

whenever 0 < α ≤ κ(λ, q) ≤ β < 1.

(ii) Let q ∈ (2,∞) and λ = λc(q). Then (10.59)–(10.60) hold for α, β satis-
fying

0 < α ≤ κ−(λ, q) < κ+(λ, q) ≤ β < 1.

(iii) Let q ∈ (2,∞) and λ 6= λc(q). Let Q be such that λ = λc(Q). Then
(10.59)–(10.60) hold for any α, β satisfying 0 < α ≤ κ(λ, q) ≤ β < 1
except possibly when

κ−(λ, Q) < α ≤ κ+(λ, Q) or κ−(λ, Q) ≤ β < κ+(λ, Q).
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We note that κ+(λ, Q) < κ(λ, q) if Q < q , and κ−(λ, Q) > κ(λ, q) if
Q > q , so that only one of these two cases can occur for any given q .

We summarize the above facts as follows. Excepting the special case when
λ = λc(q) and q ∈ (2,∞), the limit

κ = lim
n→∞

{
1

n
φn,p,q(Cn)

}

exists, and the probabilities φn,p,q(Cn ≤ αn), φn,p,q(Cn ≥ βn) decay at least
as fast as exponentially when α < κ < β. The exact (exponential) rate of
decay can be determined except when the levels αn and βn lie within the interval
of discontinuity of a first-order phase transition. In the exceptional case with
λ = λc(q) and q ∈ (2,∞), a similar conclusion holds when α < κ− and β > κ+.

Since first-order transitions occur only when q ∈ (2,∞), and since the critical
λ-values of such q fill the interval (2,∞), there is a weak sense in which the
value λ = 2 marks a singularity of the asymptotics of the random graph Gn,λ/n,q .
This holds for any value of q , including q = 1. That is, the Erdős–Rényi random
graph senses the existence of a first-order phase transition in the random-cluster
model, but only through its large deviations. It is well known that the Erdős–Rényi
random graph undergoes a type of phase transition at λ = 1, and it follows from
the above that it has a (weak) singularity at λ = 2 also.

10.9 On a tree

A random-cluster measure on a finite tree is simply a product measure — it is
the circuits of a graph which cause dependence between the states of different
edges and, when there are no circuits, there is no dependence. This may be seen
explicitly as follows. Let p ∈ [0, 1] and q ∈ (0,∞), and let T = (V , E) be a finite
tree. For ω ∈ � = {0, 1}E , the number of open clusters is k(ω) = |V | − |η(ω)|,
so that the corresponding random-cluster measure φp,q satisfies

(10.61) φp,q(ω) ∝
(

p

q(1 − p)

)|η(ω)|
=
(

π

1 − π

)|η(ω)|
, ω ∈ �,

where

(10.62) π = π(p, q) = p

p + q(1 − p)
.

Therefore,φp,q is the product measure on�with densityπ . The situation becomes
more interesting when we introduce boundary conditions.

Let T be an infinite labelled tree with root 0, and let R = R(T ) be the set
of all infinite (self-avoiding) paths of T beginning at 0, termed 0-rays. We may
think of a boundary condition on T as being an equivalence relation ∼ on R, the
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0

Figure 10.4. Part of the infinite binary tree T2.

‘physical’ meaning of which is that two rays ρ, ρ′ are considered to be ‘connected
at infinity’ whenever ρ ∼ ρ′. Such connections affect the counts of connected
components of subgraphs. The two extremal boundary conditions are usually
termed ‘free’ (meaning that there exist no connections at infinity) and ‘wired’
(meaning that all rays are equivalent). The wired boundary condition on T has
been studied in [167, 196], and general boundary conditions in [160]. There has
been a similar development for Ising models on trees with boundary conditions,
see for example [48, 49, 188] in the statistical-physics literature and [114, 248,
256] in the probability literature under the title ‘broadcasting on trees’.

We restrict ourselves to the so-called binary tree T = T2, the calculations are
easily extended to a regular m-ary tree Tm with m ∈ {2, 3, . . . }. Thus T = (V , E)
is taken henceforth to be a regular labelled tree, with a distinguished root labelled
0, and such that every vertex has degree 3. See Figure 10.4.

We turn T into a directed tree by directing every edge away from 0. There
follows some notation concerning the paths of T . Let x be a vertex. An x-ray is
defined to be an infinite directed path of T with (unique) endvertex x . We denote
by Rx the set of all x-rays of T , and we abbreviate R0 to R. We shall use the
term ray to mean a member of some Rx . The edge of T joining vertices x and y
is denoted by 〈x, y〉 when undirected, and by [x, y〉 when directed from x to y.
For any vertex x , we write R′

x for the subset of R comprising all rays that pass
through x . Any ray ρx ∈ Rx is a sub-ray of a unique ray ρ′

x ∈ R, and thus there
is a natural one–one correspondence ρx ↔ ρ′

x between Rx and R′
x .

Let E be the set of equivalence relations on the set R. Any equivalence relation
∼ on R may be extended to an equivalence relation on

⋃
v∈V Rv by: for ρu ∈ Ru ,

ρv ∈ Rv , we have ρu ∼ ρv if and only if ρ′
u ∼ ρ′

v .

One may define the random-cluster measure corresponding to any given mem-
ber ∼ of a fairly large sub-class of E , but for the sake of simplicity we shall
concentrate in the main on the two extremal equivalence relations, as follows.
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There is a partial order ≤ on E given by:

(10.63) ∼1 ≤ ∼2 if: for all ρ, ρ′ ∈ R, ρ ∼2 ρ
′ whenever ρ ∼1 ρ

′.

There is a minimal (respectively, maximal) partial order which we denote by ∼0

(respectively, ∼1). The equivalence classes of ∼0 are singletons, whereas ∼1 has
the single equivalence class R. We refer to ∼0 (respectively, ∼1) as the ‘free’
(respectively, ‘wired’) boundary condition.

Let 3 be a finite subset of V , and let E3 be the set of edges of T having both
endvertices in 3. For ξ ∈ � = {0, 1}E , we write �ξ3 for the (finite) subset of
� containing all configurations ω satisfying ω(e) = ξ(e) for e ∈ E \ E3; these
are the configurations that agree with ξ off 3. For simplicity, we shall restrict
ourselves to sets 3 of a certain form. A subset C of V is called a cutset if every
infinite path from 0 intersects C , and C is minimal with this property. It may be
seen by an elementary argument that every cutset is finite. Let C be a cutset, and
write out(C) for the set of all vertices x such that: x /∈ C and the (unique) path
from 0 to x intersects C . A box 3 is a set of the form V \ out(C) for some cutset
C , and we write ∂3 for the corresponding C .

Let3 be a box, and let ∼ ∈ E , ξ ∈ �, and ω ∈ �ξ3. The configuration ω gives
rise to an ‘open graph’ on 3, namely G(3,ω) = (3, η(ω) ∩ E3). We augment
this graph by adding certain new edges representing the action of the equivalence
relation ∼ in the presence of the external configuration ξ . Specifically, for distinct
u, v ∈ ∂3, we add a new edge between the pair u, v if there exist ξ -open rays
ρu ∈ Ru , ρv ∈ Rv satisfying ρu ∼ ρv . We write Gξ,∼(3,ω) for the resulting
augmented graph, and we let kξ,∼(3,ω) be the number of connected components
of Gξ,∼(3,ω). These definitions are motivated by the idea that each equivalence
class of rays leads to a common ‘point at infinity’ through which vertices may be
connected by open paths.

We define next a random-cluster measure corresponding to a given equivalence
relation ∼. Let ξ ∈ �, and let p ∈ [0, 1] and q ∈ (0,∞). We define φξ,∼3,p,q as
the random-cluster measure on the box (3, E3) with boundary condition (ξ,∼).
More precisely, φξ,∼3,p,q is the probability measure on the pair (�,F ) given by
(10.64)

φ
ξ,∼
3,p,q(ω) =





1

Z ξ,∼3,p,q

{ ∏

e∈E3

pω(e)(1 − p)1−ω(e)
}

qkξ,∼(3,ω) if ω ∈ �ξ3,

0 otherwise,

where Z ξ,∼3,p,q is the appropriate normalizing constant,

(10.65) Z ξ,∼3,p,q =
∑

ω∈�ξ3

{ ∏

e∈E3

pω(e)(1 − p)1−ω(e)
}

qkξ,∼(3,ω).

In the special case when ξ = 1 and ∼ = ∼1, we write φ1
3,p,q for φξ,∼3,p,q . This

measure will be referred to as the random-cluster measure on 3 with ‘wired’

c©Springer-Verlag 2006



302 On Other Graphs [10.9]

boundary conditions, and it has been studied in a slightly disguised form in [167,
196].

For any finite subset 3 ⊆ V , let T3 denote the σ -field generated by the set
{ω(e) : e ∈ E \ E3} of states of edges having at least one endvertex outside 3.
For e ∈ E , Te denotes the σ -field generated by the states of edges other than e.

Let p ∈ [0, 1], q ∈ (0,∞), and let ∼ be an equivalence relation that satisfies
a certain measurability condition to be stated soon. A probability measure φ on
(�,F ) is called a (∼)DLR-random-cluster measure with parameters p and q if:
for all A ∈ F and all boxes3,

(10.66) φ(A | T3)(ξ) = φ
ξ,∼
3,p,q(A) for φ-a.e. ξ .

The set of such measures is denoted by R∼
p,q . The set R∼

p,q is convex whenever
it is non-empty (as in Theorem 4.34).

We introduce next the relevant measurability assumption on the equivalence
relation ∼. Since the left side of (10.66) is a measurable function of ξ , the right side
must be measurable also. For a box 3 and distinct vertices u, v ∈ ∂3, let K ∼

u,v,3
denote the set of ω ∈ � such that there exist ω-open rays ρu ∈ Ru , ρv ∈ Rv

satisfying ρu ∼ ρv . We call the equivalence relation ∼ measurable if K ∼
u,v,3 ∈ F

for all such u, v, 3. It is an easy exercise to deduce, if ∼ is measurable, that
φ
ξ,∼
3,p,q(A) is a measurable function of ξ , thus permitting condition (10.66). We

write Em for the set of all measurable elements of E . It is easily seen that the
extremal equivalence relations ∼0, ∼1 are measurable.

For simplicity of notation we write R∼0

p,q = R0
p,q and similarly R∼1

p,q = R1
p,q .

Members of R0
p,q (respectively, R1

p,q ) are called ‘free’ random-cluster measures
(respectively, ‘wired’ random-cluster measures). There follows an existence the-
orem. Any probability measure µ on (�,F ) is called automorphism-invariant if
the vectors (ω(e) : e ∈ E) and (ω(τe) : e ∈ E) have the same laws under µ, for
any automorphism τ of the tree T .

(10.67) Theorem [167]. Let p ∈ [0, 1] and q ∈ (0,∞).

(a) The set R0
p,q of free random-cluster measures comprises the singleton φπ

only, where π = π(p, q) is given in (10.62). The product measure φπ
belongs to R1

p,q if and only if π ≤ 1
2 .

(b) The set R1
p,q of wired random-cluster measures is non-empty.

(c) If q ∈ [1,∞), the weak limit

φ1
p,q = lim

3↑V
φ1
3,p,q (10.68)

exists and belongs to R1
p,q . Furthermore, φ1

p,q is an extremal element of the

convex set R1
p,q and is automorphism-invariant.

Here are some comments on this theorem. Part (b) will be proved at Theorem
10.82(c). Parts (a) and (c) are proved later in the current section, and we anticipate
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this with a brief discussion of the condition π ≤ 1
2 . This will be recognized as the

condition for the almost-sure extinction of a branching process whose family-sizes
have the binomial bin(2, π) distribution. That is, π ≤ 1

2 if and only if

(10.69) φπ (0 ↔ ∞) = 0,

see [164, Thm 5.4.5]. It turns out that the product measure φπ lies in R1
p,q if and

only if it does not ‘feel’ the wired boundary condition ∼1, that is to say, if there
exist (φπ -almost-surely) no infinite clusters6.

We turn briefly to more general boundary conditions than merely the free and
wired, see [160] for further details. The set R of rays may be viewed as a compact
topological space with the product topology. Let ∼ be an equivalence relation
on R. We call ∼ closed if the set {(ρ1, ρ2) ∈ R2 : ρ1 ∼ ρ2} is a closed subset
of R2. It turns out that closed equivalence relations are necessarily measurable.
For q ∈ [1,∞) and a closed relation ∼, the existence of the weak limit φ1,∼

p,q =
lim3↑V φ

1,∼
3,p,q follows by stochastic ordering, and it may be shown that φ1,∼

p,q is a
(∼)DLR-random-cluster measure.

Theorem 10.67 leaves open the questions of deciding when φπ = φ1
p,q , and

when R1
p,q comprises a singleton only. We return to these questions in Sections

10.10–10.11.

Proof of Theorem 10.67. (a) Consider the free boundary condition ∼0, and let A
be a cylinder event. By (10.61),

φ
ξ,∼0

3,p,q(A) = φπ (A)

for all boxes3 that are sufficiently large that A is defined on the edge-set E3. For
φ ∈ R0

p,q , by (10.66),

φ(A | T3) = φπ (A), φ-almost-surely,

for all sufficiently large 3, and therefore

φ(A) = φ(φ(A | T3)) = φπ (A)

as required. The second part of (a) is proved after the proof of (c).

(c) The existence of the weak limit in (10.68) follows by positive assocation as in
the proof of Theorem 4.19(a). In order to show that the limit measure lies in R1

p,q ,
we shall make use of the characterization of random-cluster measures provided
by Proposition 4.37; this was proved with the lattice Ld in mind but is valid also
in the present setting with the same proof.

For v ∈ V , let5v be the set of infinite undirected paths of T with endvertex v.
Let e = 〈x, y〉, and let K 1

e be the event that there exist open vertex-disjoint paths

6See also [168].
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νx ∈ 5x and νy ∈ 5y . For any box3 andω ∈ �, letω1
3 denote the configuration

that agrees with ω on E3 and equals 1 elsewhere, which is to say that

ω1
3(e) =

{
ω(e) if e ∈ E3,

1 otherwise.

We define the event
K 1

e,3 = {ω ∈ � : ω1
3 ∈ K 1

e }.

Note that K 1
e,3 is a cylinder event, and is decreasing in3. It is easily checked that

(10.70) K 1
e,3 ↓ K 1

e as 3 ↑ V .

We may now state the relevant conclusion of Proposition 4.37 in the current
context, namely that φ ∈ R1

p,q if and only if, for all e ∈ E ,

(10.71) φ(Je | Te) = π + (p − π)1K 1
e

φ-almost-surely,

where Je = {e is open}.
For ξ ∈ � and W ⊆ V , write [ξ ]W for the set of all configurations that agree

with ξ on EW . For e ∈ EW , let [ξ ]W\e be an abbreviation for [ξ ]EW \{e}. We shall
omit explicit reference to the values of p and q in the rest of this proof. Thus, for
example, φ1 = φ1

p,q .

By the martingale convergence theorem (see [164, Ex. 12.3.9]), for e = 〈x, y〉 ∈
E and φ1-almost-every ξ ,

φ1(Je | Te)(ξ) = lim
3↑V

φ1(Je, [ξ ]3\e)

φ1([ξ ]3\e)
(10.72)

= lim
3↑V

lim
1↑V

φ1
1(Je, [ξ ]3\e)

φ1
1([ξ ]3\e)

= lim
3↑V

lim
1↑V

φ1
1

(
φ1
1(Je | [ξ ]1\e)

∣∣ [ξ ]3\e
)

= lim
3↑V

lim
1↑V

φ1
1(g1 | [ξ ]3\e),

by Theorem 3.1, where

g1(ξ) = π + (p − π)1K 1
e,1
(ξ).

By (10.70), g1 ↓ g as 1 ↑ V , where g = π + (p − π)1K 1
e
.

We claim that

(10.73) φ1
1(g1 | [ξ ]3\e) → φ1(g | [ξ ]3\e) as 1 ↑ V ,
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and we prove this as follows. Let1′,1′′ be boxes satisfying3 ⊆ 1′ ⊆ 1 ⊆ 1′′.
Since ψ1(·) = φ1

1(· | [ξ ]3\e) is a random-cluster measure on an altered graph
(see Theorem 3.1(a)) and since g1 is increasing on � and non-increasing in 1,
we have by positive association that

ψ1′′(g1) ≤ ψ1(g1) ≤ ψ1(g1′).

