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1. Introduction

A previous paper [*] by one of us gave an elementary description

_of the two-state Markov field on the simple cubic lattice, and referred

the reader to Spitzer [2] tor a proof that this Markov field was a
Gibbsian ensemble. The main shortcoming of both “papers [1] and [2] is
that neither goss beyond this very special, and indeed rathepr trivial,
case. Physicists are more interested in more general Markov fields on
more general Tattices; and the special case does not veveal what happens
in general. For exampie, only pair interactions can arise on the sim |
p?ercubic lattice, whereas qdadrupie interactions can occur on the .
(physically more interésting)féce~cerixed cubic Iéttice,. 350, 1in thé
present péper, we attack the general situation. This requifﬁs more
powerful mathematical tools than the trivial specfa} case; and we devé?aﬁ
an operational calculus (the b]ackenin§ algebra) to prove our results,
This algebra, once developed, yields quicker and clearer proofs than
Spitzer's ratﬁer circuitous and opaque arguments. [

_ Suitable notation is a source of trouble in this subject. It must
not be so light aﬁd casual that ambiguity cannot be resolved by the con-

text, and yet it must not be so complex and informative that it becomes

*This invéstigation was supported by PHS Research Grant No, GM-10525-08,
National Institute of Health, Public Health Service.
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(as with Dobriighin 3]) almost inpéﬁe%ﬁab1e. Our notation here stems
from [1]; but Qe ﬁave‘eiided and 1ig5téned it in various ways, which we
hope will improve its readabiiity. Agé%n, in [1] and [2], the three |
postulétes of a Harkov f%eid (posit%@%ty, neighbourhood condition, and
stationarity) were stated simultaneously; but it reveals things better,
we believe, to stdte and investigate the three separately, and this we
do here. In a sense, positivity and stationarity are minor irrele-
vances: the former has 1ittle physical import and is only a mathema-
tical device for simplifying the proofs; while the latter restricts
attention, perhaps unduly, to simple symmetric situatiaﬁs‘with simpie
conclusions. Indeed, we shall begin with arbitrary finite graphs.
rather than lattices. For graphs, the stationarity condition does not
even arise. From these, we deduce as a special case the situation for
lattices under stationarity. The crucial postulate %or Markov fields
is the neighbourhood condition; but, after some reflection, we have
decided to call if the Markov condition, thereby bringing it closer to
cognate subjecfs elsewhere in the literature. Thus the present paper

differs from [1] and [2] both in notation and approach; and to this

‘end we have made it self-contained. Some of cur readers may not be

familiar with graph theory; so for their benefit (and also to allow

other readers o accustom themselves to cur notation) we begin with a

fairly lengthy section on terminology and definitions before coming to

grips with Markov fields themselves. |
Spitzer [2] states that results™almost identical™ to his are ob-
tained by Averintzev [4]; but we have not been able to consult this to

see how far it overlaps the presént work.



2. Terminology for gkaghs

We shall be concerned with an arbitrary undirected finite g *rggg Z.
This consists of a finite number of sites (= vertices = nodes = points,
to use equivalent terms in the 1iteréture on graﬁhs} together with a -
given specification that certain pairs of sites are connected together
by bonds (= arcs = loops = Tines = edges}. Two sites, which happen to
be connected together by a bond, are ca1led neighbours of each other.

In all that follows we suppose that Z is fixed, and that we know the

Fixed specification of which sites are neighbours of which. We speci-

-

fically exclude any bonds which connect a site to itse]fg thus'no site
is to be a neighbour of itself,

We write Z]’ZZ""’Zn for the sites of Z. We use capital
letters (Tike U,V,....Y) for sets of sites contained in Z. We write
X+Y for the unfon of X and Y (= al1 sites contained in X or Y
or both), XY for their intersection (= all sites common to both X
and” Y), and X-Y for their difference (= all sites contained in X

but not in Y). A set may be empty, in which case it js denoted by 0.

He wr1te z for a typical site in Z, and 3z for the set of
its neighbours. We extend this notation to a set VY as. follows: 3y
denotes all sites, which do not belong to Y, but which are neighbours
of one or more sites in Y. We call 3Y the boundary of Y. A set
Y is called a clique if either (1) it consists only of a single site,
or (ii) each site in ¥ is a neighbour of every other site in Y.

We Qrite C for the family of all cliques in 7.

