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1. Introduction

Advances in the technology of modern telecommunications networks have
led to considerable interest in schemes which can dynamically control the
routing of calls within a network. The aim of such schemes is to adjust
routing patterns within the network in accordance with varying and uncer-
tain offered traffics, to make better use of spare capacity, and to provide
extra flexibility and robustness to respond to failures or overloads. How-
ever, unless care is taken a dynamic routing strategy that appears to be
beneficial may under some circumstances be detrimental.

One of the simplest dynamic routing strategies is Random Alternative
Routing, which operates as follows. Every call type that can arrive at the
network has a fixed first choice route and a set of possible second choice
routes. If possible a call will be carried on its first choice route. If not, then
an alternative route is selected at random from the set of possible second
choice routes. The call is carried on this route if possible and otherwise it
is lost.

At first sight the existence of second choice routes appears beneficial,
as it gives each call more ways of being accepted. However if second choice
routes require more network resource (hold more circuits or possibly hold
circuits for longer) then the network performance, as measured for exam-
ple by its overall loss probability, may be worse than if a call has access
to just its first choice route. Further, Random Alternative Routing (and
several other dynamic routing schemes) can lead to instability and hystere-
sis: several modes of behaviour are possible, the initial conditions of the
network determining which is obtained. In this paper we use a combina-
tion of analytical, numerical and simulation approaches to investigate these
phenomena, in the simplest case of a symmetric fully connected network.

The possibility of bistable behaviour was first noted by Nakagome
and Mori (1973), using a simple analytical fixed point approximation for
the equilibrium behaviour of a network. Using a development of this ap-
proximation Krupp (1982) showed that a network’s performance could be
improved by using a simple priority technique, known as trunk reservation.
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Akinpelu (1984) and Ackerley (1987) have presented simulation results il-
lustrating hysteresis, and Schwartz (1987) gives a review of this area. In
this paper we extend this earlier work by establishing limit theorems for
sequences of approximating processes and by obtaining systems of integral
equations to describe transient behaviour. We confirm the power of these
analytical approaches by comparing numerical solutions to the systems of
integral equations with simulated sample paths.

The organisation of this paper is as follows. In Sections 2 and 3 we
define formally the network we consider, and obtain a functional law of
large numbers for a sequence of approximating processes, using results from
Whitt (1985) and Ethier and Kurtz (1986). Fixed point approximations of
the form considered by Nakagome and Mori (1973) and, amongst others,
Krupp (1982) and Kelly (1986), emerge naturally as fixed points of the
integral equations we obtain. Section 4 illustrates the integral equations
with a simple example. In Section 5 we deal with systems involving mul-
tiple alternative routes and trunk reservation. In Section 6 we introduce
a one-dimensional diffusion approximation and use the approximation to
elucidate bistable and tunnelling behaviour. Nelson (1986) describes how
diffusions can be used to illuminate various types of catastrophic behaviour
in performance models of computer systems, and our approximation can
be viewed within his framework as an example of a stochastic cusp catas-
trophe.

Although in this paper we consider just a symmetric fully connected
network operating under simple random routing schemes, many of the in-
sights carry over to more general network structures and routing strategies.
For example, the insights into trunk reservation obtained from the fixed
point approximation of Section 5 were important in the development of
Dynamic Alternative Routing (Stacey and Songhurst 1987, Gibbens 1988,
Gibbens, Kelly and Key 1988), the dynamic routing strategy currently be-
ing implemented by British Telecom in the UK main digital trunk network.

2. A Simple Model

The symmetric fully connected network that we wish to study is as follows.
There are a total of N nodes and every pair of nodes is connected by a
link of capacity C, giving a total of K = N(N − 1)/2 links. For all α 6= β,
calls between node α and node β arrive as a Poisson process of rate ν, all
arrival streams being independent. If there is free capacity on the direct
link between α and β then the call is routed along this path. If not, we
try to route the call along two links via a randomly chosen third node
γ 6= α, β. If there is free capacity on both these links then the call is
routed. Otherwise the call is lost. A call that has been successfully routed
holds one circuit from each link on its path for the holding period of the
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call. The holding period is independent of earlier arrival times and holding
periods, and is exponentially distributed with unit mean.

The network described above can be treated as a finite state space
Markov process and we can derive equations for the equilibrium distri-
bution. However the full state space is rather complicated, involving the
graph structure of the network. It is difficult to analyse the process, even
in equilibrium.