Let 1′′ ↑ V ,1 ↑ V , and1′ ↑ V , in that order, to conclude (10.73) by monotone
convergence.

By the martingale convergence theorem again,

φ1(g | [ξ ]3\e) → g(ξ) as3 ↑ V , for φ1-a.e. ξ,

and (10.71) follows by (10.72)–(10.73).

The extremality of φ1
p,q is a consequence of positive association, on noting that

φ1
p,q ≥st φ for all φ ∈ R1

p,q . Let τ be an automorphism of the graph T . In the
notation of Section 4.3, for any increasing cylinder event A and all boxes3,

φ1
3,p,q(A) = φ1

τ3,p,q(τ
−1 A),

and, by positive association,

φ1
τ3,p,q(τ

−1 A) ≥ φ1
1,p,q(τ

−1 A) if 1 ⊇ τ3.

Letting 1 ↑ V , we obtain that

φ1
3,p,q(A) ≥ φ1

p,q(τ
−1 A),

so that φ1
p,q(A) ≥ φ1

p,q(τ
−1 A). Equality must hold here, and the claim of

automorphism-invariance follows.

Turning to the final statement of part (a), by the discussion around (10.71),
φπ ∈ R1

p,q if and only if φπ (K 1
e ) = 0 for all e ∈ E . Since φπ is a product

measure, this condition is equivalent to (10.69). �

10.10 The critical point for a tree

We concentrate henceforth on the binary tree T = T2 = (V , E) and the wired
equivalence relation ∼1. It is shown in this section how the series/parallel laws
may be used to study random-cluster measures on T . Corresponding results are
valid for the m-ary tree with m ≥ 2.

The results of this section are valid for all q ∈ (0,∞), and we begin by proving
the existence of the wired weak-limit for all p and q , thereby extending part of
Theorem 10.67(c). The limit as 3 ↑ V is taken along an arbitrary increasing
sequence of boxes.
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p = 0.75

p = 0.25

p = 0.85

p = 0.4
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Figure 10.5. The function fp,q(x)− x is plotted in the three cases q < 1, 1 < q ≤ 2, q > 2.
The maximal solution ρ of fp,q(x) = x satisfies ρ > 0 if and only if p > κq (respectively,
p ≥ κq ) when 0 < q ≤ 2 (respectively, q > 2). The intermediate curve in the third graph
corresponds to the critical case with p = κq and q > 2. Note in this case that ρ = ρ(p, q) is
a discontinuous function of p.

(10.74) Theorem. The weak limit

(10.75) φ1
p,q = lim

3↑V
φ1
3,p,q

exists for all p ∈ [0, 1] and q ∈ (0,∞).

Consider now the existence (or not) of infinite open clusters under the weak
limit φ1

p,q . Let

(10.76) θ(p, q) = φ1
p,q(0 ↔ ∞),

and define the critical value of p by

(10.77) pc(q) = sup
{

p : θ(p, q) = 0
}
.

The calculation of θ(p, q) and pc(q) makes use of certain quantities which we
introduce next.

Let κq be defined by

(10.78) κq =





q

q + 1
if 0 < q ≤ 2,

2
√

q − 1

1 + 2
√

q − 1
if q > 2.

Let Fp,q : [0, 1]2 → [0, 1] be given by

Fp,q(x, y) = p[1 − (1 − x)(1 − y)]

1 + (q − 1)(1 − p)(1 − x)(1 − y)
,
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and let fp,q , gq : [0, 1] → [0, 1] be given by

fp,q (x) = Fp,q (x, x),(10.79)

gq(y) = 1 − (1 − y)3

1 + (q − 1)(1 − y)3
.(10.80)

An important quantity is the maximal root ρ = ρ(p, q) in [0, 1] of the equation
fp,q (x) = x . In particular, we will need to know under what conditions ρ(p, q)
is strictly positive.

(10.81) Proposition. Let p ∈ [0, 1] and q ∈ (0,∞). Let ρ = ρ(p, q) be the
maximal solution in the interval [0, 1] of the equation fp,q (x) = x. Then:

ρ > 0 if and only if p

{
> κq when 0 < q ≤ 2,

≥ κq when q > 2.

The proof of this proposition is elementary and is omitted. Illustrations of the
three cases q ∈ (0, 1), q ∈ [1, 2], q ∈ (2,∞) appear in Figure 10.5. We now
state the main theorem of this section.

(10.82) Theorem. Let p ∈ [0, 1] and q ∈ (0,∞). Then:

(a) θ(p, q) = gq(ρ) where ρ is the maximal root in [0, 1] of the equation
fp,q(x) = x,

(b) pc(q) = κq where κq is given in (10.78),

(c) φ1
p,q ∈ R1

p,q ,

(d) R1
p,q = {φπ } whenever θ(p, q) = 0.

This theorem may be found in essence in [167] but with different proofs. In
contrast to the direct calculations7 of this section, the proofs in [167] proceed via
a representation of random-cluster measures on T in terms of a certain class of
multi-type branching processes.

Proof of Theorem 10.74. We use the series/parallel laws of Theorem 3.89. The
basic fact is that three edges in the configuration on the left side of Figure 10.6,
with parameter-values as given there, may be replaced as indicated by a single
edge with parameter Fp,q (x, y). This is easy to check: the two lower edges in
parallel may be replaced by a single edge with parameter 1 − (1 − x)(1 − y), and
the latter may then be combined with the upper edge in series.

Let 3n = {x ∈ V : |x | ≤ n}, where |x | denotes the number of edges in the
path from 0 to x . We consider first the measures φ1

3n ,p,q
, in the limit as n → ∞.

Let Hr be the graph obtained from the finite tree (3r , E3r ) by adding two
new edges [x, x ′〉, [x, x ′′〉 to each terminal vertex x ∈ ∂3r . We colour these new

7The current method was mentioned in passing in [160].
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p

x

Fp,q (x, y)

y

Figure 10.6. The parallel and series laws are used to replace the left graph by a single edge.
The parameter values are as marked.

edges green, together with all new endvertices x ′, x ′′. We write H 1
r for the graph

obtained from Hr by an identification of all green vertices. See Figure 10.7.

Let p ∈ [0, 1], q ∈ (0,∞) and 1 ≤ r ≤ s − 2. The wired measure on 3s

may be viewed as the random-cluster measure on the graph obtained from 3s by
identifying the set ∂3s . We write 31

s for the graph obtained thus, and we will
not dwell on the changes of notation required in order to do this properly. We
propose to use the series/parallel laws in order to replace edges belonging to 31

s
but not 31

r . Edges in 31
s incident to the composite vertex ∂3s come in pairs,

and each such pair e1, e2 has an immediate ancestor edge e3. The trio e1, e2, e3
may be replaced by a single edge with parameter fp,q (p). When all such trios
have been replaced, the resulting graph is 31

s−1. This process is iterated until 31
s

has been reduced to H 1
r . The green edges of H 1

r have acquired parameter-value

f (s−r−1)
p,q (p), where f (k)p,q denotes the kth iterate of fp,q . Note that fp,q(1) = p,

and hence f (s−r−1)
p,q (p) = f (s−r)

p,q (1).

The function fp,q is increasing on [0, 1] with fp,q(0) = 0 and fp,q (1) = p.
Therefore,

(10.83) f (n)p,q (1) → ρ as n → ∞,

where ρ is the maximal root in [0, 1] of the equation fp,q (x) = x .

Let E ∈ F3r . Let φ1
r,s be the random-cluster measure on H 1

r with edge-
parameter f (s−r)(1) (respectively, p) for the green (respectively, non-green) edges.
By the above,

(10.84) φ1
3s ,p,q(E) = φ1

r,s(E).

A (random-cluster) probability φG,p,q(E) is a continuous function of the edge-
parameters p. Therefore, by (10.83),

(10.85) φ1
3s ,p,q(E) → φ1

r,∞(E) as s → ∞,
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x

0

x ′

x ′′

Figure 10.7. To each boundary vertex x of the box 32 is attached two new (green) edges
[x, x ′〉, [x, x ′′〉. The resulting graph is denoted by H2.

where φ1
r,∞ is the wired random-cluster measure on Hr in which the green edges

have parameter ρ.

When q ∈ [1,∞), the random-cluster measure is positively associated, and
(10.85) implies (10.75) for general 3. When q ∈ (0, 1), a separate argument is
needed in order to extend the limit in (10.85) to a general increasing sequence of
boxes. Let 3 be a box with 3 ⊇ 3r+1, and let

a = a(3) = max{n : 3n ⊆ 3}, b = b(3) = min{n : 3 ⊆ 3n}.

The measure φ1
3,p,q may be viewed as the random-cluster measure on 31

b in

which edges of E3b \ E3 have parameter 1. We may reduce 31
b to H 1

r via the
series/parallel laws as above. Since Fp,q (x, y) is increasing in p, x , y, the green

edges of H 1
r acquire parameter values lying between f (b−r)

p,q (1) and f (a−r)
p,q (1).

Now a, b → ∞ as 3 → V , and

f (b−r)
p,q (1) → ρ, f (a−r)

p,q (1) → ρ.

It follows as above that

(10.86) φ1
3,p,q(E) → φ1

r,∞(E) as 3 ↑ V .

There remains a detail. Each φ1
3,p,q is a probability measure on the compact

state space �. Therefore, the family of such φ1
3,p,q , as 3 ranges over boxes,

is tight. By Prohorov’s theorem, [42], every subsequence contains a convergent
sub(sub)sequence. The limiting probability of any cylinder event E is, by (10.86),
independent of the choice of subsequence. Therefore, the weak limit in (10.75)
exists, and the theorem is proved. �
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Proof of Theorem 10.82. (a) Let ρ be as given. We claim that

(10.87) φ1
3n ,p,q(0 ↔ ∂3n) → gq(ρ) as n → ∞.

By series/parallel replacement as in the proof of Theorem 10.74,

θn(p, q) = φ1
3n,p,q(0 ↔ ∂3n)

satisfies
θn(p, q) = θ1( f (n)p,q (1), q).

By (10.83), θn(p, q) → θ1(ρ, q) as n → ∞. It is an easy calculation that
θ1(z, q) = gq(z), and (10.87) follows.

The proof of Proposition 5.11 is valid in the current setting, whence

θ(p, q) = lim
n→∞ θn(p, q) = gq(ρ), whenever q ∈ [1,∞).

This proves (a) for q ∈ [1,∞).

Suppose that q ∈ (0, 1). The situation is now harder since we may not appeal
to positive association. Instead, we use the weaker inequalities (5.117)–(5.118)
which we summarize as:

(10.88) φG,p,1 ≤st φG,p,q ≤st φG,π,1,

for any finite graph G, where π = p/[p + q(1 − p)]. By Proposition 4.10(a),
corresponding inequalities hold for the weak limits of random-cluster measures.

Let p ≤ κq , so that ρ = 0. Then π = p/[p + q(1 − p)] ≤ 1
2 , and therefore

φ1
π (0 ↔ ∞) = 0. By (10.88), θ(p, q) = ρ = 0 as claimed.

Let p > κq , so that ρ > 0. By Theorem 10.74,

θ(p, q) = lim
r→∞ φ1

p,q(0 ↔ ∂3r )(10.89)

= lim
r→∞ lim

s→∞φ
1
3s ,p,q(0 ↔ ∂3r ).

Now,
φ1
3s ,p,q(0 ↔ ∂3r ) ≥ φ1

3s ,p,q(0 ↔ ∂3s), r ≤ s,

and therefore, by (10.87),

(10.90) θ(p, q) ≥ gq(ρ).

By (10.87) and (10.89),

θ(p, q)− gq(ρ) = lim
r→∞ lim

s→∞φ
1
3s ,p,q(0 ↔ ∂3r , 0 /↔ ∂3s)(10.91)

= lim
r→∞ φ1

r,∞(0 ↔ ∂3r , 0 /↔ ∂3r+1),
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where φ1
r,∞ is defined after (10.85).

For ω ∈ � and r ≥ 0, let Gr be the set of vertices x ∈ ∂3r such that 0 is joined
to x by an open path of the tree, and write Nr = |Gr |. We claim that

(10.92) for k = 1, 2, . . . , φ1
p,q(1 ≤ Nr ≤ k) → 0 as r → ∞,

and we prove this as follows. Let k ∈ {1, 2, . . . }, and define the random sequence
R(0), R(1), R(2), . . . by R(0) = 0 and

R(i + 1) = min
{
s > R(i) : 1 ≤ Ns ≤ k

}
, i ≥ 0.

The length of the sequence is I + 1 where I = I (ω) = |{r ≥ 1 : 1 ≤ Nr ≤ k}|,
and we prove next that

(10.93) φ1
p,q(I < ∞) = 1.

Let i ≥ 0, and suppose we are given that I (ω) ≥ i . Conditional on R(0), R(1),
R(2), . . . , R(i), and on the states of all edges in E3R(i) , there is a certain (condi-
tional) probability that, for all x ∈ G R(i), x is incident to no vertex in ∂3R(i)+1.
By Theorem 3.1(a), the appropriate (conditional) probability measure is a random-
cluster measure on a certain graph obtained from T by the deletion and contraction
of edges in E3R(i) . Since |G R(i)| ≤ k, there are no more than 2k edges of T joining
G R(i) to ∂3R(i)+1 and, by the second inequality of (10.88),

φ1
p,q(I = i | I ≥ i) ≥ (1 − π)2k .

Therefore,

φ1
p,q(I ≥ i + 1 | I ≥ i) ≤ 1 − (1 − π)2k, i ≥ 0,

whence
φ1

p,q(I ≥ i) ≤
[
1 − (1 − π)2k]i , i ≥ 0,

and, in particular, (10.93) holds. Hence, M = sup{r : 1 ≤ Nr ≤ k} satisfies
φ1

p,q (M < ∞) = 1, implying as required that

(10.94) φ1
p,q(1 ≤ Nr ≤ k) ≤ φ1

p,q(M ≥ r) → 0 as r → ∞.

By a similar argument,

φ1
r,∞(0 ↔ ∂3r , 0 /↔ ∂3r+1) =

∞∑

l=1

φ1
r,∞(Nr = l, 0 /↔ ∂3r+1)

≤
∞∑

l=1

(1 − ρ)2lφ1
p,q(Nr = l) by (10.88)

≤ φ1
p,q (1 ≤ Nr ≤ k)+ (1 − ρ)2k

→ (1 − ρ)2k as r → ∞, by (10.92)

→ 0 as k → ∞.
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By (10.90) and (10.91), θ(p, q) = gq(ρ).

(b) This is an immediate consequence of part (a), Proposition 10.81, and the
definition of pc(q).

(c) Let q ∈ (0,∞). We shall show that φ1
p,q satisfies (10.71) for e ∈ E . As in

(10.72), for e = 〈x, y〉 ∈ E ,

(10.95) φ1
p,q(Je | Te)(ξ) = lim

3↑V
lim
1↑V

φ1
1,p,q(Je | [ξ ]3\e), φ1

p,q -a.s.

If ξ /∈ K 1
e , then [ξ ]3\e ∩ K 1

e = ∅ for large 3, and thus

φ1
1,p,q(Je | [ξ ]3\e) = p

p + q(1 − p)
for large 3, 1,

by Theorem 3.1. By (10.95),

(10.96) φ1
p,q(Je | Te) = p

p + q(1 − p)
, φ1

p,q -a.s. on � \ K 1
e .

Suppose that φ1
p,q(K

1
e ) > 0, let ξ ∈ K 1

e , and take 3 = 3r in the notation of
the previous proof. As in that proof, for e ∈ E3r ,

lim
1↑V

φ1
1,p,q(Je | [ξ ]r ) = φ1

r,∞(Je | [ξ ]r ),

where [ξ ]r = [ξ ]3r \e. Let Nr (u) be the number of vertices in ∂3r joined to u by
an open path. As in the previous proof,

Nr (x), Nr (y) → ∞ as r → ∞, φ1
p,q -a.s. on K 1

e ,

whence, for φ1
p,q -almost-every ξ ∈ K 1

e ,

∣∣∣φ1
r,∞(Je | [ξ ]r )− φ1

r,∞(Je | x, y ↔ ∂3r+1 off e)
∣∣∣ → 0 as r → ∞.