3. Colourings of the graph

He proceed to colour the sites of Z. We suppose that there are
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C4 different colaur§ available for colouring the site Z.. Thus there
are  ¢4C,...c, different ways of colouring the whole graph Z. MWe

write x for a typical one of these C€p-+C available ways of

n
co]ouring' Z.( Thus x.ris & variable which can take c]cz...cn‘ different
values. We shall need a reference colour, and we choose black for this
purpose. MWe stipulate that black is an available colour for each and
every Sfte (this stipu1ation is a matter of notational convenience

rather than necessity, and can be brought about by independentiy renaming

the colours at each individua1 site); and, to avoid triviality, we sti-

pulate that c, > 2 for each i =1,2,...,n. Rpart from these two

stipulations, there are no other restrictions upon colourings: the

~ available colours at different sites may be different or the same.

Now suppose that we are given a set of sites Y and some particular

colouring x of Z. This colouring X assigns colours to each of the

‘sites in Z, and in particular to the sites in Y. We define xY to

be the colouring assigned to Y by x. Thus xY s a partial co?ouring
-~ in fact, just that partial cofouring of 7 which y assigns for

the part of Z called Y. In particular, xZ denotes the colour
assigned by ¥ t& the site z. Similarly, xZ 1is another way of
writing x. We Tabour this point deliberately, bécause it will be
eSséntia] to distinguish the entity xY from the quite different entity
Xy to be defined next. We define Xy to be tﬁe colouring of Z,

which colours the whole of Y black, but which agtées with the original
co?outfng X at every site not in Y. Thus Xy is the colouring
derived from x by blackening Y; of course, some of the-sites in Y
may have been black originally under yx ~- in which case they stay

black. These two notations can, and will, be used in combination. Thus,



XUBV is the partial colouring assigned to the boundary of V by the
derived colouring ¥ .which blackens U but otherwise matches x.: If.
0 1is the empty subset of Z, then Xo will naturally be i jtself,

The set Y is said to be light relative to x if no site in Y

is black under the cotouring X. We define Lx to be the family qf
Tight cliques relative to Y.

We write A for the set of all colourings X such that Z itself
is light relative to x. Thus a colouring of A never assigns black |

~to any site.

4. The blackening alagehra

Let R{x) be a real-valued function of the colouring ¥ of the
graph Z. We develop an algebra (= linear operational calculus) to
study how R changes when x 1is replaced by a derived colouring Xy-

We define the pure operator BY by means of

(4.1) o “BRO) = Rxy) -

If we appfy first By to R and then BX to the result, we shall
 blacken first Y and then X; so finally the sites of the union X+Y

will be blackened. Thus

(4.2) BBYRO) = ByRlxy) = Rlkgay) = BrpyROX) -

Since the union X+Y = Y+X, we have in terms of operators alone

(4.3) | ByBy = ByBy = By,y .

Thus the pure blackening operators commute,

We now extend the definition of operators to mixed operators, namely



linear combinations of pure operators, by means of
(4-4) (UBU+VBV+ "'+yBY)R(X) = UR(Xu)+VR(Xv)+ ".+yR(XY") »

where u,v,...,y are arbitrary real scalars. It is easy to verify

that the miked operators will multiply according to the rule
(4.5) (X u.B )(Z v B, )} = E UViBy L
_ U, VJ f i'j U, V&

Thus the blackening operators form a commutat{ve algebra. The identitj
“operator in this algebra is 1 = BG’ where the suffix 0 denotes the
empty subset of Z.

An operator equal to its own square is called a projector. Puft?ng

X =Y in (4.3) and noting that the union Y+Y =Y, we see that

2 _n.
y = Bys

and Y, the operator

B SO every pure operator is a projector. For any two sets X

(4.6) | By + By - By,y = By +B,(1-5,)
1s alsvu a projector, because X +{X+Y)} = Y+ (X+Y) = X+VY and
2 _n2,n2, .2
(4.7) (BX+BY-Bx+Y) = By +By+ B, 428 - 2B, . - 2By y

In particular, putting Y = Z - {(X+3X) in (4.6) and noting that

Xty = 7-3X inasmuch as X and 09X are disjoint by virtue of the
definition of the boundary 38X, we may define

(4.8) Bx = Bx * By (xeax) 1By = By *+ By yxanxy = Broax -

We shall also write, when X 1is the single site Zis



. * . ’
(4-9) B'l = BZ s b'l =B i b'i = Bz_(zli,}.azi)a (i = 1,2,...,0) .