So we will consider a simplified model for this network, defined as
follows. There areK links, each link comprisingC circuits. Calls requesting
link k as their first choice arrive as a Poisson process of rate ν. If a call is
blocked on its first choice link it tries two other links chosen at random from
the K − 1 remaining links, with each pair of links having equal probability
of being chosen. If neither of the links in the chosen pair is full the call is set
up along these two links. Otherwise the call is lost. When a circuit is used
by a call, the circuit is held for an exponential time, mean 1. All circuit
holding times are independent of one another and of earlier arrival times.
In particular, a call that requires two links holds each link independently
for an exponential length of time, and so these circuits will become free
at different times. Thus the simplified model differs in two ways from the
original network: circuit holding times are independent, and the graph
structure relationship between links has been lost.

The simplified model is an approximation that we would expect to be
good for large K. The approximation is much simpler to analyse than the
original and can be described by the following Markov process. Let nK

j (t)
be the number of links with j circuits in use at time t, j = 0, 1, . . . , C. Let

xK
j (t) =

nK
j (t)

K
, xK(t) = (xK

j (t))j . (1)

So
∑C

j=0
xK

j (t) = 1 for all t. For i 6= j, 0 ≤ i, j ≤ C let Tij be an operator

defined on xK given by

Tijx
K = xK +K−1(ej − ei)

where ei is the unit vector in the ith direction. Then xK is a Markov
process with transition rates

xK → Tj,j+1x
K at rate νxK

j K,
j = 0, 1, . . . , C − 1

xK → Tj,j−1x
K at rate jxK

j K,

j = 1, 2, . . . , C

xK → Ti,i+1Tj,j+1x
K at rate 2

(

K

K − 1

)

νKxK
C x

K
i x

K
j ,

i > j, i, j = 0, 1, . . . , C − 1
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xK → T 2
j,j+1x

K at rate

(

K

K − 1

)

νKxK
C x

K
j

(

xK
j −

1

K

)

,

j = 0, 1, . . . , C − 1.

With this process we can prove results that we also expect to hold for the
original fully connected network.

3. Weak Convergence

We now prove a functional law of large numbers for the xK process defined
in Section 2. Note that xK lies in the simplex

∆ = {xK ∈ R
C+1
+ :

C
∑

i=0

xK
i = 1 }.

Let ⇒ denote convergence in distribution as K → ∞ of random elements in
the state space ∆ or the space of all sample pathsD∆[0,∞); for background
see Billingsley 1968, Lindvall 1973, Whitt 1980, Ethier and Kurtz 1986.

Lemma 1. The sequence xK is relatively compact in D∆[0,∞) and the

limit of any convergent subsequence has continuous sample paths.

Proof: This result follows from a minor modification of Lemma 1 of Whitt
(1985, p. 1843). �

Theorem 2. If xK(0) ⇒ x(0) then xK(·) ⇒ x(·) where x(·) is the unique

solution to the equations

x0(t) = x0(0) +

∫ t

0

{x1(u) − (ν + λ(u))x0(u)} du (2)

xj(t) = xj(0) +

∫ t

0

{(ν + λ(u))xj−1(u) − (ν + λ(u) + j)xj(u)

+ (j + 1)xj+1(u)} du j 6= 0, C (3)

xC(t) = xC(0) +

∫ t

0

{(ν + λ(u))xC−1(u) − CxC(u)} du (4)

and

λ(t) = 2νxC(t)(1 − xC(t)). (5)

Proof: Let

v(xK(t)) = lim
h↓0

E

[

xK(t+ h) − xK(t)

h

∣

∣

∣

∣

xK(t)

]

DK(t) =

∫ t

0

v(xK(u)) du

MK(t) = xK(t) − xK(0) −DK(t).
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Fig. 1. Instability of blocking probability:
(i) with one retry (ii) with five retries.

Then MK is an {Fx
K

t }–martingale. It is now easy to check the condi-
tions in Ethier and Kurtz (1986, Theorem 1.4, p. 339). Hence, since
[MK

i ,MK
j ](t) → 0 as K → ∞, we have that MK ⇒ 0.

Now along any convergent subsequence of {xK} we can use the con-
tinuous mapping theorem (see, for example, Whitt 1980) to show that
MK ⇒ M for some M. But by the above result we know that M = 0 and
thus we have (2)–(5) satisfied by the limit of a convergent subsequence. But
the result now follows since (2)–(5) have a unique solution. (See Arnold
1973, pp. 50, 57.) �

From equations (2)–(5)

j
∑

i=0

xi(t) =

j
∑

i=0

xi(0) +

∫ t

0

{

(j + 1)xj+1(u) − (ν + λ(u))xj(u)
}

du

j = 0, 1, . . . , C − 1

Thus x = (x0, x1, . . . , xC) ∈ ∆ is a fixed point of the system of equations
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(2)–(5) if and only if

(j + 1)xj+1 = (ν + λ)xj j = 0, 1, . . . , C − 1

where
λ = 2νxC(1 − xC).