By Theorem 3.1,

φ1
r,∞(Je | x, y ↔ ∂3r+1 off e) = p,

and therefore,
φ1

p,q(Je | Te) = p, φ1
p,q -a.s. on K 1

e .

When combined with (10.96), this implies (10.71), and the claim follows.

(d) Let φ ∈ R1
p,q , where p and q are such that θ(p, q) = 0. By the argument in

the proof of part (a), φ(0 ↔ ∞) = 0, and therefore φ(K 1
e ) = 0 for e ∈ E . By

(10.71), φ(Je | Te) = π , φ-almost-surely, whence φ = φπ as claimed. �
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10.11 (Non-)uniqueness of measures on trees

For which p, q is there a unique wired random-cluster measure on the binary tree
T ? We assume for simplicity that q ∈ [1,∞). By Theorem 10.82, R1

p,q = {φπ }
whenever p is sufficiently small that φ1

p,q (0 ↔ ∞) = 0. The last holds if and
only if

p

{ ≤ κq for q ∈ [1, 2],

< κq for q ∈ (2,∞),

where κq is given in (10.78). Larger values of p are considered in the following
conjecture.

(10.97) Conjecture [167]. We have that |R1
p,q | = 1 if : either q ∈ [1, 2], or

q ∈ (2,∞) and p > q/(q + 1).

When q ∈ (2,∞) and κq ≤ p ≤ q/(q + 1), there exists a continuum of wired
random-cluster measures, see [167]. These may be cooked up on the basis of the
following two facts:

(i) φπ (0 ↔ ∞) = 0 when p ≤ q/(q + 1),

(ii) φ1
p,q 6= φπ when q ∈ (2,∞) and p ≥ κq ,

where π = p/[p + q(1 − p)]. The recipe is as follows. Let x be a vertex of
T other than its root. The set Rx of x-rays constitutes an infinite binary tree
denoted by Tx = (Vx , Ex) with root x (the vertex x has degree 2 in Tx ). Let ex

denote the unique edge of T with endvertex x and not belonging to Tx , and let
E ′

x = Ex ∪ {ex}. Let µx be the measure on (�,F ) given by:

(a) the states of edges in E ′
x are independent of those of edges in E \ E ′

x , and
have as law the product measure on {0, 1}Ex with density π ,

(b) the states of edges in E \ E ′
x have as law the conditional measure of φ1

p,q
given that ex is closed.

That µx ∈ R1
p,q may be seen in very much the same way as in the proof

of Theorem 10.67(c), under the condition that there exist, φπ -almost-surely, no
infinite open clusters. Thus, µx ∈ R1

p,q if p ≤ q/(q + 1). If, in addition,

q ∈ (2,∞) and p ≥ κq , then φ1
p,q(0 ↔ ∞) > 0. This implies that

φ1
p,q(x ↔ ∞ in Tx | ex is closed) > 0,

whence µx 6= φ1
p,q . It is not hard to see that µx 6= µy whenever x 6= y, subject to

the above conditions on p, q . Since V is countably infinite, there exist (at least)
countably infinitely many members of R1

p,q .

This conclusion may be strengthened by choosing an infinite sequence x =
(xi : i = 1, 2, . . . ) of vertices such that: for every i , xi is incident to no e ∈ E ′

xj

with j < i . One performs a construction similar to the above, but with product
measure on each of the sets Exi , i = 1, 2, . . . . This results in a probability
measure µx belonging to R1

p,q and labelled uniquely by the sequence x. There
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are uncountably many choices for x, and therefore uncountably many distinct
members of R1

p,q . For the sake of clarity, we point out that one way to choose a
large class of possible x is to take an infinite directed path5 of T , and to consider
the power set of the set of all neighbours of 5 that do not belong to 5.

Partial progress towards a verification of Conjecture 10.97 may be found in
[196]. A broader class of equivalence relations has been considered in [160].

(10.98) Theorem [160, 196]. Let q ∈ [1,∞) and let p ≥ 2q/(2q + 1). The set
R1

p,q comprises the singleton φ1
p,q only.

The condition of this theorem is not best possible in the case q = 1, and
therefore is unlikely to be best possible for q ∈ (1,∞).

There has been extensive study of the Ising model on a tree. It turns out that
there are two critical points on the binary tree T . The first critical point corresponds
to the random-cluster transition at the point p = κ2 = 2

3 , and the second arises as
follows. Consider the Ising model on T with free boundary conditions. There is
a critical value of the inverse-temperature at which the corresponding Gibbs state
ceases to be extremal. In the parametrization of this chapter, this critical point is
given by psg = 2/(1 +

√
2), see [49, 188, 189, 250]. This value arises also in

the study of a related ‘Edwards–Anderson’ spin-glass problem on T , see [89] and
Section 11.5. It may be seen by a process of spin-flipping that the spin-glass model
with ±1 interactions can be mapped to a ferromagnetic Ising model with boundary
conditions taken uniformly and independently from the spin space {−1,+1}. It
turns out that this model has critical value psg also, and for this reason psg is
commonly referred to as the ‘spin-glass critical point’.

In summary, for p = 1 − e−β < 2
3 , the Ising model has a unique Gibbs state.

For p ∈ ( 2
3 , psg), the + Gibbs state differs from the free state, whereas ‘typical’

boundary conditions (in the sense of boundary conditions chosen randomly ac-
cording to the free state) result in the free measure. When p > psg, the free state is
no longer an extremal Gibbs state. This double transition is not evident in the anal-
ysis of this chapter since it is restricted to boundary conditions of ‘unconditioned’
random-cluster-type.

Sketch proof of Theorem 10.98. Note first that p ≥ 2q/(2q + 1) if and only if
π = p/[p + q(1 − p)] satisfies π ≥ 2

3 . Under this condition we may obtain, by
a branching-process argument, the φπ -almost-sure existence in T of a (random)
set W of vertices such that: (i) every 0-ray passes through some vertex of W , and
(ii) every w ∈ W is the root of an infinite open sub-tree of T . The argument then
continues rather as in the proof of Theorem 5.33(b). The details may be found in
[160, 196]. �
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10.12 On non-amenable graphs

The properties of interacting systems on trees are often quite different from those of
lattice systems, for two reasons. Firstly, trees have a multiplicity of ‘infinite ends’,
and secondly, the surface/volume ratios of boxes are bounded away from 0. The
latter property is especially interesting and leads to an important categorization of
graphs. Let G = (V , E) be an infinite connected locally finite graph. We call G
amenable if its ‘isoperimetric constant’

(10.99) χ(G) = inf

{ |∂W |
|W | : W ⊆ V , 0 < |W | < ∞

}

satisfies χ(G) = 0. The graph is called non-amenable if χ(G) > 0. It is easily
seen that the lattices Ld and the regular m-ary tree Tm satisfy

χ(Ld) = 0, χ(Tm) > 0 for m ≥ 2,

so that lattices are amenable, and regular trees of degree 3 or more are not.

It is convenient to make certain assumptions of homogeneity on the graph
G = (V , E). An automorphism8 of G is a bijection γ : V → V such that
〈x, y〉 ∈ E if and only if 〈γ x, γ y〉 ∈ E . A subgroup Ŵ of the automorphism
group Aut(G) is said to act transitively on G if, for every pair x, y ∈ V , there
exists γ ∈ Ŵ such that γ x = y. We say that Ŵ acts quasi-transitively if V may be
partitioned as the finite union V = ⋃m

i=1 Vi such that, for every i = 1, 2, . . . ,m
and every pair x, y ∈ Vi , there exists γ ∈ Ŵ such that γ x = y. The graph
G is called transitive (respectively, quasi-transitive) if Aut(G) acts transitively
(respectively, quasi-transitively). Results for transitive graphs are usually provable
for quasi-transitive graphs also and, for simplicity, we shall usually assume G to
be transitive.

For any graph G, the stabilizer S(x) of the vertex x is defined to be the set of
automorphisms of G that do not move x ,

S(x) = {γ ∈ Aut(G) : γ x = x}.

We write S(x)y for the set of images of y ∈ V under members of S(x),

S(x)y = {γ y : γ ∈ S(x)},

and we call G unimodular9 if |S(x)y| = |S(y)x | whenever x and y belong to the
same orbit of Aut(G).

8See Section 4.3 for the basic definitions associated with the automorphism group Aut(G).
9The terms ‘amenable’ and ‘unimodular’ come from group theory, see [265, 290, 312]. The

assumption of unimodularity is equivalent to requiring that the left and right Haar measures on
Aut(G) be the same.

c©Springer-Verlag 2006



316 On Other Graphs [10.12]

There is a useful class of graphs arising from group theory. Let Ŵ be a finitely
generated group and let S be a symmetric generating set. The associated (right)
Cayley graph is the graph G = (V , E) with V = Ŵ and

E =
{
〈x, y〉 : x, y ∈ Ŵ, xg = y for some g ∈ S

}
.

There are many Cayley graphs of interest to probabilists, including the lattices Ld

and the trees Tm . All Cayley graphs are unimodular, see [241, Chapter 7]. One
may take Cartesian products of Cayley graphs to obtain further graphs of interest,
including the well-known example Ld ×Tm , which has been studied in some depth
in the context of percolation, [162].

The graph-property of (non-)amenability first became important in probability
through the work of Kesten on random walks, [205, 206]. In [162] it was shown that
percolation on the non-amenable graph Ld ×Tm possesses three phases. Pemantle
[267] developed a related theory for the contact model on a tree, while Benjamini
and Schramm [32] laid down further challenges for non-amenable graphs. There
has been a healthy interest since in stochastic models on non-amenable graphs,
and a systematic theory has developed. More recent references include [29, 30,
174, 176, 196, 197, 240, 241, 293].

Let G = (V , E) be an infinite, connected, locally finite, transitive graph, and let
� = {0, 1}E . As usual, for F ⊆ E , we write FF for the σ -field generated by the
states of edges in F , TF = FE\F , and F for the σ -field generated by the finite-
dimensional cylinders. The tail σ -field is T = ⋂

F TF where the intersection
is over all finite subsets F of E . A probability measure µ on (�,F ) is called
tail-trivial if µ(A) ∈ {0, 1} for all A ∈ T .

The translations of Ld play a special role in considerations of mixing and
ergodicity. For graphs G of the above type, this role is played by automorphism
subgroups with infinite orbits. Let Ŵ be a subgroup of Aut(G). We say that Ŵ has
an infinite orbit if there exists x ∈ V such that the set {γ x : γ ∈ Ŵ} has infinite
cardinality. It is easy to see that a group Ŵ of automorphisms has an infinite orbit
if and only if every orbit of Ŵ is infinite.

We turn now to random-cluster measures on the graph G = (V , E). Let p ∈
(0, 1), and assume for simplicity that q ∈ [1,∞). Let 3 = (3n : n = 1, 2, . . . )
be an increasing sequence of finite sets of vertices such that 3n ↑ V as n → ∞.
We concentrate as usual on two extremal random-cluster measures given very
much as in Section 10.9, and we specify these informally as follows. Let 3 be
a finite subset of V , and let φ3,p,q be the random-cluster measure on �0

3 with
parameters p, q , as in (4.11) with ξ = 0. By stochastic monotonicity, the limit

φ0
p,q = lim

n→∞ φ3n ,p,q

exists, and it is called the ‘free’ random-cluster measure on G. We note as before
that the limit measure φ0

p,q does not depend on the choice of 3, and that φ0
p,q is

automorphism-invariant.
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In defining the wired measure, we veer towards the recipe of Section 10.9 rather
than the lattice-theoretic (4.11). This amounts in rough terms to the following.
Let 3 be a finite subset of V , and identify the set ∂3 as a single vertex. Write
φ1
3,p,q for the random-cluster measure with parameters p, q on this new graph,

and view φ1
3,p,q as a measure on the infinite measurable pair (�,F ). As above,

the limit
φ1

p,q = lim
n→∞ φ1

3n ,p,q

exists and does not depend on the choice of 3. We call φ1
p,q the ‘wired’ random-

cluster measure on G, and we note that φ1
p,q is automorphism-invariant.

As pointed out in [240], the method of proof of Theorem 4.19(d) is valid
for general graphs, and implies that the measures φb

p,q are tail-trivial. Let Ŵ be
a subgroup of Aut(G) with an infinite orbit. By an adaptation of the proof of
Theorem 4.19, the φb

p,q are Ŵ-ergodic. Indeed, the φb
p,q satisfy the following form

of the mixing property. Since Ŵ has an infinite orbit, all its orbits are infinite. For
x ∈ V and y lying in the orbit of x under Ŵ, let γx,y ∈ Ŵ be an automorphism
mapping x to y. For x ∈ V and A, B ∈ F ,

(10.100) lim
δ(x,y)→∞

φb
p,q(A ∩ γx,y B) = φb

p,q(A)φ
b
p,q(B), b = 0, 1,

in that, for ǫ > 0, there exists N such that

∣∣φb
p,q (A ∩ γx,y B)− φb

p,q(A)φ
b
p,q(B)

∣∣ < ǫ if δ(x, y) ≥ N,

where δ(x, y) denotes the length of the shortest path from x to y.

The measures φb
p,q satisfy different ‘one-point specifications’, namely:

φ0
p,q(Je | Te) = π + (p − π)1Ke , φ0

p,q -a.s.,

φ1
p,q(Je | Te) = π + (p − π)1K 1

e
, φ1

p,q -a.s.,

for e = 〈x, y〉. Here, as in (10.71), Je is the event that e is open, Te is the σ -field
generated by states of edges other than e, and π = p/[p + q(1 − p)]. In addition,

Ke = {x ↔ y off e},
K 1

e = {x ↔ y off e} ∪ {x ↔ ∞, y ↔ ∞}.

Many questions may be asked about the free and wired measures on a general
graph G. We restrict ourselves here to the existence and number I of infinite open
clusters. The critical points are defined by

pb
c (q) = sup

{
p : φb

p,q(I = 0) = 1
}
, b = 0, 1.
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By the tail-triviality of the φb
p,q ,

φb
p,q(I = 0) =

{
1 if p < pb

c (q),

0 if p > pb
c (q).

We note the elementary inequality p1
c(q) ≤ p0

c (q). It is an open question to decide
when strict inequality holds here. As in (5.4), we have that p1

c (q) = p0
c (q) for

lattices, and the proof of this may be extended to all amenable graphs, [196]. On
the other hand, by Theorem 10.82, p1

c(q) < p0
c (q) for the regular binary tree T2

when q ∈ (2,∞).

If there exists an infinite open cluster with positive probability, under what
further conditions is this cluster almost-surely unique? The property of having a
unique infinite cluster is not monotone in the configuration: there existω1, ω2 ∈ �
such that ω1 ≤ ω2 and I (ω1) = 1, I (ω2) ≥ 2. Nevertheless, it turns out that,
for transitive unimodular graphs, the set of values of p for which I = 1 is indeed
(almost surely) an interval.

The ‘uniqueness critical point’ is given by

pb
u(q) = inf

{
p : φb

p,q(I = 1) = 1
}
, b = 0, 1.

and satisfies
pb

c (q) ≤ pb
u(q), b = 0, 1.

Since G is transitive, Aut(G) has an infinite orbit. The event {I = 1} is Aut(G)-
invariant whence, by the Aut(G)-ergodicity of the φb

p,q ,

φb
p,q (I = 1) = 0, p < pb

u .

(10.101) Theorem [240]. Let G be an infinite connected locally finite graph that
is transitive and unimodular, and let b ∈ {0, 1}. If φb

p,q (I = 1) = 1 then

φb
p′,q(I = 1) = 1 for p′ ≥ p. In particular,

φb
p,q(I = 1) = 1, p > pb

u.

The proof is based upon the following proposition whose proof is omitted from
the current work. A probability measure µ on (�,F ) is called insertion-tolerant
if, for all e ∈ E and A ∈ F ,

µ(Ae) > 0 whenever µ(A) > 0,

where Ae is the set of configurations obtained from members of A by declaring e
to be an open edge. Insertion-tolerance is a weak form of finite-energy, see (3.4).
The symbol 0 denotes an arbitary vertex of G called its ‘origin’.

c©Springer-Verlag 2006



[10.12] On non-amenable graphs 319

(10.102) Proposition [242]. Let G be an infinite connected locally finite graph
that is transitive and unimodular, and let µ be an Aut(G)-ergodic probability
measure on (�,F ) that is positively associated and insertion-tolerant. Then
µ(I = 1) = 1 if and only if

inf
x∈V

µ(0 ↔ x) > 0.