Thus
. - * N
(4.10) B _ 3? = bi + bi(i-bi)
is a projector because it is a particular case of the projector BX,
which in turn is a particular case of the projector (4.6). Finally

we define

(4.11) ‘ B = By6pe--By

and remark that B is a projector because 82 = B%B%...Bg

Given any blackening operator B, we define its invariant subset

I(B) to be the set of all functions R(y) which are left unchanged

by B. In formal terms this definition means
(4.12) I{B} = {R(*)}: BR{x) = R(x) for all x} .

We propose to study the invarisnt set I(B) corresponding to (4.11).
We claim that 'I(B) consists of all functions of the form BR, where

R 1is arbitrary:
(4.13) I(g) = {BR} .

In the first place, if R 1is arbitrary, then BRR = 82R = BR because
B 15 a projector; so BR 1is unchanged by B and belongs to I(B).
On the other hand, if Q abelongs to I{(8) it is unchanged b& B, so
Q=8Q and Q is of the form BR for some R, in fact R = Q.

This proves (4.13).

Next we characterize I() in terms of the light cliques of Z.

= 8,8,...8. = B



Let us write

€4.14) ‘ : B, = I b,, B

= 1 b¥(i~b.) .
F‘ 'ZiEY 1 b

ey
25¢ ,

¥*
Y

In view of (4.3) and'(4.9), the first eguation in (4.14) is merely a
reiteration of what we already know about pure operators; on the
othePAhand, the second equation in (4.14) is a definition of B}, and
‘Bﬁ is in general a mixed operétor. We allow {(4.14) to hold for all
subsets Y of Z, including the empty subset 0, 1in which case we
interpret B0 = Bg =1 as the identity operator. We writé @ for
.tﬁe collection of all subsets Y of Z, including 0 and Z. By
virtue of (4.10) and {4.11), we have

(4.15) B = z;LZ[bi+ b3 {1-b;)] = YEQBZ*YB$ .

upon expanding the product in (4.15) and using (4.14).

Now let R(x) be an arbitrary function of X, let Y be any
fixed subset‘of Z, aﬁd consider Bz_fBﬁR(X)- First we deal with
the case where Y 1is not the empty subset of Z. From (4.9) and
{4.14) we have | -

(4.16) B?R(g) = 1
€

B2 (212 (178, R00 -

We shall prove that this vanishes unless ¥ is a clique. For suppose

that ¥ 1s not a clique. Then Y contains two distinct sites, say

z and 1z, such that 2z 1is not a neighbour of ¢, and hence z does
L+ . ]

not belong to r+23g. The operator BZa(g+Bc) blackens all sites

except those in r+ 93z, and so it blackens z. Then the operator

Bz blackens z and leaves all other sites unaffected; but, since 2z



has already been blackened, BZ will leave every site unaffected,
that is to say Bz will behave like the identity 1 when z is

aiready black. ﬂence
(4.17) (INBZ)BZ%E'{-BC)R(X) =0 .

However, the operators on the left-hand side of (4.17) occur in the pro-
duct on the right-hand side of (4.16). Hence B?R(x) vanishes when

Y is ﬁot a clique. Next suppose that Y is a clique, but not a
‘1ight clique relative to X+ Then Y will contain some site z which
is already black undér v; and, as before, (1-BZ)R(x) = (. Hence
(4.16) vanishes unless Y 1is a Tiéht clique relative to y. Fiﬁa?ly,

if Y s the empty subset of Z, we get
(4.18) Bz_yByR(X) = B,R(x) = R(x;) .

Inserting these results into (4.15), and vrecalling that Ly de-

notes the family of light cliques relative to ¥, we find

it

(4.19) BR(x) R(XZ) + T By (BIR(x) -
- : Yelx

‘ *
R(Xz) + Z BYR(XZ-Y) .
YelLy :

Next suppose that Y e Ly and consider any sife ze VY. The
operator B¢ contains the operator BZ»(Z+32) as a factor, from (4.9)
-and.(4.14). This latter operator blackens-all sites not in z+ 93z,
and”Teaves the remaining sites unaffected. But since Y 1ds a cligue,
the jatter operator can ofily blacken some of the sites in Z-Y, and
these are already black under Xz_y- Hence BZ-(z+Bz)R(XZ-Y) = R(XZ_Y)
for all z e Y. So, by (4.14) and (4.19), -
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4.20 " BR(x) = Rlx,) + T (1-B_)R
( ) (X) (Xz YQELX ZEY( ) (XZ \f)