A fixed point x is thus of the form

xj =
ξj

j!

( C
∑

i=0

ξi

i!

)−1

j = 0, 1, . . . , C

where ξ solves
ξ = ν + 2νE(ξ, C) (1 − E(ξ, C)) . (6)

Here

E(ξ, C) =
ξC

C!

( C
∑

i=0

ξi

i!

)−1

(7)

is Erlang’s formula for the loss probability of a single link offered Poisson
traffic at rate ξ. The equation (6) for ξ is equivalent to the equation

B = E
(

ν + 2νB(1 −B), C
)

(8)

for B, under the transformation B = E(ξ, C). The parameter B corre-
sponds to the link blocking probability, xC . Equation (8) is usually derived
from an approximation that links block independently: see, for example,
Kelly 1986. Under such an approximation the probability that a call over-
flows is B, and the probability it can be accepted at the other link of a
two-link path is 1−B; the arrival rate of overflowing calls at a link is then
2νB(1 − B). The locus of points satisfying equation (8) is illustrated in
Figure 1(i) for C = 120, 1000 and infinity. Observe the possibility of multi-
ple solutions for B, for C large enough and for a narrow range of the ratio
ν/C. The upper and lower solutions correspond to stable fixed points for
the system of equations (2)–(5), while the middle solution corresponds to
an unstable fixed point. We discuss the possibility of multiple fixed points
further in Section 6.

4. An Illustration

The integral equations of Theorem 2 apply to the limit process obtained
from the simplified model. It is natural to ask how well they model the
behaviour of the fully connected network. Figure 2 shows that the model
is in fact very good. If x =

∑C

i=0
ixi, then Figure 2 shows the projection

of the path given by the integral equation for several initial points. Also
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Fig. 2. Trajectories for the limit process x(·).

shown is the sample path for a fully connected network starting with the
same initial configuration as one of the points. The parameters used to
obtain these simulation results were ν = 115, C = 120 and the number of
nodes N = 11.

Let

Ξ =







x : xi =
ξi

i!

( C
∑

j=0

ξj

j!

)−1

; ξ ∈ (0,∞)







,

a one-dimensional submanifold of the space ∆. The submanifold Ξ is a
natural space to consider: if λ(t) is held fixed at a value λ then the solution
to the integral equations (2)–(4) will move exponentially quickly to the
submanifold Ξ, to the point parametrised by ξ = ν + λ. The submanifold
Ξ is not closed under the integral equations (2)–(5), but notice the way in
which trajectories head rapidly towards the projection of Ξ (shown as a
dashed curve), and more slowly towards the fixed point. We exploit this
observation later in Section 6.

The two dimensions shown in Figure 2 are natural choices since xC

controls the rates of the process and x measures the total network utiliza-
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tion. Calculations of the trajectories for various different initial vectors x

with the same projection have given very similar trajectories supporting
the belief that this projection is natural and sufficient to summarise the
process x(t). The overall network loss probability is given by

L = xC [1 − (1 − xC)2]

and for the example simulated this value is 0.12 . If alternative routing is
not allowed, so that a call blocked on its direct link is lost, then the network
loss probability is given by Erlang’s formula (7) to be 0.05. Observe that
allowing a blocked call to attempt a two-link alternative actually increases

the loss probability of the network.

5. Trunk Reservation and Multiple Alternatives

We have seen that allowing a blocked call to attempt a two-link alternative
route may increase the loss probability of a network, and we might expect
this effect to become even more pronounced if a blocked call can attempt
a sequence of alternative routes. Observe that if a link accepts an alter-
natively routed call it may later have to block a directly routed call which
will then attempt to find two circuits elsewhere in the network. A natural
response is to allow a link to reject alternatively routed calls if the link
occupancy is above a certain level. Suppose then that a call attempting a
two-link alternative route is only accepted if on each of the two links the
number of circuits occupied is less than C − s. This method of giving pri-
ority at a link is known as trunk reservation, and the constant s is known
as the trunk reservation parameter for the link.