Theorem 10.101 is an immediate consequence, since the φb
p,q(0 ↔ x) are

non-decreasing in p.

Suppose that G is unimodular. By Theorem 10.101 and a well known argument
from [261], the free and wired random-cluster measures have (each) three phases:
for b = 0, 1,

I =





0 if p < pb
c (q),

∞ if pb
c (q) < p < pb

u(q),

1 if p > pb
u(q).

φb
p,q -a.s.

It is an open problem to obtain necessary and sufficient criteria for the strict
inequalities

(10.103) p1
c(q) < p1

u(q), p0
c (q) < p0

u(q),

and the reader is referred to [174] for a discussion of this. The Burton–Keane
argument, [72, 129], may be adapted to show that equalities hold in (10.103)
when G is amenable. On the other hand, the inequalities may be strict, see [174,
240].

It is natural to ask for the value of I when p equals one of the critical values
pb

c , pb
u . The picture is far from complete, and the reader is referred to [29, 30, 33,

167, 174] and Section 10.11 for the current state of knowledge.
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Chapter 11

Graphical Methods for Spin Systems

Summary. Five applications are presented of the random-cluster model
to lattice spin-systems, namely the Potts and Ashkin–Teller models, the
disordered Potts ferromagnet, the Edwards–Anderson spin-glass model, and
the Widom–Rowlinson lattice gas model.

11.1 Random-cluster representations

The interacting systems of lattice statistical mechanics are mostly ‘vertex-models’
in the sense that the configurations are spin-vectors indexed by the vertices. Such
spins may take values in a general state-space, and the nature of the interaction
between different vertices is specified within the Hamiltonian. A substantial tech-
nology has been developed for such systems. One of the techniques is to seek a
transformation to an ‘edge-model’ that enables the use of geometric arguments in
the study of correlations. The standard example of this is the mapping of Section
1.4 linking the Potts model and the random-cluster model. Such arguments are
sometimes known as ‘graphical methods’, and some examples are summarized
briefly in this chapter.

No attempt is made in this chapter to be encyclopaedic. Instead, we describe
five cases of special interest, namely the Potts and Ashkin–Teller models for
a ferromagnet, the disordered Potts model, the Edwards–Anderson model for a
spin glass, and the Widom–Rowlinson model for a two-type lattice gas. There
is a common theme to these examples. The first step in each case is to find a
corresponding model of random-cluster type, with the property that the original
spin system may be obtained by assigning spins to its clusters. It turns out that
there exists a unique Gibbs state for the original spin system if and only if the new
model has (almost surely) only finite clusters. The existence or not of an infinite
cluster may be studied either directly, or by comparison with a known system such
as a percolation model.

Accounts of the use of graphical methods for these and other classical models
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may be found, for example, in the work of Alexander [15],Chayes and Machta [93,
94], Graham and Grimmett [142], and in the reviews of Georgii, Häggström, Maes
[136], and Häggström [169], as well as in the literature listed later in this chapter.
The use of random-cluster methods in quantum spin systems is exemplified in [11,
12, 258].

11.2 The Potts model

The random-cluster model was introduced in part as a means to study the Potts
model. No attempt is made here to compress the ensuing theory into a few pages.
Instead, we state and prove one theorem concerning a random-cluster analysis of
the (non-)uniqueness of Gibbs states for the Potts model.

The Potts model on a finite graph G = (V , E) has an integer number q ∈
{2, 3, . . . } of states and an ‘inverse-temperature’ β ∈ (0,∞). We shall consider
the case of zero external-field, and we recall the notation of Section 1.3. We
write 6 = {1, 2, . . . , q}V for the configuration space. For e = 〈x, y〉 ∈ E and
σ = (σx : x ∈ V ) ∈ 6, let δe(σ ) be defined by the Kronecker delta

δe(σ ) = δσx ,σy =
{

1 if σx = σy,

0 otherwise.

The Potts probability measure is defined as

πG,β,q(σ ) = 1

ZP
e−βH(σ ), σ ∈ 6,

where the Hamiltonian H (σ ) is given by

H (σ ) = −
∑

e=〈x,y〉∈E

δe(σ ),

and ZP = ZP(G, β, q) is the appropriate normalizing constant.

Consider now the lattice Ld with d ≥ 2. The spin space is the set 6 =
{1, 2, . . . , q}Z

d
, and the appropriate σ -field G is that generated by the finite-

dimensional cylinders of 6. Let 3 be a finite box of Ld , which we consider
as a graph with edge-set E3. For τ ∈ 6, let 6τ3 be the subset of 6 containing
all configurations that agree with τ off 3 \ ∂3. The Potts measure on 3 ‘with
boundary condition τ ’ is the probability measure on (6,G) satisfying

(11.1) πτ3,β,q(σ ) =
{

cτ3π3,β,q(σ3) if σ ∈ 6τ3,
0 otherwise,

where σ3 is the partial vector (σx : x ∈ 3) comprising spins in 3, and cτ3 is the
normalizing constant. Of particular interest are the boundary conditions τ ≡ i for
given i ∈ {1, 2, . . . , q}, in which case we write π i

3,β,q . The symbol U3 will be
used to denote the σ -field generated by the spins (σy : y /∈ 3 \ ∂3).

c©Springer-Verlag 2006



322 Graphical Methods for Spin Systems [11.2]

(11.2) Definition. A probability measure π on (6,G) is called a Gibbs state of the
q-state Potts model with inverse-temperature β if it satisfies the DLR condition:

for all A ∈ G and boxes3, π(A | U3)(τ ) = πτ3,β,q(A) for π-a.e. τ .

The principal question concerning Gibbs states is the following. For which
values of the inverse-temperature β does there exist a unique (respectively, a
multiplicity of) Gibbs states? It turns out that there is a unique Gibbs state if and
only if the corresponding wired random-cluster model possesses (almost surely)
no infinite cluster. Prior to the formal statement of this claim, which will be given
in a form borrowed from [136, Thm 6.10], the reader is reminded of the weak
limits1

π0
β,q = lim

3↑Zd
π3,β,q, π1

β,q = lim
3↑Zd

π1
3,β,q,

given in Theorem 4.91 and the remark immediately following. The measure π0
β,q

is called the ‘free’ Potts measure.

(11.3) Theorem. Let β ∈ (0,∞), q ∈ {2, 3, . . . }, and let p = 1 − e−β .

(a) The measures π0
β,q , π1

β,q are translation-invariant Gibbs states.

(b) [8] The following statements are equivalent:

(i) there exists a unique Gibbs state,

(ii) π1
β,q(σ0 = 1) = q−1,

(iii) the wired random-cluster measure φ1
p,q satisfies φ1

p,q(0 ↔ ∞) = 0.

We have highlighted the Potts measure π1
β,q with boundary condition 1. One

may construct further measures π i
β,q with boundary condition i ∈ {2, 3, . . . , q}.

Such measures differ from π1
β,q only through a re-labelling of the spin values

1, 2, . . . , q .

The main claim of the theorem is that there exists a unique Gibbs state if and
only if φ1

p,q(0 ↔ ∞) = 0. When φ1
p,q(0 ↔ ∞) > 0, there exists more than one

Gibbs state, but how many? It is easily seen from the theorem that the measures
π i
β,q , i ∈ {1, 2, . . . , q}, are then distinct Gibbs states, but do there exist further

states? The set of Gibbs states for given β, q is convex, and thus we are asking
about the number of extremal Gibbs states. There are three situations to consider.
The parameters p and β are related throughout by p = 1 − e−β .

1. Two dimensions (d = 2). It is believed that the π i
β,q are the unique extremal

Gibbs states whenever p > pc(q). At the point of a discontinuous phase
transition (see Conjecture 6.32), the set of extremal Gibbs states is believed
to be π i

p,q for i ∈ {0, 1, 2, . . . , q}.

1There is a technical detail here in that π3,β,q is defined on 3 rather than on Z
d , but we

overlook this.
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2. Supercritical phase (d ≥ 3). Suppose p > pc(q). It is believed that the
π i
β,q are the unique extremal translation-invariant Gibbs states. On the other

hand, there exist non-translation-invariant Gibbs states (see Theorem 7.89)
when β (and hence p) is sufficiently large.

3. Critical case (d ≥ 3). Let p = pc(q). By Theorem 11.3, there exists
a unique Gibbs state if the phase transition is continuous in the sense that
φ1

pc,q(0 ↔ ∞) = 0. When q is sufficiently large, the transition is discon-
tinuous and there exist exactly q + 1 translation-invariant extremal Gibbs
states π i

β,q , i ∈ {0, 1, 2, . . . , q}, [251]. There is in addition an infinity of
non-translation-invariant extremal Gibbs states, [85, 254].

To each vertex of a q-state Potts model is allocated one of the states 1, 2, . . . , q .
The so-called ‘Potts lattice gas’ has an augmented state space 0, 1, 2, . . . , q , where
the vertices labelled 0 are considered as ‘empty’. The Potts lattice gas may be
studied via the so-called ‘asymmetric random-cluster model’, see [15]. A similar
augmentation of the state space was introduced for the Ising model by Blume and
Capel in a study of first-order phase transitions, [50, 79]. This gives rise to a
‘Blume–Capel–Potts model’ which may be studied via a random-cluster repre-
sentation, see [142].

Proof of Theorem 11.3. (a) The existence of the measures is proved in Theorem
4.91 and the comments immediately thereafter. Their translation-invariance fol-
lows from the translation-invariance of φb

p,q for b = 0, 1, see Theorem 4.19(b),
on following the recipes of Section 4.6.

We prove next that π1
β,q is a Gibbs state, and the same proof is valid for π0

β,q .
For boxes 3, 1 satisfying 3 ⊆ 1, let V1\3 denote the σ -field generated by the
states of vertices in 1 \ (3 \ ∂3). Let A ∈ G. By the martingale convergence
theorem (see [164, Ex. 12.3.9]),

π1
β,q(A | U3) = lim

1↑Zd
π1
β,q(A | V1\3), π1

β,q-a.s.

By weak convergence, Theorem 4.91,

π1
β,q(A | V1\3) = lim

1′↑Zd
π1
1′,β,q(A | V1\3),

and it is a simple calculation based on the definition of the finite-volume Potts
measures that

π1
1′,β,q(A | V1\3)(τ ) = πτ3,β,q(A).

Combining the last three equations, we find as required that

π1
β,q(A | U3)(τ ) = πτ3,β,q(A), π1

β,q-a.s.

(b) We prove first that (i) implies (ii). Assume that (i) holds, so that, in particular,
π1
β,q = π i

β,q for i = 2, 3, . . . , q . Then,

π1
β,q(σ0 = 1) = π

j
β,q(σ0 = j)

= π1
β,q(σ0 = j), j = 1, 2, . . . , q.
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However,
q∑

j=1

π1
β,q(σ0 = j) = 1,

and (ii) follows.

By Theorem 1.16 applied to 3 with the wired boundary condition,

π1
3,β,q(σ0 = 1)− 1

q
= (1 − q−1)φ1

3,p,q(0 ↔ ∞).

Let 3 ↑ Zd and deduce by Theorems 4.91 and 5.11 that

π1
β,q(σ0 = 1)− 1

q
= (1 − q−1)φ1

p,q(0 ↔ ∞).

Therefore, (ii) and (iii) are equivalent.

Finally, we prove that (iii) implies (i). Assume (iii), and let π be a Gibbs state
for the Potts model with parameters β, q . Let A ∈ G be a cylinder event, and let
π0
β,q denote the Potts measure on Ld with the free boundary condition. We claim

that

(11.4) π(A) = π0
β,q(A),

which implies (i) since the cylinder events generate G. Let ǫ > 0. We shall prove
that

(11.5)
∣∣πτ3,β,q(A)− π0

β,q(A)
∣∣ < ǫ, for some box 3 and all τ ∈ 6.

Equation (11.4) follows by (π-)averaging over τ and appealing to Definition 11.2.

We concentrate for the moment on the measure πτ3,β,q . We may couple this
measure with a certain random-cluster-type measure in the same manner as de-
scribed in Section 1.4 for the free measures. For ω ∈ �3 = {0, 1}E3 , let kτ (ω)
be the number of open clusters in the graph obtained from (3,E3) by identifying
each of the sets Vi = {x ∈ ∂3 : τx = i}, i = 1, 2, . . . , q , as a single vertex. Let φ
be the random-cluster measure on �3 with the usual cluster-count k(ω) replaced
by kτ (ω). Finally, let φτ3,p,q denote2 φ conditioned on the event

(11.6) Dτ =
{
ω ∈ � : Vi /↔ Vj in 3, for all distinct i, j ∈ {1, 2, . . . , q}

}
.

It is left as an exercise to prove that πτ3,β,q is the law of the spin-vector obtained
as follows. If x /∈ 3\ ∂3, assign spin τx to x . For vertices in3\ ∂3, first sample
ω ∈ �3 according to φτ3,p,q , and then assign uniformly distributed random spins

2Since kτ (ω) differs from k1(ω) by a constant (depending on τ ), we could take φτ3,p,q to be

the wired measure φ1
3,p,q conditioned on Dτ .
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to each open cluster of ω subject to the constraint: if x ↔ Vi , then x is assigned
spin i .

By positive association,

(11.7) φτ3,p,q ≤st φ
1
3,p,q

where the latter measure is to be interpreted as its projection onto {0, 1}E3 .

We return to the cylinder event A, and we let ǫ > 0. By the remark after
Theorem 4.91, π0

3,β,q ⇒ π0
β,q as3 ↑ Zd , and thus we may find a box B such that

(11.8)
∣∣π0
γ,β,q(A)− π0

β,q(A)
∣∣ < ǫ for all γ ⊇ B.

Let 1′ be a box sufficiently large that: B ⊆ 1′, and A is defined in terms of
the vertex-spins within 1′. By (iii), we may choose a box 2 such that 1′ ⊆ 2

and

(11.9) φ1
p,q(1

′ ↔ ∂2) < ǫ.

Since φ1
3,p,q ⇒ φ1

p,q as 3 ↑ Zd , we may find a box3 such that 2 ⊆ 3 and

(11.10) φ1
3,p,q(1

′ ↔ ∂2) < 2ǫ.

Let τ ∈ 6. By (11.7) and (11.10),

(11.11) φτ3,p,q(1
′ ↔ ∂2) < 2ǫ, τ ∈ 6.

On the event {ω ∈ � : 1′ /↔ ∂2}, there exists a connected subgraph Ŵ of2\∂2,
containing1′ and with closed external edge-boundary1e2. LetŴ be the maximal
graph with this property, and let H be the set of all possible outcomes of Ŵ. For
γ ∈ H , the event {Ŵ = γ } is measurable on the σ -field generated by the states of
edges not belonging to γ . (There is a similar step in the proof of Proposition 5.30.)
The marginal measure on γ of φτ3,p,q(· | Ŵ = γ ) is therefore the free measure

φ0
γ,p,q and hence, by coupling,

∣∣∣∣πτ3,β,q(A)−
∑

γ∈H

π0
γ,β,q(A)φ

τ
3,p,q(Ŵ = γ )

∣∣∣∣ ≤ φτ3,p,q(1
′ ↔ ∂1).

By (11.8) and (11.11),

∣∣πτ3,β,q(A)− π0
β,q(A)

∣∣ < 5ǫ,

whence (11.5) holds with an adjusted value of ǫ, and (i) is proved. �
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11.3 The Ashkin–Teller model

Each vertex may be in either of two states of the Ising model. The Potts model was
proposed in 1952, and allows a general number q of local states. Nearly ten years
earlier, Ashkin and Teller [21] proposed a 4-state model which, with hindsight,
may be viewed as an interpolation between the Ising model and the 4-state Potts
model. Their model amounts to the following.