Now R{x)- in (4.20) is arbitrary; and we may therefore def1ne

it in terms of another arb1trary function S{x) as follows

(4.21) S R = Slxy) + E Slzoy) = I5&) s
‘ elx

where Js(x) is an abbreviation for the central term of (4.21). Here

the sum is to be taken as zero if there are no members of Ly; so
(4.22) o Rlxg) 7 sleg)

Now suppose ¥ givén, and consider same Y € Ly. In the derived
colouring X7y all sites not in Y are blackened while all sites

in Y afe left unaltered and therefore remain light. So Y is

also aAlight clique relative to 'XZ-Y' Every subset of a light clique
is a light clique; so every subset of Y also belongs to LXZ-Y‘ On
the other hand, no clique with a site outside Y can belong to sz-y'

Hence, if we substitute x,_ . for X in (4.21), we get
(4.23) ROG,_y) = SIX5) + Y S(xo_y) -
Z-Y JA xCy Z-X

We now operate on this equation with };Bz’ where z € Y. Here we
have to be careful, because the presence of Y in the range of summa-
tion makes R(XZ_Y) behave {as it were) 1ike a non-linear function

of Y. However, replacing Y by Y-z in (4.23), we have
(4.24) ROX(7oy14,) = SOG) + T Slxp_y) -
(Z-Y)+z 27 g YTX

On subtracting (4.24) from (4.23) we get
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4.25 | (1-B_)R( - s .
(4.25) M) = St

Similarly, we may operate on-(4.25) with }?B; where ¢ e ¥; and we

. get

(4.26) | o (BB )R, ) = z+céxcys(xz“x)

Proceeding in this fashion for all ze Y, we finally obtain

(4.27) ny(1 -B )R(xz Y I S(xz x) = Slxz_y)
Z i

Substitution of (4.22) and (4.27) into (4.20) yields

(4-28) BR(X) = S(Xz) + Z S(XZ Y) = R(X) ®
elx .

because X in (4.21) is only a dummy variable of summation.
Now Tet J denote the .family of functions which can be written
in the form JS(X) for some function S. Equation (4.28) shows that

any member of - J belongs to the invariant set of B£. Thus
(4.29) = | J € 1()

On the other hand, for any arbitrary function R, we may remark that

zgY(] -B )R(XZ_Y) is some function of Xy SaY S(XZ-Y); and Tike-

wise we may write R(xz) = S(XZ). So (4.20) shows that BR(x) for arbi-
trary R can be written in the form Js(x) for some suitable S; and
thus (4.13) establishes that

{4.30) _ I(g) €4

Combination of {4.29) and (4.30) provides
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(4.3'1) . o J.=~‘I(B) .

Final]y in this section on the blackening algebra, we shall prove

(4.32) o ' I(é)EI(BX)

for any subset X of Z, where BX is the projector defined in (4.8).
Let S° be an arbitrary function of y; and let Y be an-arbitrary

clique. <Clearly

(4.33)  BySOz) = (By* By ryiayy= By ay)Slxy)

i

S(Xz) + S(XZ} “.S(Xz) = S(XZ) .

Now Bx is a linear operator, and every member of I{8) = J can be
written in the form {4.21), where the sum is over light cliques; so it

will suffice to show that
(4;34) . . SXS(XZ-Y) = S(Xi;Y)

for an arbitkaryAclique Y. We notice first that X, 38X, and Z-(X+5X)
are three disjoint sets whose union is Z. Further, the neighbours of
sites in X lie in X or 23X or both. So Y, being a clique, cannot
tie partly in X and partly in Z-(X+3X). Now consider the following

table with columns indexed by operators and rows by sets.

B I S S M 2
X 0 1 0
o 1 1 1
7-(k+3X) | 1 0 0

. In the body of the table the entry in a particular column and row is O



13

or 1 according as the indexing operator blackens alil or none of the
sites in the indexing set. If Y has no sites in Z-(X+3X), the table.
shows that BX and BZ—BX have identical effects upon any pﬁrticu1ar

" site of 'Y, while BZn(X+8X) Teaves the colouring of Y unchanged;

thus
(4.35)  BySlezy) = By 580 y) Bz (xaax) 3 Ozoyd = SOgy)

which implies (4.34). On the other hand, if ¥ has no sites in X, the

table shows similarly that

-

(4.36) BZ-(X+3X)S(XZ-\’) = By oy S(xg_ydaByS{xy_y) = S'(XZ—Y) ,

which also implies (4.34). This exhausts the possibilities and proﬁes
{4.32).

