
Preface to the Fourth Edition

This book provides an extensive introduction to probability and random processes. It is

intended for those working in the many and varied applications of the subject as well as for

those studying more theoretical aspects. We hope it will be found suitable for mathematics

undergraduates at all levels, as well as for graduate students and others with interests in these

fields.

In particular, we aim:

• to give a rigorous introduction to probability theory while limiting the amount of measure

theory in the early chapters;

• to discuss the most important random processes in some depth, with many examples;

• to include various topics which are suitable for undergraduate courses, but are not routinely

taught;

• to impart to the beginner the flavour of more advanced work, thereby whetting the appetite

for more.

The ordering and numbering of material in this fourth edition has for the most part been

preserved from the third. However, a good many minor alterations and additions have been

made in the pursuit of clearer exposition. Furthermore, we have revised extensively the

sections on Markov chains in continuous time, and added new sections on coupling from the

past, Lévy processes, self-similarity and stability, and time changes.

In an immoderate manifestation of millennial mania, the number of exercises and problems

has been increased beyond the statutory 1000 to a total of 1322. Moreover, many of the

existing exercises have been refreshed by additional parts, making a total of more than 3000

challenges for the diligent reader. These are frequently far from being merely drill exercises,

but they complement and illustrate the text, or are entertaining, or (usually, we hope) both. In

a companion volume, One Thousand Exercises in Probability (Oxford University Press, third

edition, 2020), we give worked solutions to almost all exercises and problems.

The basic layout of the book remains unchanged. Chapters 1–5 begin with the foundations

of probability theory, move through the elementary properties of random variables, and finish

with the weak law of large numbers and the central limit theorem; on route, the reader meets

random walks, branching processes, and characteristic functions. This material is suitable for

about two lecture courses at a moderately elementary level.
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The second part of the book is devoted to the theory of random processes. Chapter 6 deals

with Markov chains in discrete and continuous time. The treatment of discrete-time chains is

quite detailed and includes an easy proof of the limit theorem for chains with countably infinite

state spaces. The sections on continuous-time chains provide a significant amplification of

those of the third edition, and constitute an approachable but rigorous account of the principal

theory and applications. Chapter 7 contains a general discussion of convergence, together with

simple, rigorous accounts of the strong law of large numbers, and of martingale convergence.

Each of these two chapters could be used as a basis for a lecture course.

Chapter 8 is an introduction to stochastic processes in their various types; most of these

are studied in detail in later chapters, but we have also aspired there to engage the reader with

wider aspects of probability by including new essays on a number of topics such as Lévy

processes, self-similarity, and stability. Chapters 8–13 provide suitable material for about

five shorter lecture courses on: stationary processes and ergodic theory; renewal processes;

queues; martingales; diffusions and stochastic integration with applications to finance.

We thank those who have read and commented upon sections of this and earlier editions,

and also those readers who have taken the trouble to write to us with notice of imperfections.

Further help in thinning any remaining errors will be greatly appreciated.

Cambridge and Oxford G.R.G.

April 2020 D.R.S.

Note on the Frontispiece

The iconography associated with Fortuna, the goddess of chance and luck, (Tyche or Agatho-

daemon to the Greeks), has accumulated over more than two millennia, and is correspondingly

complex; we give no more than a brief and much simplified account here of the various alle-

gories involved. The goddess Fortuna was originally associated with fertility, hence the sheaf

of corn shown in her right hand. Later associations with the uncertainty of sea voyages are

indicated by the ship in full sail seen in the background. The sphere by her feet may initially

have represented the instability of life, and this interpretation is sometimes strengthened by

depicting the sphere as a bubble. (By contrast, the goddess Virtue is frequently depicted on

or by a cube, representing stability.) Subsequently the sphere comes to represent the entire

world, over which chance reigns supreme. The wheel carried by Fortuna in her left hand

represents the fickleness and uncertainty entailed by the passage of time; that is, the inevitable

ups and downs of life. ‘The wheel of fortune’ is a metaphor for chance and uncertainty still

today, as exemplified by the title of a recent television game show.

A further discussion of the iconography is provided in Roberts 1998.
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