Let G = (V , E) be a finite graph. The set of local spin-values is taken to be
{A, B,C, D}, so that the configuration space is 6 = {A, B,C, D}V . Let J1, J2
be edge-interactions satisfying 0 ≤ J1 ≤ J2, and let β ∈ (0,∞). The spins at the
endvertices x and y of the edge e = 〈x, y〉 interact according to a function δ given
as follows:

δ(A, B) = δ(C, D) = J1,

δ(A,C) = δ(A, D) = δ(B,C) = δ(B, D) = J2.

There is symmetry within the pair {A, B} and within the pair {C, D}, but asymme-
try between the pairs. The Ashkin–Teller measure on G is the probability measure
given by

αG,β(σ ) = 1

ZAT
e−βH(σ ), σ ∈ 6,

where ZAT is the appropriate normalizing constant and

H (σ ) =
∑

e=〈x,y〉:
σx 6=σy

δ(σx , σy), σ ∈ 6.

Neighbouring pairs prefer to have the same spin, failing which they prefer to have
spins in one of the sets {A, B}, {C, D}, and failing that either of the spins in the
other pair. When J1 = 0, the Ashkin–Teller model is equivalent to the Ising
model. When J1 = J2, it is equivalent to the 4-state Potts model.

Consider the lattice Ld with d ≥ 2. The spin space is 6 = {A, B,C, D}Z
d
,

and G denotes the σ -field of 6 generated by the cylinder events. In order to
define Ashkin–Teller measures on the infinite lattice, we follow the standard recipe
outlined in the last section around Definition 11.2. For τ ∈ 6 and a box 3, one
may define an Ashkin–Teller measure ατ3,β on 3 with boundary condition τ . A
probability measure α on (6,G) is called a Gibbs state of the Ashkin–Teller model
with inverse-temperature β if, for any box3, the conditional measure on3, given
the configuration τ off3 \ ∂3, is ατ3,β .

For what values of β does there exist a unique Gibbs state?
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(11.12) Theorem [271]. Consider the Ashkin–Teller model on Ld with d ≥ 2 and
0 < J1 < J2. There exist β1, β2 satisfying 0 < β1 ≤ β2 < ∞ such that the
following hold.

(a) There is a unique Gibbs state if β < β1.

(b) If β ∈ (β1, β2), there is a multiplicity of Gibbs states each of which is
invariant under the re-labellings A ↔ B and C ↔ D.

(c) If β > β2 then, for each s ∈ {A, B,C, D}, there exists a Gibbs state in
which the local state s dominates. That is, for each s there exists a Gibbs
state α such that

α(σx = s) > 1
4 , α(σx = t) < 1

4 , x ∈ Zd , t ∈ {A, B,C, D} \ {s}.

Furthermore, β1 < β2 if J2/J1 is sufficiently large.

It is an open question to decide whether β1 < β2 whenever J1 < J2. Perhaps
the answer depends on the choice of lattice.

Theorem 11.12 may be found in [271], and it is proved here via a random-
cluster representation following the treatment in [169]. Further results for the
Ashkin–Teller model and its random-cluster representation may be found in [93,
273, 289, 321].

The relevant graphical method makes uses the following edge-model. Let
G = (V , E) be a finite graph as before, and take as configuration space the set
� = {0, 1, 2}E . For ω ∈ � and i ∈ {0, 1, 2}, we write ηi (ω) for the set of edges e
with ω(e) = i . Let p = (p0, p1, p2) be a vector of non-negative reals with sum 1.
The Ashkin–Teller random-cluster measure on G is the probability measure φG,p
on � given by

φG,p(ω) = 1

ZATRC
p|η0|

0 p|η1|
1 p|η2|

2 2k(η1∪η2)+k(η2), ω ∈ �,

where ηi = ηi (ω) and ZATRC is the appropriate normalizing constant.

Suppose that β ∈ (0,∞), 0 < J1 ≤ J2, and let p = (p1, p1, p2) satisfy

(11.13) p0 = e−β J2, p1 = e−β J1 − e−β J2, p2 = 1 − e−β J1 .

We describe next how to couple αG,β and φG,p. Let ω have law φG,p. For each
cluster C12 of the graph (V , η1(ω)∪η2(ω)), we flip a fair coin to determine whether
the spins in C12 are drawn from the pair {A, B} or from the pair {C, D}. Having
done this for each C12, we consider the clusters of the graph (V , η2(ω)). For each
such cluster C2, we flip a fair coin to determine which of the two possibilities will
be allocated to the vertices of C2. Thus, for example, if C2 ⊆ C12 and vertices in
C12 are to receive spins from the pair {A, B}, then either every vertex in C2 receives
spin A, or every vertex receives spin B , each such possibility having (conditional)
probability 1

2 . This recipe results in a random spin-vector σ ∈ {A, B,C, D}V ,
and it is left as an exercise to check that σ has law αG,β .
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The key question in deciding the multiplicity of Gibbs states is whether a weak
limit of the φ3,p may possess an infinite cluster of edges each of which has either
state 1 or state 2 (respectively, each of which has state 2). We begin the proof of
Theorem 11.12 with a lemma. The configuration space � = {0, 1, 2}E may be
viewed as a partially ordered set. For probability measures µ1, µ2 on�, we write
µ1 ≤st µ2 if µ1( f ) ≤ µ2( f ) for all non-decreasing functions f : � → R. See
Section 2.1.

(11.14) Lemma. Suppose 0 < J1 ≤ J2. Let β ∈ (0,∞), and let p = p(β) satisfy
(11.13). The probability measures8β = φG,p(β) satisfy

(11.15) 8β1 ≤st 8β2, 0 < β ≤ β2 < ∞.

Proof. Each 8β is a probability measure on the partially ordered set �. By
Theorems 2.1 and 2.33, inequality (11.15) holds if, for v = 1, 2 and every e ∈ E ,

πβ,e(v, ξ) = 8β
(
ω(e) ≥ v

∣∣ω( f ) = ξ( f ) for all f ∈ E \ {e}
)

is increasing (that is, non-decreasing) in β ∈ (0,∞) and ξ ∈ �.

For e ∈ E and ξ ∈ �, let κ2(e, ξ) (respectively, κ12(e, ξ)) be the number of
clusters of the graph (V , η2(ξ) \ {e}) (respectively, (V , η1(ξ) ∪ η2(ξ) \ {e})) that
intersect the endvertices of e. It is an easy calculation that

(11.16) πβ,e(v, ξ) =





p2

γ0 p0 + γ1 p1 + p2
if v = 2,

1 − γ0 p0

γ0 p0 + γ1 p1 + p2
if v = 1,

where

(11.17) γ0 = 2κ12(e,ξ )+κ2(e,ξ )−2, γ1 = 2κ12(e,ξ )−1.

Note that

(11.18) γ0 ≥ γ1 ≥ 1,

and, in addition, γ0, γ1, γ0/γ1, and γ0 − γ1 are decreasing functions of ξ .

Now,

γ0 p0 + γ1 p1 + p2

p2
= 1 + (γ0 − γ1)

p0

p2
+ γ1

(
1

p2
− 1

)
,(11.19)

γ0 p0 + γ1 p1 + p2

γ0 p0
= 1 + γ1

γ0
· p1

p0
+ 1

γ0
· p2

p0
.(11.20)

3These were proved for the case � = {0, 1}E , but similar results are valid in the more general
setting when � = T E and T is a finite subset of R. See, for example, [136, Section 4].
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It is easily checked from (11.13) that p0, p0/p1, and 1/p2 are decreasing in β.
By (11.18), (11.19) is decreasing in β. By the remark after (11.18), (11.19) is
decreasing in ξ , and therefore πβ,e(2, ξ) is increasing in β and ξ as required.

Similarly, (11.20) is increasing in β and ξ , and therefore so is πβ,e(1, ξ) in
(11.16). We conclude that each πβ,e(v, ξ) is increasing in β and ξ , and (11.15)
follows. �

Sketch proof of Theorem 11.12. We follow [169]. For ω ∈ {0, 1, 2}E , a cluster of
type 1/2 (respectively, type 2) is a cluster formed by the edges e with ω(e) ∈ {1, 2}
(respectively, ω(e) = 2). As in the Potts case of the previous section, there is a
unique Gibbs state if and only if every weak limit, as 3 ↑ Zd , of φ3,p possesses
(almost surely) no infinite cluster of type 1/2. By Lemma 11.14, the last statement
about the φ3,p is a decreasing property of β: if it holds when β = β ′ then it
holds for β ≤ β ′. Therefore, there exists a critical value β1 such that there exists
a unique (respectively, multiplicity) of Gibbs states when β < β1 (respectively,
β > β1).

By (11.16)–(11.17),

πβ,e(1, ξ) ≤ 2 p1 + p2 = p∗(β), ξ ∈ �, e ∈ E,

where
p∗(β) = 2(e−β J1 − e−β J2)+ 1 − e−β J1.

By Theorems 2.1 and 2.3, the law of the set of edges of type 1/2 in G is dominated
by a product measure with density p∗(β). When p∗(β) < pbond

c (Ld), no weak
limit of φ3,p may possess an infinite cluster of type 1/2. Here, pbond

c (Ld) denotes
the critical probability of bond percolation on Ld . We deduce that β1 > 0.

The same argument may be applied to the existence (or not) of an infinite cluster
of type 2. Once again, there exists a critical value β2 marking the onset of the
existence of such a cluster, and it is elementary that β1 ≤ β2. By (11.16)–(11.17),

πβ,e(2, ξ) ≥ 1
4 p2, ξ ∈ �, e ∈ E,

implying as above that, whenβ is large, every weak limit of φ3,p possesses (almost
surely) an infinite cluster of type 2. Therefore, β2 < ∞. Statement (c) is easily
seen to follow and, in addition, statement (b) when β1 < β2.

By (11.16),

πβ,e(1, ξ) ≥ 1 − 4 p0 = 1 − 4e−β J2,

πβ,e(2, ξ) ≤ p2 = 1 − e−β J1 .

Suppose there exists a non-empty interval I of values of β such that

(11.21) 1 − e−β J1 < pbond
c (Ld) < 1 − 4e−β J2 .

If β ∈ I , the edges of type 1/2 dominate a supercritical product measure, and those
of type 2 are dominated by a subcritical product measure. Therefore,β1 ≤ β ≤ β2,
and hence I is a sub-interval of [β1, β2], implying that β1 < β2. We may indeed
find such an interval I if J2/J1 is sufficiently large. �
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11.4 The disordered Potts ferromagnet

All our models have been assumed so far to be homogeneous in the sense that
their edge-parameters have been assumed equal. In a ‘disordered’ system, one
begins instead with a general family of edge-parameters indexed by the edge-set
E . It is potentially a major complication that the ensuing measures may not be
automorphism-invariant, and one may not apply techniques such as the ergodic
theorem. A degree of statistical homogeneity may be re-introduced by assuming
that the edge-parameters are chosen according to some given translation-invariant
random field. We restrict ourselves for simplicity here to the situation in which
this random field is a product measure with a given marginal distribution.

The disordered Potts model on a finite graph G = (V , E) is given as follows.
One begins with a family J = (Je : e ∈ E) of ‘random interactions’4. These are
independent, identically distributed random variables taking values in the half-
open interval [0,∞) according to a given law ν. Let β ∈ (0,∞) and q ∈
{2, 3, . . . }. The corresponding Potts (random) measure on the configuration space
6 = {1, 2, . . . , q}V is

(11.22) πJ,q(σ ) = 1

ZJ
e−βH(σ ), σ ∈ 6,

where ZJ is the appropriate (random) normalizing constant and

H (σ ) = −
∑

e=〈x,y〉∈E

Jeδe(σ ), δe(σ ) = δσx ,σy .

Such a model is ferromagnetic in that the Je are non-negative random variables.
The non-ferromagnetic case is much harder, and the reader is referred to Section
11.5 for some partial results of random-cluster type.

The ‘disordered random-cluster model’ is defined similarly on G = (V , E).
Let q ∈ (0,∞), and let p = (pe : e ∈ E) be a family of independent, identically
distributed random variables chosen from the interval [0, 1]. The corresponding
random-cluster (random) measure φp,q on � = {0, 1}E is given as usual by

(11.23) φp,q(ω) = 1

Zp

{∏

e∈E

pω(e)e (1 − pe)
1−ω(e)

}
qk(ω), ω ∈ �,

where Zp is the appropriate (random) normalizing constant.

With q , β, and the Je as above, let

(11.24) pe = 1 − e−β Je, e ∈ E .

The measures φp,q and πJ,q may be coupled as in Section 1.4. As in Theorem
1.16,

(11.25) πJ,q(σx = σy)− 1

q
= (1 − q−1)φp,q(x ↔ y), x, y ∈ V .

4Disordered systems were introduced in [143], and early papers include [132, 133].

c©Springer-Verlag 2006



[11.4] The disordered Potts ferromagnet 331

Consider the lattice Ld with d ≥ 2. In developing the theory of disordered
random-cluster measures on Ld , one needs to take care to avoid the use of spatial
homogeneity. It turns out that quite a lot of the theory of Chapters 1–4 remains
valid in this setting, including the comparison inequalities. When working on a
finite box 3 of the lattice Ld with q ∈ [1,∞), one may therefore pass to the
infinite-volume limit as 3 ↑ Zd , as in Section 4.3. Without more ado, we shall
use the notation introduced earlier, including that of the infinite-volume random-
cluster measures φ0

p,q , φ1
p,q .

The disordered Potts model has a random set of Gibbs states, and we seek a
condition under which this set comprises (almost surely) a singleton only. As in
the previous sections, for given βJ, there is a unique Gibbs state if and only if the
corresponding wired random-cluster measure possesses no infinite cluster.

Let I = {ω ∈ � : ω possesses an infinite cluster} and consider the probability
φ1

p,q(I ), viewed as a function of β. By the comparison inequalities, φ1
p,q(I ) is

non-decreasing in β, and we define the critical point βc(J) by

βc(J) = sup
{
β > 0 : φ1

p,q(I ) = 0
}
,

noting that βc(J) is a random variable. The random variable φ1
p,q(I ) is invariant

under lattice-translations, and the invariant σ -field of the pe is trivial, whence
φ1

p,q(I ) ∈ {0, 1}. Therefore, there exists a constant βc ∈ [0,∞] such that

P(βc(J) = βc) = 1, φ1
p,q(I ) =

{
0 if β < βc,

1 if β > βc,

where P denotes the product measure with marginals ν on the space [0,∞)E
d
.

A pivotal role is played by the atom of ν at 0,

ν(0) = P(Je = 0).

By (11.24), P(Je = 0) = P(pe = 0). By the comparison inequality (3.22),
φ1

p,q(I ) = 0, (P-almost-surely), if 1 − ν(0) < pbond
c (Ld). Therefore,

(11.26) βc = ∞ if ν(0) > 1 − pbond
c (Ld).

The situation is more interesting when ν(0) < 1 − pbond
c (Ld).

(11.27) Theorem [7]. Let d ≥ 2, and consider the disordered Potts model on Ld

with edge-interaction law ν.

(a) If ν(0) > 1 − pbond
c (Ld), then βc = ∞.

(b) If ν(0) < 1 − pbond
c (Ld), there exists βc = βc(ν) ∈ (0,∞) such that: there

exists (P-almost-surely) a unique Gibbs state if β < βc, and (P-almost-
surely) a multiplicity of Gibbs states if β > βc.

The literature on disordered Potts models is substantial, see for example [7,
155] and the bibliographies of [136, Section 9], [169, 259, 260]. Lower and upper
bounds for βc may be found at (11.28)–(11.29).
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Proof. Part (a) was proved at (11.26). Suppose that ν(0) < 1 − pbond
c (Ld). By

the earlier remarks, it suffices to prove that 0 < βc < ∞. By the comparison
inequality (3.22),

φ1
p,q(I ) ≤ φp(I )

where φp is the product measure on � in which edge e is open with probability
pe. Therefore,

P[φ1
p,q(I )] ≤ P[φp(I )] = φP(p)(I ),

since the average of a product measure is a product measure. Now,

P(pe) = P(1 − e−β Je) → 0 as β ↓ 0,

by monotone convergence. Therefore,

(11.28) βc ≥ sup
{
β > 0 : P(1 − e−β Je) < pbond

c (Ld)
}
> 0.