As a special case of {4.32} when X = Zys WO get
(4.37) - 1(B) S, I{(g,)
.This is true for all i, we have
(4.38) o 1{8) € 1(8)1(8,)...1(8,)
06 the other hand, if R e 1(81)1‘82)"'I(Bn)’ we have
(4.39) R = B1R = BZR = ere = BnR s
and hepce R = 8]82...BHR = g8R, so R e I{R). Therefore
(4.40) C (BB, 1 ) S 1(B)

and we conclude from (4.38) and (4.40) that

- (4.41) 1(8,)1(8,)... 1(8,) = 1(8)
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5. Probabilities of the colourings

We suppose that a colouring o 1is selected at random from the
€1Cp- -+ Cy possible colourings of - Z. Thus w is a random variable.
e may specify its distribution by specifying the probability khat the
random colouring w 1is equalrto a prescribed cd\ouring ¥. We write

this as

(5.1) Plo=x) = P(x) .

_.Thus P(x) 1is regarded as a specified function of x; and we shall later

jmpose further conditions on this function. We adopf a notation, which

avoids mention of w as far as possible, although w must be present

at the back of our minds if we try to interpret the function P(x) 1in

physical terms,

" Since P denotes a probability, we must have
(5.2) LP) =1

Here the summation is over all CiCZ"'Cn possible colourings.
We also define P{xY) to be the probability that the random colour-

ing w matcheé_the specified colouring ¥ on the set Y. Thus

(5.3) RN = IR

where the sum on the right is over all yx which yield a prescribed

partial colouring xY on Y. UWe shall also utilize other fairly self-
evidént notat%ons, employing the principle that P(--+) denotes the
probability that the random colouring fg]fi]s all of the conditidns inside
the brackets (++-). Thus P(XX,XY) is the probability that w simu]-.

taneously has the partial co1ouring xX on X as well as the partial
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colouring xY on Y. We could have written this alternatively as
PyX,xY) = P[x(X+Y)], but we often prefer the former to the latter as
being more easi]y.printed and more easily read. To give a few more
illustrations of the notétion, P(Xz) islfhe prébéb%Tity that o géua]g
- the derived colouring ‘xz; P(xzz) denctes the probability that o is
black at the site 'z; P{x9z) denotes the probability that w has the
prescribed colouring yx on the boundary of z; P(xzz,xaz) denotes

the probability that w s black at =z and-simu?taneously matches the
prescribed colouring X on the boundary of'nz; and so on. Any of these
quantities P(:°*) can be obtained from the basic probabilities P(x)

by summiing P(x)} over all yx which satisfy the conditions in (+°+).

6. The positivity condition

The positivity condition is a condition imposed by hypothesis on

the function P; and it postulates that for all possible y
(6.1) | P{x) > 0

This postulate has two consequences. First, we may define the logarithmic
1ikelihood

(6.2) Q) = Tog PY)

Second, the probabilities of all evenis in the previous section will also
he pdsitive, since they are sums of the positive quantities in (6.1). For
example, P{xY) > 0; and so we may define conditional probabilities

such as

(6.3) ' POxX[xY) = POxXxY)/POxY)
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According to the usual laws of probability, P(xX|xY¥) is the conditional
probability that « has the prescribed partial colouring yX on X
given that ¢ -has the partial colouring xY on V.

- The positivity condition is mathematically convenient; bui it hardly
seems necessary. After all, the present work is.merely an exercise in
the manipulatién of certain rational algebraic expressions involving the
quantities P{x). We shall postulate certain equations for these ra-

tional expressions, and deduce others. Any such equation can be reduced

.to a polynomial equation by multiplying out the denominators, after which

there is no longer cause to worry about any denominator vanishing. It

appears likely that we could do without the positivity condition by first

'+ working with it imposed to obtain the appropriate polynomial conclusions,

after which we allow some probabilities to tend to zero in a limiting

argument, thus relaxing the positivity condition. However in this approach

there are certain technical difficulties, which we have not yet surmounted

though we can scarcely imagine they are serious.

7. The Markov condition

The Markovlcondition {previously called the peighbourhood condition

“dn [1] and [2]) is the main postulate. In essence, it postulates that

a random partial colouring of a set X depends upon what happens on the
boundary of X but not on anything beyond the boundary. Formally, the

Markov condition for the set X s
(7.1) PLxX|x(Z-X)] = P{xX[x8X) for all x .