The above model for a fully connected network of N nodes is difficult
to analyse, and so instead we suppose there are K = N(N−1)/2 links, and
that a call blocked on its first choice link tries two other links chosen at
random from amongst the K − 1 remaining links. If the number of circuits
occupied on each of the two links is less than C − s then the call is routed
via that pair of links. If not the call can try another pair of links chosen
at random from amongst the K − 3 remaining links. On each link a trunk
reservation parameter of s acts against alternatively routed calls, and a call
is lost after it has tried r pairs. As in Section 2 we suppose that all circuit
holding times are independent, even the holding times of two circuits used
by an alternatively routed call. Let nK

j (t) be the number of links with j

circuits in use at time t, and define xK(t) by (1). Then the following result
can be established by the methods used to prove Theorem 2.

Theorem 3. If xK(0) ⇒ x(0) in ∆ then xK(·) ⇒ x(·) in D∆[0,∞) where

x(·) is the unique solution to the equations

x0(t) = x0(0) +

∫ t

0

{x1(u) − [ν + λ(u)]x0(u)} du (9)
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xj(t) = xj(0) +

∫ t

0

{[ν + λ(u)](xj−1(u) − xj(u))

+ (j + 1)xj+1(u) − jxj(u)} du (10)

j = 1, 2, . . . , C − s− 1

xC−s(t) = xC−s(0) +

∫ t

0

{[ν + λ(u)](xC−s−1(u) − xC−s(u))

+ (C − s− 1)xC−s−1(u) − (C − s)xC−s(u)} du (11)

xj(t) = xj(0) +

∫ t

0

{ν(xj−1(u) − xj(u))

+ (j + 1)xj+1(u) − jxj(u)} du (12)

j = C − s+ 1, . . . , C − 1

xC(t) = xC(0) +

∫ t

0

{νxC−1(u) − CxC(u)} du (13)

and

λ(t) = 2νxC(t)

(C−s−1
∑

m=0

xm(t)

)−1
{

1 −

[

1 −

(C−s−1
∑

m=0

xm(t)

)2
]r}

. (14)

A fixed point x = (x0, x1, . . . , xC) ∈ ∆ of the system of equations
(9)–(14) satisfies

(j + 1)xj+1 = (ν + λ)xj j = 0, 1, . . . , C − s− 1 (15)

(j + 1)xj+1 = νxj j = C − s, . . . , C − 1 (16)

where

λ = 2νB1(1 −B2)
−1

{

1 −
[

1 − (1 −B2)
2
]r

}

(17)

B1 = xC , B2 =
C

∑

i=C−s

xi. (18)

The network loss probability corresponding to a solution to the fixed point
equations (15)–(18) is

L = B1

[

1 − (1 −B2)
2
]r
.

We can interpret this form as follows: a call is lost if it is blocked on its
first choice route, which happens with probability B1, and if it is then
blocked on each of r alternatives. It is blocked on an alternative route with
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Fig. 3. Trajectories for a network with two stable fixed points.

probability 1 − (1 − B2)
2, where B2 is the probability a link is occupied

above its trunk reservation parameter.

We illustrate the integral equations of Theorem 3 in Figure 3 for a
network in which N = 11, C = 120, ν = 100, r = 5 and s = 0. For this
network B1 = B2 = B, say, and Figure 1(ii) shows the locus of points
satisfying relations (15)–(18). The chosen values of ν and C lead to two
stable fixed points; these correspond to the points marked by crosses in
Figure 3.

6. A One-Dimensional Approximation

In Section 3 we developed a functional law of large numbers for the simpli-
fied model, and in Section 4 we saw that the resulting integral equations can
provide a reasonable approximation for the exact network. In Section 3 we
observed that there may be multiple fixed points for the integral equations.
Of course a finite network corresponds to an irreducible Markov process,
with a unique equilibrium distribution. However the unique distribution
may be multi-modal, and the time taken for the process to move from one
mode to another may be long. How can we investigate this analytically?
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One approach would be to use a diffusion approximation to the simplified
Markov process to obtain results about the process of interest. However
we are dealing with a C-dimensional process where C may be quite large,
and it is difficult to obtain useful analytical results and computationally
expensive to obtain numerical results. So instead we will reduce the process
to one important dimension, as follows.

Consider a fully connected network with r retries and no trunk reserva-
tion. Let n(t) ∈ { 0, 1, . . . , CK }. We will use n(t) to represent the number
of circuits in use at time t. Let n(·) have transition rates

n→ n+ 1 at rate νK(1 −Bn)

n→ n+ 2 at rate νKBn

{

1 −
(

1 − (1 − Bn)2
)r

}

n→ n− 1 at rate n

where Bn solves
Bn = E(ρ, C), n = ρ(1 −Bn).