We turn to the upper bound for βc. By the other comparison inequality (3.23),

φ1
p,q(I ) ≥ φp′(I )

where φp′ is the product measure on � in which edge e is open with probability

p′
e = pe

pe + q(1 − pe)
= 1 − e−β Je

1 + (q − 1)e−β Je
.

By monotone convergence,

P(p′
e) → 1 − ν(0) as β → ∞,

and 1 − ν(0) > pbond
c (Ld), by assumption. Arguing as above,

(11.29) βc ≤ inf

{
β > 0 : P

(
1 − e−β Je

1 + (q − 1)e−β Je

)
> pbond

c (Ld)

}
< ∞,

and the theorem is proved. �
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11.5 The Edwards–Anderson spin-glass model

The Ising/Potts models with positive edge-interactions Je are termed ‘ferromag-
netic’: like spins attract one another, unlike spins repel. The corresponding edge-
variables pe = 1 − e−β Je satisfy pe ∈ [0, 1), and the random-cluster model is
a satisfactory tool for the analysis of the correlation structure. Conversely, when
the Je can be of either sign, the model is non-ferromagnetic, and the analysis is
relatively difficult and incomplete5. The random-cluster model plays a role in this
situation also, as described in this section in the context of an Ising model with
real-valued edge-interactions.

In the last section, the Je were allowed to be random variables taking values
in the half-line [0,∞). A model which is especially interesting and relatively
poorly understood is the so-called ‘Edwards–Anderson spin-glass model’, [109],
in which the Je are independent, identically distributed random variables taking
values in R with a symmetric distribution (that is, Je and −Je have the same law).
Two natural distributions for the Je are the normal distribution, and the symmetric
distribution on the two-point space {−1, 1}. There are several beautiful open
problems concerning the Edwards–Anderson model. We refer the reader to [260]
for an account of the theory, and to [262, 263] for recent results and speculations.

Let G = (V , E) be a finite graph, and write6 = {−1, 1}V and� = {0, 1}E for
the associated vertex- and edge-configuration spaces6. Let J = (Je : e ∈ E) be
a given vector of reals, which may be negative or positive. We shall be interested
in the Ising7 measure πβJ = πG,βJ given by

πβJ(σ ) = 1

ZI
e−βH(σ ), σ ∈ 6,(11.30)

H (σ ) = −
∑

e=〈x,y〉∈E

1
2 Jeσxσy .(11.31)

The inverse-temperature β ∈ (0,∞) is regarded as the parameter to be varied.

When Je > 0 (respectively, Je < 0), the spins at the endvertices of the edge
e prefer to be equal (respectively, opposite). The usual stochastic orderings of
the measures are invalid when some of the Je are negative, and the consequent
theory is substantially less developed than that of the ferromagnetic case. This
notwithstanding, the measure πβJ may be coupled as follows with a random-
cluster-type measure on � with edge-parameters (pe : e ∈ E) given by

(11.32) pe = 1 − e−β|Je|, e ∈ E .

Let P be the product measure on 6 ×� given by

P =
{∏

x∈V

φx
}

×
{∏

e∈E

φe
}
,

5See Kasteleyn’s remark about the anti-ferromagnet in Paragraph 12 of the Appendix.
6We take the vertex-spins to be −1 and 1 in order to highlight a symmetry.
7The term ‘Ising’ is normally used in the ferromagnetic case only, but we choose to retain it

in this disordered model.
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where

φx (σx = −1) = φx(σx = 1) = 1
2 , x ∈ V ,

φe(ω(e) = 1) = 1 − φe(ω(e) = 0) = pe, e ∈ E .

Let W = WG ⊆ 6 ×� be the (non-empty) event

(11.33) W =
{
(σ, ω) : Jeσxσy > 0 for all e = 〈x, y〉 with ω(e) = 1

}
.

That is, W is the set of pairs (σ, ω) ∈ 6×� such that the spins at the endvertices
of every open edge e have the same sign (respectively, opposite signs) if Je >

0 (respectively, Je < 0). We now define the probability measure µ to be P
conditioned on W ,

(11.34) µ(σ,ω) = 1

P(W )
µ(σ, ω)1W (σ, ω), (σ, ω) ∈ 6 ×�.

Let U = UG ⊆ � be the event

(11.35) U =
{
ω ∈ � : there exists σ ∈ 6 with (σ, ω) ∈ W

}
.

A configuration ω ∈ � is called frustrated if ω /∈ U . It is left as an exercise8

to show that the marginal measure on 6 of µ is the Ising measure (11.30), and
the marginal measure on � is the random-cluster measure with parameters p =
(pe : e ∈ E), q = 2, conditioned on the event U . We write this as

(11.36)
µ(σ) = πβJ(σ ), σ ∈ 6,
µ(ω) = φp(ω), ω ∈ �,

where

(11.37) φp(ω) = φG,p(ω) = 1

Z
φp,2(ω)1U (ω), Z =

∑

ω∈U

φp,2(ω).

The conditional measure on 6 of µ is determined as follows, the derivation is
omitted. First, we sample ω ∈ � according to the relevant marginal φp. Given ω,
the (conditional) law of the random spin σ has as support the set

S(ω) =
{
σ ∈ 6 : (σ, ω) ∈ W

}
,

which is non-empty since ω ∈ U (µ-almost-surely). Let C be an open cluster of
ω, and let x , y be distinct vertices in C . Let ρ be an open path from x to y. Since
every edge e of ρ is open, it must be the case that pe > 0, and therefore Je 6= 0.

8This coupling may be found in [129] and the present account draws on [259, 260]. The first
use of a random-cluster representation in this context appears to be in [202].
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Let σ ∈ S(ω). By (11.33), σy = ηx,yσx where ηx,y is the product of the signs
of the Je for e ∈ ρ. Thus, the relative signs of the spins on C are determined by
knowledge of ω. Since there are two possible choices for the spin at any given
x , there are two choices for the spin-configuration on C , and we choose between
these according to the flip of a fair coin. In summary, we assign spins randomly
to V in such a way that: the spins within a cluster satisfy σy = ηx,yσx as above,
and the spins of different clusters are independent.

Let ω ∈ �. We extend the definition of ηx,y by setting ηx,y = 0 if x /↔ y, and
we arrive at a proposition which may be viewed as a generalization of Theorem
1.16 to situations in which q = 2 and the Je may be of either sign.

(11.38) Proposition [259]. For any finite graph G = (V , E),

πβJ(σxσy) = φp(ηx,y), x, y ∈ V .

When Je ≥ 0 for all e ∈ E , then ηx,y = 1{x↔y}, and the conclusion of Theorem
1.16 is retrieved.

We pass now to the infinite-volume limit. Let d ≥ 2, let 3 be a finite box of
Ld , and write�3 = {0, 1}E3 . For τ ∈ 6, let6τ3 be given as in Section 11.2. We
may construct a measure µτ3 on 6τ3 × �3 by adapting the definition of µ given
above. The reference product measure P is given similarly but subject to σx = τx

for x ∈ ∂3, and µτ3 is obtained by conditioning P on the event W = W3. The
marginal of µτ3 on 6τ3 is an Ising measure with boundary condition τ .

A (EA-)Gibbs state for the Edwards–Anderson model on Ld is defined to be
a probability measure π on 6 = {−1, 1}Z

d
satisfying the DLR condition as

in Definition 11.2. The principal problem is to determine, for a given vector
J = (Je : e ∈ Ed), the set of values of β for which there exists a unique Gibbs
state. Only a limited amount is known about this problem. One of the main
difficulties is that correlations are not generally monotonic in β, and thus we
know no satisfactory definition of a critical value of β. Nevertheless, for given J
we may define
(11.39)

βc(J) = sup
{
β : there is a unique Gibbs state at inverse-temperature β

}
.

The following is proved as an application of the random-cluster method.

(11.40) Theorem [259]. Consider the Ising model on Ld with real-valued edge-
interactions J = (Je : e ∈ Ed) and inverse-temperature β. We have that βc(J) ≥
βc(|J|), where the latter is the critical inverse-temperature for the ferromagnetic
Ising model with edge-interactions |J| = (|Je| : e ∈ Ed).

It is an important open problem to decide whether or not there is non-uniqueness
of Gibbs states on Ld for large β, [260]. There has been a considerable amount
of discussion of and speculation around this question, for an account of which the
reader is referred to the work of Newman and Stein [262, 263].
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We consider briefly the special case in which the Je have the symmetric distribu-
tion on the two-point space {−1, 1}. The quantity βc(J) is a translation-invariant
function of a family of independent random variables. Therefore, there exists
a real number βEA

c such that P(βc(J) = βEA
c ) = 1. The theorem implies the

uniqueness of Gibbs states for every possible value of the vector J, whenever
0 < β < βc(1) with βc(1) the critical inverse-temperature for the ferromagnetic
Ising model with constant edge-interaction 1. The weak inequality βEA

c ≥ βc(1)
may be strengthened to strict inequality for this case, [100].

Proof of Theorem 11.40. We begin with a discussion of boundary conditions. Let
J = (Je : e ∈ Ed) be given, and β ∈ (0,∞). For τ ∈ 6 and a box 3, write
πτ
3,βJ for the corresponding Ising measure on 3with boundary condition τ , as in

(11.1). Let A be a cylinder event of 6, and suppose β is such that,

(11.41) for all τ, τ ′ ∈ 6, πτ3,βJ(A)− πτ
′
3,βJ(A) → 0 as3 ↑ Zd .

Let π , π ′ be Gibbs states at inverse-temperature β. We may sample τ according
to π , and τ ′ according to π ′, thereby obtaining from (11.41) and the definition of
a Gibbs state (as in, for example, Definition 11.2), that π(A) = π ′(A). Since the
cylinder events generate the requisite σ -field of6, we deduce that π = π ′. It will
therefore suffice to prove (11.41) under the assumption that β < βc(|J|), and this
will be achieved via a transformation to the random-cluster model.

We construct next the random-cluster measure on 3 corresponding to the Ising
measure πτ

3,βJ, and we remind the reader of the ferromagnetic case around (11.6).

Let �3 = {0, 1}E3 and

(11.42) U τ
3 =

{
ω ∈ �3 : there exists σ ∈ 6τ3 such that (σ, ω) ∈ W τ

3

}
,

where W τ
3 ⊆ 6τ3 ×�3 is given by

(11.43) W τ
3 =

{
(σ, ω) : Jeσxσy > 0 for all e = 〈x, y〉 ∈ E3 with ω(e) = 1

}
.

Let p = (pe : e ∈ Ed) satisfy (11.32). As in Section 11.2 (see the footnote on
page 324), we let φτ3,p be the wired random-cluster measure φ1

3,p,2 conditioned
on the event U τ

3.

The event U τ
3 is a decreasing subset of �3, so that, by positive association,

(11.44) φτ3,p ≤st φ
1
3,p,2.

There is a close link between stochastic inequalities and couplings. For ω ∈
�3, let S(ω) = {x ∈ 3 : x ↔ ∂3}, and G = 3 \ S(ω). We claim that there
exists a probability measure κ on �3 ×�3 such that:

(i) the first marginal is φτ3,p, and the second marginal is φ1
3,p,2,

(ii) the support of κ is the set of pairs (ω0, ω1) satisfying ω0 ≤ ω1,

c©Springer-Verlag 2006



[11.6] The Widom–Rowlinson lattice gas 337

(iii) for any suitable g, conditional on the event {G(ω1) = g}, the marginal law
of {ω0(e) : e ∈ Eg} is the free measure φg,p.

The full proof of this step is omitted, and the reader is referred to [259] and to
the closely related proof of Proposition 5.30. The idea is to sample the states
ω0(e), ω1(e) of edges recursively, beginning with edges e incident to ∂3. At each
stage, one checks the stochastic domination (conditional on the past history of the
construction) that is necessary to continue the pointwise ordering.

Let 1, 3 be boxes such that: A is defined in terms of the spins within 1,
and 1 ⊆ 3. Let S, G, and κ be given as above. If ω1 ∈ {1 /↔ ∂3}, then
G(ω1) ⊇ 1, and we write H for the set of possible values of G on this event.
Using the coupling of the Ising and random-cluster measures, together with the
remarks above, it follows by conditioning on the event {1 /↔ ∂3} that

πτ3,βJ(A) =
∑

g∈H

φ1
3,p,2(G = g)πg,βJ(A)+ φ1

3,p,2(1 ↔ ∂3)mτ
3,

for some mτ
3 satisfying 0 ≤ mτ

3 ≤ 1. Similarly,

πτ
′
3,βJ(A) =

∑

g∈H

φ1
3,p,2(G = g)πg,βJ(A)+ φ1

3,p,2(1 ↔ ∂3)mτ ′
3.

By subtraction,

(11.45)
∣∣πτ3,βJ(A)− πτ

′
3,βJ(A)

∣∣ ≤ φ1
3,p,2(1 ↔ ∂3).

For β < βc(|J|), the right side of (11.45) approaches 0 as 3 ↑ Zd , and (11.41)
follows as required. �

11.6 The Widom–Rowlinson lattice gas

Particles of two types, type 1 and type 2 say, are distributed randomly within a
bounded measurable subset3 of Rd in such a way that no 1-particle is within unit
distance of any 2-particle. A simple probabilistic model for this physical model
is the following, termed the Widom–Rowlinson model after the authors of the
paper [319] on the liquid/vapour transition. Let λ ∈ (0,∞). Let 51 and 52 be
independent subsets of 3 chosen as spatial Poisson processes9 with intensity λ.
Let D3 be the event

D3 =
{
|x − y| > 1 for all x ∈ 51, y ∈ 52

}
,

and let µ3,λ be the law of the pair (51,52) conditioned on the event D3. This
measure is well defined since P(D3) > 0 for bounded3.

9See [164, Section 6.13] for an introduction to the theory of spatial Poisson processes.
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The definition of the Widom–Rowlinson measure µ3,λ may be extended to
the whole of Rd in the usual manner, following. A probability measure on pairs
of countable subsets of Rd is called a (WR-)Gibbs state if, conditional on the
configuration off any bounded measurable set 3, the configuration within 3 is
that of two independent Poisson processes on 3 conditional on no 1-particle in
Rd being within unit distance of any 2-particle.

How many Gibbs states exist for a given value of λ? The following theorem
may be proved using random-cluster methods in the continuum.

(11.46) Theorem [285]. Consider the Widom–Rowlinson model on Rd with
d ≥ 2. There exist constants λ1, λ2 satisfying 0 < λ1 ≤ λ2 < ∞ such that:
there is a unique Gibbs state when λ < λ1, and there exist multiple Gibbs states
when λ > λ2.

It is an open problem to show the existence of a single critical value marking
the onset of multiple Gibbs states. In advance of the proof, which is sketched
at the end of the section, we turn to a lattice version of this model introduced in
[232].

Let G = (V , E) be a finite graph. To each vertex we allocate a ‘type’ from the
‘type-space’ {0, 1, 2}, and we write 6V = {0, 1, 2}V for the ensuing spin space.
For σ ∈ 6, let z(σ ) be the number of vertices x with σx = 0. Let λ ∈ (0,∞),
and consider the probability measure on 6V given by

µG,λ(σ ) =
{ 1

ZWR
λ−z(σ ) if σ ∈ D,

0 otherwise,

where D is the event that, for all x, y ∈ V , x ≁ y whenever σx = 1 and σy = 2,
and ZWR is the appropriate normalizing constant.

Consider now the infinite lattice Ld where d ≥ 2, and let 6 = {0, 1, 2}Z
d
,

endowed with the usual σ -field G. We may define a Gibbs state in the manner
given above: a probability measure µ on (6,G) is called a lattice (WR-)Gibbs
state if it satisfies the appropriate DLR condition.

(11.47) Theorem [232]. Consider the lattice Widom–Rowlinson model on Ld with
d ≥ 2. There exist constants λ1, λ2 satisfying 0 < λ1 ≤ λ2 < ∞ such that: there
is a unique Gibbs state when λ < λ1, and there exist multiple Gibbs states when
λ > λ2.

It is an open problem to show the existence of a single critical value of λ. Proofs
of such facts hinge usually on monotonicity, but such monotonicity is not generally
valid for this model, see [69]. Progress has been made for certain lattices, [171],
but the case of Ld remains unsolved.