We call this condition M(X).
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The Markov condition can occur in various forms, depending upon the
sets X at which we decide to postulate M{X}. If we only postu1afé o
M{z) for a single site =z, thén we say that P 1is Markovian at z. If
we post&]ate M(Zi) for all 1 = 1,2,...,n we say that P is Jocally
Markovian. If we postulate M(X) for all subsets X of Z, we say that
P dis globally Markovian. Obviously, a giobaily Markovian P 1is Tocally
Markovian; but the converse {which is true) needs proof.
We begin by proving that HM(X) holds if and only if the ]ogarfthmic
" -likelihood Q(x) belongs to the invariant set I(g,) discussed in the
blackening algebra. |

Suppose first that M(X) holds. Putting x = Xy in {7.1) we get
(7.2} P[XXXIXX(Z"X)] = P(XXXIXXBX) .

However, X does not intersect either Z-X or 3X; so XX(Z“X) = x{Z-X)

and xxax = x3X. Therefore

(7.3) , PhxXIx(Z-X) = PlxgXban)

From (7.1) and (7.3)

PO (Z-X)T P(xXXIX3X}

(7.4) Py XIX(Z-X)T ~ P{xXTxoX)

The right-hand side of this equation depends only upon the partial colour-
ings of X and 93X, and is independent of the partial colouring of
Z-{X+3X). Thus we may substitute X7 (X+3X) for x 1in the left-hand
side of (7.4) without altering its value. However XZ-(X+8X)X = X, and

(XZ-(X+3X))XX = xyX. So we get
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: P X (Z-—Xj _P[XXiXZ_(x+aX)(Z-X)]
(7.5) _ p%ig%Ti(z:%jj-i_P[XXXIXZ_(x+BX)(Z-X)]

-

Now muitiply the numerator and denominator of the left-hand side of (7.5)

e

by P[x(Z-X)], and treat the right-hand side similarly with

P[XZ"(X+3X)(Z-X)] as common multipliers. This gives

(7.6) Pl (z-x01 _ PEXKaXy_ (xaax) (£-X0

which can be written as

‘ Pix) Pz (xeaxy)
(7.7) Pixy) Pygx! 7

Taking Togarithms we obtain

(7.8) (18,0000 = ) = Alxy) = Wiy (yaax)) = Wezpy)

B

(Bz_ (xeox) Bz-ox)0X)

wﬁich by (4.8) reduces to

| (7.9) | B,Q(x) = alx) .
This proves that

(7.10) Qlx) e 1(8y)

when M(X} holds.

Next we deal with the converse. Suppose that (7.10) is true. Then
we can retrace the steps of the above argument from (7.10) to (7.7).
The right-hand side of (7.7) depends only upon the partial colouring of
¥43X, since the remaining sites of Z are all black. Hence it 1s a

function of x(XtaX) only, say i[x(X+aX)]. So (7.7) yields
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(7.10) PG = Al TP lxy)
Summing (7.711) over all x with y{X+aX} fixed, we get
(7.12) PLx(aX)] = ALx(X491) L, (05
Noting that xxax.= ¥3X, we obtain from {7.11) and (7.12)

(7.13) P{xX|xaX) _ _POXXIX)POeX) . PLx{X+aX)1
el PUxy XXX}~ PlxeR xy@XIP(xydX) — PLyy (X+0X) ]

= ADx(X+0%)] = %%&y - PR
- H
Hence
(7.14) © POxeX) = ubx(Z-X) IPDeX[x(Z-X)T
where
(7.15) | ulx{Z-X}1 =z£§i§:§i§?x)]

depends only upon x({(Z-X}. HNow sum (7.14) over all x which have the
fixed partial colouring y({Z-X), in which case the partial colouring

x3X is also fixed. We gel
(7.16) ' | = ulx(Z-X)1 »

since the conditional probabilities must add up to unity. Substitution
of (7.16) into (7.15) yields (7.1), as required. |