Thus n(·) has the same transition rates as the total number of circuits in use
in the earlier model of Section 2 provided that the number of links full in the
earlier model is KBn. The process n(·) should thus approximate the earlier
model close to the one-dimensional submanifold Ξ. (We note that a more
refined model would take into account that two circuits may sometimes be
freed simultaneously.) Next approximate n(·)/CK by a diffusion Z(·) on
the interval [0, 1] with drift µ(z) and infinitesimal variance σ2(z) given by

µ(z) =
ν

C

[

(1 −Bz) + 2Bz

{

1 − (1 − (1 −Bz)
2)r

}]

− z

σ2(z) =
ν

C2K

[

(1 −Bz) + 4Bz

{

1 − (1 − (1 −Bz)
2)r

}]

+
z

CK

where
zC = ρ(1 − E(ρ, C))

and with reflecting barriers at 0 and 1. Thus µ(z) and σ2(z) are the natural
extensions of the drift and infinitesimal variance of the discrete process
n(·)/CK to [0, 1]. We can now use the powerful results for one-dimensional
diffusions to gain insight into the network’s behaviour.

As an example consider the equilibrium density ψ(z) for the diffusion
Z(·). This is given by

ψ(z) = A
exp

(∫ z

0
2µ(y)/σ2(y) dy

)

σ2(z)

for some constant A (cf. Karlin and Taylor 1981, Kent 1978, Nelson 1986).
Figure 4(i)–(iv) shows this equilibrium density for a network with param-
eters N = 11, C = 120, r = 5 and s = 0 as ν varies. Observe that the high
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Fig. 4. Equilibrium density for the diffusion Z(·).

blocking state is a lot less stable than the low blocking state for smaller
values of ν but becomes more stable as ν increases until finally there is only
one stable point. In the region of ν/C for which there are two stable fixed
points, illustrated in Figure 1(ii), we expect to see tunnelling. Figure 5
illustrates a sample path for the same network with ν = 100.5 where this
tunnelling has occurred. We see that the sample path heads rapidly to the
dashed curve; it then moves towards the upper fixed point, about which
it wanders for a period before tunnelling to the region of the lower fixed
point.

A natural question that arises is how stable are the two fixed points.
That is, how long do we expect to wait until we tunnel from one to the
other? Again we can use the one-dimensional approximation.

Let T (x; y) be the first time that the diffusion hits y given that it
starts at x. Let f(x; y) = E [T (x; y)]. Then (Karlin and Taylor 1981,
p. 193) f(x; y) satisfies

1

2
σ2(x)

∂2f

∂x2
+ µ(x)

∂f

∂x
= −1



Bistability in Communication Networks 125

Fig. 5. Tunnelling between stable fixed points.

with boundary conditions

f(y; y) = 0

∂f(0; y)

∂x
= 0 x > y

∂f(1; y)

∂x
= 0 y > x.

So if x1 < x2 < x3 are the three fixed points then we can assess
stability from f(x1;x2) and f(x3;x2).

Remark. For r = 1 we find that for some A1, A2, A3, A4

eA1CK

CK
≤ f(x1;x2) ≤

eA2CK

CK
(19)

eA3K

CK
≤ f(x3;x2) ≤

eA4K

CK
(20)

as C,K → ∞.
Equations (19) and (20) show that the low blocking state becomes

more stable very rapidly as C and K increase. However the high blocking



126 Gibbens, Hunt, and Kelly

state becomes stable rapidly with K but more unstable as C increases.
This is as one would expect. In the high blocking state the number of
free circuits is O(1) as C becomes large and in the low blocking state it is
O(C − ν). To tunnel from high to low the number of free circuits needs
to be unusually large for a time, an O(1) effect, since then more single
link calls are routed and the network falls into the low blocking state. To
tunnel from low to high blocking the number of free circuits must change
by C − ν, an O(C) effect. This accounts for the exponential terms in the
expressions. The 1/C part comes from the fact that the transition rates
increase linearly in C and hence the time taken between events behaves
like 1/C.

The corresponding model with trunk reservation is a two-dimensional
process (xh, xl), where xh and xl are the amounts of, respectively, high and
low priority traffic. We do not develop this here: trunk reservation removes
the bistability that has been a focus of this paper.

Note Added in Proof: Marbukh (1983), starting from an independent block-
ing assumption, has derived differential equations corresponding to the in-
tegral equations of this paper.
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