The main ingredient in the proof of the latter theorem is a certain ‘site-random-
cluster measure’, given as follows for the finite graph G. The configuration space
is�V = {0, 1}V . Forω ∈ �V , Let k(ω) be the number of components in the graph
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obtained from G by deleting every vertex x with ω(x) = 0. The site-random-
cluster measure ψG,p,q is given by

(11.48) ψG,p,q(ω) = 1

ZSRC

{∏

x∈V

pω(x)(1 − p)1−ω(x)
}

qk(ω), ω ∈ �V ,

where p ∈ [0, 1], q ∈ (0,∞), and ZSRC is the appropriate normalizing constant.
This measure reduces when q = 1 to the product measure on�V otherwise known
as site percolation.

At first sight, one might guess that the theory of such measures may be devel-
oped in much the same manner as that of the usual random-cluster model, but this
is false. The problem is that, even for q ∈ [1,∞), the measures ψG,p,q lack the
stochastic monotonicity which has proved so useful in the other case. Specifically,
the function k does not satisfy inequality (3.11).

Proof of Theorem 11.47. We follow [136], see also [86]. Let G = (V , E) be a
finite graph, and let q = 2, λ ∈ (0,∞), and p = λ/(1 + λ). We show first how
to couple µG,λ and ψG,p,q . Let ω be sampled from �V according to ψG,p,q . If
ω(x) = 0, we set σx = 0. To each vertex y with ω(y) = 1, we allocate a type
from the set {1, 2}, each value having probability 1

2 , and we do this by allocating
a given type to each given cluster of ω, these types being constant within clusters,
and independent between clusters. The outcome is a spin vector σ taking values
in 6V , and it is left as an exercise to check that σ has law µG,λ.

Next, we compareψG,p,q with a product measure on�V . It is immediate from
(11.48) that, for ξ ∈ � and x ∈ V ,

ψG,p,q
(
ω(x) = 1

∣∣ω(y) = ξ(y) for all y /∈ V \ {x}
)

= pq

pq + (1 − p)qκ(x,ξ )
,

where κ(x, ξ) is the number of open clusters of ξx that contain neighbours of x .
[Here, ξx denotes the configuration obtained from ξ by setting the state of x to 0.]
If the maximum degree of vertices in G is 1, then 0 ≤ κ(x, ξ) ≤ 1, and

p1 ≤ ψG,p,q
(
ω(x) = 1

∣∣ω(y) = ξ(y) for all y /∈ V \ {x}
)
≤ p2,

where
p1 = pq

pq + (1 − p)1
, p2 = pq

pq + 1 − p
.

By Theorems 2.1 and 2.3,

(11.49) φG,p1 ≤st ψG,p,q ≤st φG,p2

where φG,r is product measure on �V with density r .

Consider now a finite box 3 of Ld , with 1 = 2d . It may be seen as in the
case of the Potts model of Section 11.2 that there is a multiplicity of WR-Gibbs
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states if and only if the ψ3,p,q have a weak limit (as 3 ↑ Zd ) that possesses an
infinite cluster with strictly positive probability. By (11.49), this cannot occur if
p2 < psite

c (Ld), but this does indeed occur if p1 > psite
c (Ld). Here, psite

c (Ld)

denotes the critical probability of site percolation on Ld , see [154]. �

Sketch proof of Theorem 11.46. The full proof is not included here, and inter-
ested readers are referred to [136, Thm 10.2] for further details10. Rather as in
the previous proof, we relate the Widom–Rowlinson model to a type of ‘con-
tinuum site-random-cluster measure’. Let 3 be a bounded measurable subset
of Rd . For any countable subset 5 of 3, let N(5) be the union of the closed
1
2 -neighbourhoods of the points in 5, and let k(5) be the number of (topolog-
ically) connected components of N(5). Consider now the probability measure
π3,λ on the family of countable subsets of 3 given by

π3,λ(d5) = 1

Z3
2k(5)π3,λ(d5)

where π3,λ is the law of a Poisson process on 3 with intensity λ, and Z3 is a
normalizing constant.

It is not hard to verify the following coupling. Let 5 be a random countable
subset of 3 with law π3,λ. To each point x ∈ 5 we allocate either type 1 or
type 2, each possibility having probability 1

2 . This is done simultaneously for all
x ∈ 5 by allocating a random type to each component of N(5), this type being
constant within components, and independent between components. The outcome
is a configuration (51,52) of two sets of points labelled 1 and 2, respectively,
and it may be checked that the law of (51,52) is µ3,λ.

One uses arguments of stochastic domination next, but in the continuum. The
methods of Section 2.1 may be adapted to the continuum to obtain a criterion
under which π3,λ may be compared to some π3,λ′ . It turns out that there exists
α = α(d) ∈ (0,∞) such that

(11.50) π3,αλ ≤st π3,λ ≤st π3,2λ for bounded measurable 3.

Let πλ be the law of a Poisson process on Rd with intensity λ. It is a central
fact of continuum percolation, see [154, Section 12.10] and [253], that there exists
λc ∈ (0,∞) such that the percolation probability

(11.51) ρ(λ) = πλ
(
N(5) possesses an unbounded component

)

satisfies

ρ(λ) =
{

0 if λ < λc,

1 if λ > λc.

It may be seen as in Section 11.2 that there exists a multiplicity of WR-Gibbs
states if and only the π3,λ have a weak limit (as 3 ↑ Rd ) that allocates strictly
positive probability to the occurrence of an unbounded component. By (11.50)–
(11.51), this cannot occur when λ < λ1 = 1

2λc, but does indeed occur when
λ > λ2 = λc/α. �

10The proof utilizes arguments of [86, 138].
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Appendix

The Origins of FK(G)

The basic theory of the random-cluster model was presented in a series of papers
by Kees [Cees] Fortuin and Piet Kasteleyn around 1970, and in the 1971 doctoral
thesis of Fortuin. This early work contains several of the principal ingredients
of Chapters 2 and 3 of the current book. The impact of the approach within the
physics community was attenuated at the time by the combinatorial style and the
level of abstraction of these papers.

The random-cluster model has had substantial impact on the study of Ising and
Potts models. It has, in addition, led to the celebrated FKG inequality, [124],
of which the history is as follows1. Following a suggestion of Kasteleyn, For-
tuin proved an extension of Harris’s positive-correlation inequality, [181, Lemma
4.1], to the random-cluster model, [122]. Kasteleyn spoke of related work dur-
ing a lecture at the IHES in 1970, with Jean Ginibre in the audience. Ginibre
realized subsequently that the inequality could be set in the general context of a
probability measure µ on the power set of a finite set, subject to the condition
µ(X ∪ Y )µ(X ∩ Y ) ≥ µ(X)µ(Y ), and he proceeded to write the first draft of the
ensuing publication. Meanwhile, Fortuin met Ginibre at the 1970 Les Houches
Summer School on ‘Statistical mechanics and quantum field theory’.

In a reply dated 23 September 1970 to Ginibre’s first draft, Kasteleyn made a
number of suggestions, including to extend the domain of the main theorem to a
finite distributive lattice, thereby generalizing the result to include both a totally
ordered finite set and the power set of a finite set. He proposed the use of the
standard result that any finite distributive lattice is lattice-isomorphic to a sub-
lattice of the power set of some finite set. The article was re-drafted accordingly.
The two Dutch co-authors later “thought it worthwhile to develop a self-supporting
lattice-theoretic proof ” of the principal proposition2. Ginibre placed his own name
third in the list of authors, and the subsequent paper, [124], was published in the

1I am indebted to Cees Fortuin and Jean Ginibre for their recollections of the events leading
to the formulation and proof of the FKG inequality, and to Frank den Hollander for passing on
material from Piet Kasteleyn’s papers.

2The quotation is taken from the notes written by Kasteleyn on Ginibre’s second draft.
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Communications in Mathematical Physics in 1971.

Ginibre recollects chatting with Kasteleyn at an AMS meeting during Spring
1971, and summarizing the situation as follows: “You had the proof and the
conclusion of the theorem, and I provided the assumption”. This first proof used
induction, the coupling proof of Chapter 2 was found later by Holley, [185].

In response to an enquiry concerning the discovery of random-cluster measures,
Piet Kasteleyn kindly contributed the following material, quoted from two letters
to the present author dated November 1992.

First letter from Piet Kasteleyn to GRG, dated 11 November 1992.

You asked me about the origin of Kees Fortuin’s and my ideas on the random-
cluster model. I have excavated my recollections and here, and in the subsequent
pages, is what came up.

When in the late ’60s Fortuin came from the Technical University of Delft to
Leiden for a PhD study, I had for some time been intrigued by a similarity between
a number of very elementary facts concerning three different models defined on
finite graphs. I was at that time actively interested in graph theory and I had begun
to toy with a few ideas in order to find out if there was more behind this similarity
than sheer accidents or trivialities.

I told Fortuin about the data that had struck me and proposed him to look closer
at them and at related problems. So we began to cooperate and first attacked
the case of finite graphs. When this led to success, we turned to infinite graphs.
Since Kees was very good, he mastered in a short time the necessary mathematics
and began to work more and more independently. It became a good piece of
PhD research, of which the results were set down in his thesis and (identically) in
our and his papers on the percolation model and the random-cluster model. The
details you find on the following pages. As you will see, the first few steps were
all extremely simple. Therefore you may find my account unnecessarily detailed.
I found it fun, however, to go through this history once again.

Let G = (V , E) be a finite connected graph with vertex set V and edge set E
(multiple edges allowed).

A. Consider a function R : E → [0,∞). Then (G, R) may be considered as
representing an electric network consisting of ‘branches’ (resistors) and ‘nodes’
(for brevity identify edges with branches and nodes with vertices), where R(e) is
the resistance of the branch e.

(i) Suppose E contains two edges e1 and e2, placed ‘in series’ (i.e. having end
points (u, v) and (v,w), respectively, with u 6= w):

u v w

e1 e2

Write R(e1) = R1, R(e2) = R2. We can replace e1 and e2 by a single new
edge e between u andwwithout affecting the electric currents and potentials
that arise in the rest of the network when a potential difference is imposed
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on an arbitrary pair of nodes ( 6= v), provided we attribute to e a resistance
R(e) = R = R1 + R2.

(ii) Suppose next that E contains two edges e1 and e2 which are ‘parallel’ (i.e.
which have the same pair of end points):

e1

e2

We can now replace e1 and e2 by a single edge e without affecting the rest
of the network, as before, provided we choose R(e) = R according to the
following ‘substitution rule’:

R = R1 R2

R1 + R2
.

B. Consider a function J : E → [0,∞). Then (G, J ) may be considered as
representing an Ising model consisting of spins taking values ±1, having ferro-
magnetic interactions described by the Hamiltonian

H (σ ) = −
∑

e∈E

J (e)σ (e) ,

where σ : V → {−1, 1} and σ(e) = σ(u)σ (v) where u and v are the end points
of e. The probability of the spin state σ is

π(σ) = Z−1e−βH(σ )

with Z the normalizing factor (partition function).

(i) Let e1 and e2 be two edges in series with J1,2 = J (e1,2), as before. We can
replace e1 and e2 by a single edge e without affecting the probabilities of
the spin states on V \ {v} provided we choose

J (e) = J = (2β)−1 log
1 + e2β(J1+J2)

e2β J1 + e2β J2
.

This can be seen as the result of ‘summing out’ the variable σ(v).

(ii) Let e1 and e2 be parallel edges. We can replace them by a single edge e
without affecting the rest of the system provided we choose J (e) = J =
J1 + J2. Trivial: the two similar terms in H are combined to one.

C. Consider p : E → [0, 1]. Then (G, p) may be considered as representing a
percolation model with the usual interpretation of p(e).

(i) As before, with suitable translations of concepts. The substitution rule is
now p = p1 p2.
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(ii) As before. The substitution rule is p = p1 + p2 − p1 p2.

So far for the facts. Question: do they reflect some relation between the three
systems? To answer this question we began with the following elementary steps
(in which order, I do not remember exactly; the one I give here will not be far from
the actual one).

1. To bring case B somewhat more in line with A and C, go over from J (e) to
w(e) = exp(−2β J (e)). Then the substitution rules are

(i) w = w1 +w2

1 +w1w2
; (ii) w = w1w2.

2. Introduce new variables, viz.

in case A: R∗ = R−1 (conductivity);

in case B: w∗ = (1 −w)/(1 +w) = tanh(β J );

in case C: p∗ = 1 − p. This reduces the substitution rules to:

(i) (ii)

A R = R1 + R2 R∗ = R∗
1 + R∗

2

B w = w1 +w2

1 +w1w2
w∗ = w∗

1 +w∗
2

1 + w∗
1w

∗
2

C p = p1 p2 p∗ = p∗
1 p∗

2

3. (Sideline) Note that if G is planar and G∗ is its dual, then the situation

in G corresponds to in G∗ and conversely. So the starred vari-

ables can be considered as ‘dual’ to the original ones (note that R∗∗ = R etc).

4. Consider now a q-state Potts model with σ : V → {1, 2, . . . , q} and

H = 2
∑

e∈E

Je(1 − δσ (e))

with J (e) ≥ 0 for all e; the factor 2 is inserted for the sake of comparison and
a constant term is omitted. Define w(e) as for the Ising model. For case (i), a
simple calculation (summation over σ(v)) shows that the substitution rule is now

w = w1 +w2 + (q − 2)w1w2

1 + (q − 1)w1w2
.
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That for case (ii) is, as in the Ising model, w = w1w2. It takes the same form as
for case (i), with w∗ instead of w, if we define

w∗ = 1 −w

1 + (q − 1)w
.

5. Now note that by substituting q = 1 in the last few formulae we get w =
w1 + w2 − w1w2, or 1 − w = (1 − w1)(1 − w2) and w∗ = 1 − w. Hence, if
we write 1 −w = p, we recover the rules for C. So in this very special sense, the
percolation model behaves, just like the Ising model, as a special case of the Potts
model.

6. At first sight the electric network does not seem to fit into the Potts model. It
does so, however, if we take an appropriate formal limit. Define for the Potts model

S = q− 1
2 (1 − w). In the limit q → 0 (which at this stage is still meaningless,

since q is an integer), the substitution rules reduce to

(i) S = S1S2

S1 + S2
; (ii) S = S1 + S2

and the duality rule is S∗ = 1/S. In other words, we recover the rules for the
network, with S = R−1 (= R∗).

7. So far we had got only a first indication about a relationship between the
systems A–C and the Potts model. We then wanted to turn to more general
situations. We had observed that (for arbitrary G) certain characteristic quantities
in A–C, such as

(A) the total current flowing through an electric network when a unit potential
difference is imposed on two arbitrary vertices x and y,

(B) the two-spin correlation E[σ(x)σ (y)] of the Ising model,

(C) the pair connectivity E[I (x ↔ y)] of the percolation model

can all be written in the form P(X)/Q(X) (where X stands for S = R−1, p =
1 − w, and p, respectively), with P and Q polynomials in the edge variables
X (e) that are linear in each variable separately. For the electric network, P and
Q are homogeneous in all variables S(e) together (of degree |V | − 2 and |V | − 1,
respectively); Q is the generating function of spanning trees of G, and P is the
generating function of spanning forests which consist of two trees, with x and
y in different trees. For the Ising model, Q is the partition function (which has
also a graph-theoretical interpretation, viz. in terms of cycles). For the percolation
model, Q = 1 identically.

8. From the linearity in the X (e) it follows that P(X) = P(X,G) satisfies, for
each edge e, the recursion relation

P(X,G) = P1 + X (e)P2,
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with P1 and P2 polynomials in all X ( f ) with f 6= e. This relation holds also for
the Potts model with arbitrary q , again with p = 1 −w. A similar relation holds
for Q.

9. Now if in the Potts model we have p(e) = 0, i.e. w(e) = 1, for some edge
e, this means that J (e) = 0; this is equivalent to having an interaction graph
G with the edge e deleted. Similarly, p(e) = 1, w(e) = 0, means that the
interaction is infinitely strong; this is equivalent to having an interaction graph
with the edge e contracted (i.e. deleted and its end points identified). If DeG and
CeG, respectively, are the graphs thus obtained from G, then obviously,

P(p, DeG) = P1,

P(p,CeG) = P1 + P2.

Hence, we can write

P(p,G) = P(p, DeG)+ p(e){P(p,CeG)− P(p, DeG)}
= [1 − p(e)]P(p, DeG)+ p(e)P(p,CeG).