Having established that M(X) is equivalent to (7.10), the blacken-
ing algebra delivers the remaining goods automatically. Suppose that P

is locally Markovian. Then M(zi) holds for each 1 = 1,2,...,n.
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Consequently Q{y) e I(Bi) for all 4, and hence Q(x)} belongs to the
intersection I(BI)I(BZ)"‘I(Sn) = 1(8) Q_I(Bx) for any X by (4.40)-
and (4.34). Hence P is globally Markovian. Thus the global and Iobal
Markovian properties are equivalent, and hereaffér we need only say that
P s Markovian. In view of (4.40), P 1is Markovian if and only if
Q(x) e I{B); and hence, by (4.31), P is Markovian if and only if

Qix) £ J. This allows us to characterize P completely. P 1is Marko-

vian if and only if it can be written in the form

Soan Pix) = expldgh)]
where '

(7.18 36 = Sy ¢ TS ,
( ) S(X) (XZ} YEILX (XZ-Y)

S 1is an arbitrary function, and the sum is over all Tlight cliques rela-
tive to ¥ At first glance it may seem surprising that (7.17) will
yield unity when summed over all ¥X. However, this is an automatic
result of the form of Js(x). In fact Js(xz) = S(xz) oﬁ putting

X = Xy in (7.18); so (7.17) provides

(7.19) %%%yf- eXp[ngxs(xZ"")] :

Thus it is only the relative probabilities which are specified, and
the constant of proportionality must still be determined from (5.2).

" We can now interpret (7.19) in terms of Gibbs%an ensembles, as
follows. Given the graph Z, consider the family C of all cliques Y
in Z, together with the set A of all light colourings of Z (i.e.,
colourings x such that Z is Tight relative to x)}. For each clique

Y € C and each 1ight colouring i € A, there will correspond a light
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colouring AY of VY. We take any arbitrary function of Y and its
light colouring AY, and write S5(Y,AY) for this function. We call
S{Y,AY) the light~coloured potential function. Then (7.19) becomes

(7.20) ' §%§%7-= exp[Yé{XS(Y,xY)] .

e define a Gibbsian ensemble to be one whose probabilities can be ex-

pressed in the form (7.20) for some arbitrary light-coloured potential
function defined on all cliques and all light colourings thereof. Then,
. more or less trivial}y by definition, a Markov field on a graph is a
Gibbsian ensemble and vice versa. This is the gener§1ization of
Spitzer's result [2]. |

In [1] and [2] there was a good deal of unnecessary chatter about
Qhat happens when a Markov field in a region is conditional upon some
fixed boundary values on the boundary of the region; and in [2] there
was an unnecessary stipulation that the region should be connected.
However, results of this kind follow fmmediately froh (7.20) by calculat-

ing the appropriate conditional prdbabi1ity.. For any subset X of Z,

we get . :
' X+3X
P(xX[x3X) :
(7.21) - —%X—i?-77-= exp[ § S(Y,xY)]
P XXX Yo X Yely :
X+2X ,
where J  denotes summation over all Tight cliques in X+dX.
Yely . .

‘He have treated one particular colour, black, as the reference
colar. But the‘choice of this colour was arbitrary; and it is interesting
to note that we should have got the same result (with a suitably modified

function S) by using any other colour as a reference.
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Equation (7.20) ekpresges the Markovian probabilities in terms of
the potentials, We Ean also solve (7.20) fof the potentials in terms of
the probabilities. For 1e£ Y be_any clique of 1Z, and put x = AZ-Y
in (7.20). Ve get | '

) |
(7.22) | og—;&—‘)’— (E:YS(X,AX')

and from this we can extract the individual potentials S(X, AX) by the

method of 1nc]u51on and exclusion. Thus

(7.23) S =TT (1-8,)T1og P(x

zeY Z“Y)

8. Finite lattices

We obtain a finite Tattice by defining the graph Z in terms of
an arbitrary finite Abelian group G. _For physical interpretation, we
can regard the generators of G as vector displacements in a piece of
Euclidean space wrapped on a torus. By taking the or&er of each generator
large enough, and considering a suitable portion of the whole graph we
can obtain the appropriate results for any bounded region of ordinary
(non-toroidal) Eutfidean space: in this case we shall need to fix the
Markov field on the boundary of the region, and the appropriate version
of {7.21) will give us the results we need.

Let 99295459, be the e]emgnts of G. lwe identify them with
tha corresponding sites z];zz,..;,zn on Z. We take vy to be the
identity element of G (it is, of course, one of the gi). We write
9y for a given subset of distinct elements from G with the properties
(i1} v does ﬁot belong to 8y, (ii) g e 3y if and only if 9"1 £ 3Y,

(i11) 93y contains some set of generators of G. There are no other
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restrictions upon 9dy: for instance, there is no need for the elements
of 9y to be independent -- indeed condition (ii) exhibits a pair of

dependent elements. We write Y s¥gse e oYy
Next, with any element ‘g € G we associate a subset 3g defined by |

for the elements of Bdy.