10. Iteration of the last step leads directly to the expansion of P and Q in the
variables p(e) and 1 − p(e). Since 0 ≤ p(e) ≤ 1, we could interpret the p(e)
as probabilities and the entire system as an example (the first one we knew) of
‘weighted’ (we would now say ‘dependent’) percolation. The generalization to
arbitrary positive q (and even to complex q!) was now obvious. Then the limit
q → 0, as described above, could be taken correctly, and what came out was the
electric network with all its properties.

11. It is the system obtained in this way which — for lack of a more instructive
name — we called the random-cluster model. Most people have just called it
the Potts model, and of course, it is closely related to the generalized spin model
bearing this name. (We referred to the latter model as the Ashkin–Teller–Potts
model, because Ashkin and Teller were really the first to consider generalizations
of the Ising model to more than two spin states; one of these was the 4-state Potts
model.) Fortuin and I preferred, however, to distinguish between the two systems,
because they are different in principle. It is only in the paper by Edwards and
Sokal that the relation between the two was fully established for integral values of
q . It is now obvious that to every function f (σ ) of the spin state in the Potts model
there corresponds a function F(ω) of the edge state in the random-cluster model
such that the expectation of F with respect to the random-cluster measure equals
the expectation of f with respect to the Potts measure, and conversely. F and f
are transformed into each other via kernels which are nothing but the conditional
probabilities of Edwards and Sokal. The relations which Fortuin and I found
between spin correlations in the Ising model and certain connectivity probabilities
in the random-cluster model with q = 2 were special cases.

12. After thus having introduced the random-cluster model for finite graphs,
we were prepared to tackle infinite graphs. Fortuin wanted absolutely to treat
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these in as general a setting as possible and not restrict himself from the outset to
regular lattices, as I had suggested to him. This admittedly makes his papers less
accessible, but, in my opinion, also richer than they would have been if he had
followed my suggestion. But this is a matter of taste.

So far about history. Looking at the subsequent developments, I am somewhat
surprised by the fact that (to my knowledge) no one has given any attention to
the domain of q between 0 and 1, not even to the limit in which one recovers the
electric network, where life becomes much simpler. Of course, the FKG inequality
does not hold in this domain, but does that imply that nothing of interest can be
done? I admit that Fortuin was the first to restrict himself to the region where FKG
holds, but that was because the time for his PhD research was limited! In fact,
if I remember correctly, some mathematician once published a paper in which a
graph-theoretical interpretation was given to the random-cluster model (probably
under the name of dichromatic polynomial) for q = −1 (or q = −2, I am not
sure).

Then there is the ‘antiferromagnetic’ Potts model, where J (e) is allowed to be
negative. If it is, p(e) is also negative, so that a standard probability interpretation
is impossible. This case has not been investigated either, as far as I know. Still, it is
of interest, if only because, for integral positive q , the limit where all J (e) become
infinitely negative leads one into the theory of vertex colourings with q colours! In
this connection I may point out that for two-dimensional regular lattices the value
q = 4 plays a very special role in the random-cluster model: for q < 4 the phase
transition is ‘of second order’ (i.e. the percolation probability is continuous), for
q > 4 it is ‘of first order’. So it may be that there is more to be said about the
four-colour problem than we know at present!

Second letter from Piet Kasteleyn to GRG, dated 17 November 1992.

. . . I have been a bit too hasty in my conclusion about the connection between
functions f (σ ) in the Potts model (PM) and functions F(ω) in the random-cluster
model (RCM). What I wrote about the ‘transformation’ from f to F and vice versa
may be formally true, but it is trivial. What is not trivial, is the question whether
to each f there corresponds an F depending only on the edge configuration ω,
and not (parametrically) on p = (pe : e ∈ E), and vice versa. I do not remember
having seen this question discussed in the literature. In one direction there is no
problem. If for given f (σ ) we define

f (σ ) 7→ F(ω) =
∑

σ

f (σ )µ(σ | ω),

this F(ω) satisfies the requirement I mentioned,becauseµ(σ | ω) does not depend
on p. However, the map

F(ω) 7→ f (σ ) =
∑

ω

F(ω)µ(ω | σ)

does not satisfy the requirement, µ(ω | σ) depends on pe explicitly.
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To analyse this point we can proceed as follows. Using your notation we have

π(σ) = πG,p,q(σ ) = Z−1
∏

e∈E

(
(1 − pe)+ peδσ (e)

)
,

φ(ω) = φG,p,q(ω) = Z−1
(∏

e∈E

(
(1 − pe)(1 − ω(e))+ peω(e)

))
qk(ω).

The expectation w.r.t. π of a function f (σ ) = f (σ,G) can be written as

Eπ f =
∑

σ

f (σ )Z−1
∏

e∈E

(
1 + pe{δσ (e)− 1}

)

= Z−1
∑

σ

f (σ )
∑

D⊂E

(∏

e∈D

pe

)(∏

e∈D

{δσ (e)− 1}
)
.

The expectation w.r.t. φ of a function F(ω) = F(ω,G) can be written as

EφF =
∑

ω

F(ω)Z−1
(∏

e

(
{1 − ω(e)} + pe{2ω(e)− 1}

))
qk(ω)

= Z−1
∑

ω

qk(ω)F(ω)

×
∑

D⊂E

(∏

e∈D

pe

)(∏

e∈D

{2ω(e)− 1}
)( ∏

e∈E\D

{1 − ω(e)}
)
.

In order that Eπ f = EφF identically in p we must have

∀D ⊂ E :
∑

σ

f (σ )

(∏

e∈D

{δσ (e)− 1}
)

=
∑

ω

qk(ω)F(ω)

(∏

e∈D

{2ω(e)− 1}
)( ∏

e∈E\D

{1 − ω(e)}
)
. (∗)

It follows from what I remarked on µ(σ | ω) that for given f (σ ) there is a
solution F(ω) of this equation. (It is readily verified.) Question: is there a
solution f (σ ) for given F(ω)? The answer is not in general. If, e.g., G contains
the subgraph Kr (the complete graph on r vertices, having 1

2r(r − 1) edges),
and we choose D = the edge-set of this subgraph, then there is no σ such that∏

e∈D{δσ (e) − 1} 6= 0 if r > q . The reason is that it is not possible to have
different spin values for every pair of adjacent vertices in D if you have only q
different values at your disposal. Hence the l.h.s. of (∗) equals 0 for this D, so
that F(ω) has to satisfy the condition

∑

ω

qk(ω)F(ω)

(∏

e∈D

{2ω(e)− 1}
)( ∏

e∈E\D

{1 − ω(e)}
)

= 0. (∗∗)
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This can be rewritten, if we denote an edge configuration not by ω, but by the set
of open edges. Let us denote this by C (your η(ω)). Then

2ω(e)− 1 =
{

1 if e ∈ C,

−1 if e ∈ E \ C,
1 − ω(e) =

{
0 if e ∈ C,

1 if e ∈ E \ C.

Hence, the l.h.s. of the condition (∗∗) reduces to

0 =
∑

C⊂E

qk(C)F(C)(−1)|D∩(E\C)|I{C⊂D} =
∑

C⊂D

qk(C)F(C)(−1)|D\C |

where
∑

C⊂D = ∑
C : C⊂D So the condition reads:

∑

C⊂D

(−1)|D\C |qk(C)F(C) = 0.

For q = 2 (Ising model), the existence of a triangle in G already causes a
relation (it cannot accommodate 3 unequal pairs of spins). This is, e.g., satisfied
by F(C) = I{u↔v}, but not by F(C) = I{u↔v↔w}, where u, v, w are vertices.

You may be amused to see what happens in the case q = 1!

My conclusion is that the PM is ‘included’ (in the spirit of this analysis) in the
RCM, but that generically the RCM is ‘richer’: there are questions one can ask in
the RCM which have no counterpart in the PM. In addition, of course, the RCM
makes also sense for q /∈ N, but the PM — as far as we know (Fortuin and I tried
hard!) — not.

Postscript by Cees Fortuin, 11 September 2003.

I remember especially the first time he [Piet] told me about his ideas (end of 1966
when I still was doing my military service and he already had invited me to work
with him): we were sitting next each other at the table in front of the window,which
he used for working sessions, and he explained his ideas (the ABC of the letter)
while I was listening. My first work was then ‘putting the electrical current of a
network into the scheme’. The actual formulating of the model took some time: I
guess that it was end 1968/begin 1969 before on my blackboard the formula with
2n appeared (the reformulation of the Ising model); I then went to his office and
said something like: “I have found what we sought” (but half and half expecting
he would say that he already knew!). We walked back to my office where he
overlooked the blackboard and remarked that this was a special moment(!).
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List of Notation

Graphs and sets:
G = (V , E) 15 Graph with vertex-set V and edge-set E
EW 16 Set of edges having both endvertices in W
VE 174 Set of vertices incident to edges in the set E
Aut(G) 74 Automorphism group of G
Gd 133 Dual graph of the planar graph G
〈x, y〉 15 Edge joining vertices x and y
x ∼ y 15 x is adjacent to y
R 18 The real line (−∞,∞)

Z 17 The set {. . . ,−2,−1, 0, 1, 2, . . . } of integers
Z+ 18 The set {0, 1, 2, . . . } of non-negative integers
N 18 The natural numbers Z+ \ {0}
Ld 18 The d-dimensional (hyper)cubic lattice
Ed 18 The set of edges of Ld

EV 18 Subset of edges having both endvertices in V
T 159 The triangular lattice

H

{
159
169

The hexagonal lattice
The set of plaquettes of L3

U 164 The upper half-plane
xi 17 The i th component of the vertex x ∈ Zd

3a,b 18 The box with vertex-set
∏d

i=1[ai , bi ]
3n 18 The box with vertex-set [−n, n]d

S(L, n) 124 The box [0, L − 1] × [−n, n]d−1

deg(u) 58 The degree of the vertex u
deg(W ) 43 The maximal degree of a spanning set W of vertices
∂A 17 The surface of the set A of vertices
1eW 17 The edge boundary of W
1e,δC 170 Edge-set given in terms of a surface δ of plaquettes
∂e D 174 The 1-edge-boundary of the edge-set D
∂ext F 147 Set of vertices of VF in infinite paths of the complement
1ext D 174 The external edge-boundary of the edge-set D
1int D 174 The internal edge-boundary of the edge-set D
1v,δC 170 Subset of C given in terms of a surface δ of plaquettes
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∂+3, ∂−3 197 Upper and lower boundaries of 3
rad(D) 110 Radius of a subgraph D of Ld containing 0
δ(x, y) 18 Number of edges in the shortest path from x to y
|x | 18 δ(0, x)
‖x‖ 18 max{|xi | : 1 ≤ i ≤ d}
h(e) 169 The plaquette intersecting the edge e ∈ E3

[H ] 170 Subset of R3 lying in some plaquette of H
E(H ) 169 Set of edges corresponding to the set H of plaquettes
δ 170 The closure or extended interface of a set δ of plaquettes
DL ,M 201 The set of interfaces
δ0 201 The regular interface
s∼ 169 s-connectedness for plaquettes
‖h1, h2‖ 169 The L∞ distance between the centres of plaquettes h1, h2
ins(T ) 169 Union of the bounded connected components of Rd \ T
out(T ) 169 Union of the unbounded connected components of Rd \ T
|A| 17 Cardinality of A, or number of vertices of A
A △ B 60 Symmetric difference of A and B

Probability notation:

µ(X) 18 Expectation of the random variable X under the measure µ
p, q 4 Edge and cluster-weighting parameters
φG,p,q, φp,q 4 Random-cluster measure on G with parameters p, q
φG,p, φp 4 Product measure with density p on edges of G
ZG(p, q) 4 Random-cluster partition function
λβ,h 7 Ising probability measure
πβ,h 7 Potts probability measure

φ
ξ
3,p,q 38 Random-cluster measure on 3 with boundary condition ξ

φb
p,q 75 Random-cluster measure on Ld with boundary condition b

Wp,q 72 Set of limit-random-cluster measures
Rp,q 78 Set of DLR-random-cluster measures
UCS 13 Uniform connected graph
UST 13 Uniform spanning tree
USF 13 Uniform (spanning) forest
1A 15 Indicator function of an event A
covp,q 41 Covariance corresponding to φp,q

covp 33 Covariance corresponding to µp

varp,q 56 Variance corresponding to φp,q

ω 15 Typical realization of open and closed edges
� 15 The space {0, 1}E of configurations
F 16 The σ -field of � generated by the cylinders
F3 16 The σ -field generated by states of edges in E3
T3 16 The σ -field generated by states of edges in Ed \ E3
T 16 The tail σ -field
�
ξ
F 27 Set of configurations that agree with ξ off F
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ωe, ω
e 16 Configuration ω with e declared closed/open

ω1 ∨ ω2 20 Maximum configuration of ω1 and ω2
ω1 ∧ ω2 20 Minimum configuration of ω1 and ω2
H (ω1, ω2) 16 Hamming distance between ω1 and ω2
η(ω) 16 The set of edges that are open in ω
k(ω) 17 Number of open components in ω
I (ω) 79 Number of infinite open clusters in ω
A, Ac 16 Complement of event A
A � B 64 Event that A and B occur ‘disjointly’
B(X) 241 Space of bounded measurable functions from X to R
C(X) 233 Space of continuous functions from X to R
DX 82 Discontinuity set of the random variable X
IA(e) 30 Influence of the edge e on the event A
≤st 19 Stochastic domination inequality
⇒ 69 Weak convergence

Random-cluster notation:
Cx 17 Open cluster at x
C 18 Open cluster C0 at 0
pc(q) 99 Critical value of p under φp,q

psd(q) 135 The self-dual point of the random-cluster model on L2

p̂c(q) 124 Critical point defined via slab connections
p̃c(q) 113 Critical point for polynomial/exponential decay
p(q) 197 Critical point for the roughening transition
pbond

c 329 Critical probability of bond percolation
psite

c 340 Critical probability of site percolation
ptc(q) 114 Critical point for the time-constant
pg(q) 115 Critical point for exponential decay of connectivity
η(µ) 114 The time-constant associated with the measure µ
θb(p, q) 98 Percolation probability under φb

p,q
ξ(p, q) 115 Correlation length
δe(σ ) 7 Indicator function that the endvertices of e have equal spin
{A ↔ B} 17 Event that there exist a ∈ A and b ∈ B such that a ↔ b
{A /↔ B} 17 Complement of the event {A ↔ B}
Je 15 Event that e is open; also the indicator function of this event
Ke 37 Event that endvertices of e are joined by an open path

not using e

Finally:
a ∨ b 18 Maximum of a and b
a ∧ b 18 Minimum of a and b
⌊c⌋ 18 Least integer not less than c
⌈c⌉ 18 Greatest integer not greater than c
δu,v 7 The Kronecker delta
λs 171 s-dimensional Lebesgue measure
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86. The analysis of the Widom–Rowlinson model by stochastic geometric methods,

Communications in Mathematical Physics 172 (1995), 551–569.

Chayes, J. T., Chayes, L., Newman, C. M.
87. Bernoulli percolation above threshold: an invasion percolation analysis, Annals

of Probability 15 (1987), 1272–1287.

Chayes, J. T., Chayes, L., Schonmann, R. H.
88. Exponential decay of connectivities in the two-dimensional Ising model, Journal

of Statistical Physics 49 (1987), 433–445.

Chayes, J. T., Chayes, L., Sethna, J. P., Thouless, D. J.
89. A mean-field spin glass with short-range interactions, Communications in Math-

ematical Physics 106 (1986), 41–89.

Chayes, L.
90. The density of Peierls contours in d = 2 and the height of the wedding cake,

Journal of Physics A: Mathematical and General 26 (1993), L481–L488.

Chayes, L., Kotecký, R.
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Chimie et de Physique, séries 7 (1895), 289–405.

Dembo, A., Zeitouni, O.
99. Large Deviations Techniques and Applications, 2nd edition, Springer, New York,

1998.

De Santis, E.
100. Strict inequality for phase transition between ferromagnetic and frustrated sys-

tems, Electronic Journal of Probability 6 (2001), Paper 6.

Deuschel, J.-D., Pisztora, Á.
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Jössang, P., Jössang, A.
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