(8.1) : og = {gyi: 12 1,2,....m}

We call any member of 2g a neighbour of' g. By econdition (i1} above,

an element . 94 of G will be a neighbour of an element gj if and only
if 9 is a neighbour of 955 - and, by condition (i) no element of G 1is
a neighbour of itself. WUe can now complete the structure of Z by speci-
fying which sites are neighbours of which: naturalTy enough, we éay that
zZ; and Zj are neighbours.in Z if and only if their corresPthing
 elements 95 and gj are neighbours in G, Row Tet g and z denote
corresﬁond&ng elements of G and Z, and let h be any member of G.

We write hz for the site in Z which corresponds to the element hg
“in G. Similarly, if V= {za,zb,...,zf} is an arbiérary subset of Z,
we write hY for the subset {hza,héb,...,hzf}. Thus multiplication in

G carries over directly into Z in the natural fashion; and we can,

for example, writé (8.1) in the Torm 9g = 3(gy) =.¢9y. Indeed, it is
easy to verify that elements of G distribute over all the set operations
defiﬁed in section 2: thus g{X+¥) = (gX) +(gq¥), g(Z-X-3X} = (gZ)}~- {gX}~

3(gX), and so on.

A finite lattice is, by definition, a graph Z defined in the fore~

going manner.

9. The stationarity condition

The stationarity condition is a further condition which may be imposed
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on a Markov field wﬁen the graph is a lattice. It requires that
(9.1) P{xz}xoz) = P(xgz|xgdz)

for all sites z e Z, all g e 3y, and all poss{ble colourings .
Since 8y generates G, we may replace 3y by G in this postulate

if we wish. We already know from section 7 that the quantities P(xz|xsz)
for all ze Z and all x uniquely determine a Markov field. So, if
they are invariant under the transformations provided by ge G, all
'probabi1ities assocfated with the Mérkov field will similarly be invariant.

In particutar, the potential functions S{Y,AY) defined fo% cliques and

tight colourings must be invariant, as (7.23) shows; that is to say .
(9.2) S(Y,AY) = S(g¥,rgY)

“for all Y e C, and all X € A. Thus we need only specify the potential
functions for cliques contained in 2z+3z for any particular z; and all
the remaining ones can be deduced from (9.2). Indeed not all these cliques
in z+9z will be needed, since some of them (certainly the one-site
cliques) wif] be transiated into others; and we need only one representative
of each basically different clique. This will become apparent when we

consider the examples in the next section.

10. Examples
The simplest case is the square Tattice. Each site has four neigh-

bours. There is just one basic type of 1-site ciique{ since all sites
are equivalent under operations of G. There are two types of 2-site
cliques, namely d vertical pair of neighbours and a horizontal pair of

neighbours,
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For the triangular lattice, there is just one 1l-site clique, Ulwee
2-site cliques (corresponding to the three divections in the Tattice), and
two 3-site cliques (corresponding.to triangles with orientations 4 and
vV respectively). |

The hexagonal lattice is the simplest kind of Tattice in which more
than one l-site clique appears: there are two different kinds of sites
according as the bonds to neighbours look Tike Y or A,

For a comprehensive discussion of latlLices which arise in physical

_applications, the reader may consult Tutton [5]. In general. the proba-

bility of a colouring will have the form

(10.1) PO/PLxg) = ez 0y5;) -

where 3 vuns over all types of distinct cliques (of all different sizes
on the lattice) and over all types of Tight colouring of that clique,
wheré sj is an arbitrary function of J representing the potential

function S(Y,AY) for the jzh-clique-colour combination, and where o,

J
is the number of such clique-colour combinations found on Z under ¥x.
When there are _tk different types of k-site cliques, the number of
different values of J will be Ektkvk when vt colours (ineluding

black) are available at each site,

Values of tk for some common lattices

|Type of lattice | | k=1 k=2 k=3 k=4

Square
Triangular (= square with one diagonal)

Hexagonal , _

Square with both diagonals

Simple cubic

Body-centred cubic
Face-centred cubic
Tetrahedral (diamond) §
Simple cubic in D dimensions é

— P e et e et PO e
T o O g | ds W W P
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