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Abstract

Critical points for the percolation process, for statistical-mechanical models
of ferromagnets, and for self-avoiding and self-interacting walks are briefly
discussed. The construction of expansions for such critical points in powers
of 1/d, where d is the dimensionality of the underlying hypercubic lattices,
is reviewed. Corresponding expansions for the transition points, Tc(d), of
Ising model spin glasses with arbitrary symmetric distributions of couplings
are derived to order 1/d3; for the ±J model results correct to fifth order
are obtained. Numerical results are presented for d = 3, 4, . . . , 8; the lower
critical dimensionality appears to be about d< = 2.5.

1. Introduction: Walks and Ferromagnets

Hammersley’s pioneering work in formulating and analysing the bond perco-

lation problem on a lattice (Broadbent and Hammersley 1957; Hammersley
1957a,b) laid a foundation for the systematic study of the statistics and
statistical physics of random media. Our main aim here is to report some
recent results concerning phase transitions in random media, specifically,
for spin glasses; but, to set the topic in context, we first review the back-
ground in a little detail.

In the simplest percolation problem the nearest-neighbour bonds of a
uniform space lattice, L, are occupied (or present) with probability p and
vacant (or absent) with probability 1 − p. We will mainly focus on the
d-dimensional hypercubic lattices Ld (≡ Z

d) of coordination number

q ≡ σ + 1 = 2d. (1.1)

Occupied bonds which are connected via common sites form clusters; above
a percolation threshold, pc(L), an infinite cluster of connected bonds stre-
tches across the lattice with probability one.
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A relation between percolation and other statistical problems on lat-
tices was established by Hammersley already in his earliest studies, via the
general lower bound

pc(L) ≥ 1/µ(L) (1.2)

in which µ(L), the self-avoiding walk limit, was also first defined precisely
by Hammersley. Specifically, if cm(L) is the number of distinct self-avoiding

(i.e. nonself-intersecting) random walks of m nearest-neighbour steps start-
ing at the origin of L, then

µ(L) = lim
m→∞

|cm(L)|1/m, (1.3)

where the existence of the limit follows by a subadditive argument (Ham-
mersley and Morton 1954; Hammersley 1957a). Self-avoiding walks on
lattices form natural, somewhat crude but nonetheless informative models
of polymer molecules. In particular, the self-avoidance requirement repre-
sents the crucial excluded volume constraint which is the main theoretical
obstacle to be faced in studying the statistical mechanics of polymeric sys-
tems.

Subsequently, Fisher and Sykes (1959) pointed out that there was a
close parallel between the behavior of self-avoiding walks on a lattice L and
the statistical mechanics of an Ising model of a ferromagnet on the same
lattice1. An Ising ferromagnet is specified by its Hamiltonian

H = −J
∑

(i,j)

sisj , (1.4)

in which J > 0 represents the strength of the coupling between the spin
variables, si, sj , . . . at lattice sites i and j while the sum runs over all
nearest-neighbour pairs of spins, i.e., over the lattice bonds. In the stan-
dard Ising model each spin takes just two values, si = ±1 (all i). The
basic control parameter is the temperature, T , which enters only in the
dimensionless combination

K = J/kBT, (1.5)

where kB is Boltzmann’s constant. The spin-spin correlation functions are
defined, as usual, by the thermodynamic expectation values

〈sisk〉 = Trs{siskexp(−H/kBT )}/Trs{exp(−H/kBT )} (1.6)

1See also Fisher 1966.
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in which the trace operation here corresponds to summing over all the
values {si = ±1}. In terms of the correlation functions the (reduced)
susceptibility is given by

χ(T ) =
∑

k

〈s0sk〉, (1.7)

the sum running over all sites k in L.
An Ising ferromagnet in d ≥ 2 dimensions displays a phase transition

at a critical point, Tc(L). Above Tc the correlation functions decay to zero
exponentially fast with rik, the distance between sites, and the sum in
(1.7) is absolutely convergent. As T → Tc+, however, the susceptibility,
χ(T ), diverges strongly to ∞. Below Tc the system displays spontaneous
magnetization and long-range order — the correlations do not decay.

An analogy with self-avoiding walks is obtained by considering the
generating function

C(z;L) =
∞
∑

m=0

cm(L)zm. (1.8)

One finds that C(z;L) is similar in many ways to χ; in particular, C(z)
diverges strongly as z → zc− where the critical point is simply

zc(L) = 1/µ(L). (1.9)

More concretely one can establish the bound

χ(T ;L) ≤ C(tanh K;L); (1.10)

see Fisher (1967). From this one immediately obtains a bound for the
critical point analogous to (1.2), namely,

tanh(J/kBTc) ≥ 1/µ(L) (1.11)

(Fisher and Sykes 1959; Fisher 1967).
Ising models have been generalized in various ways important for the

study of critical phenomena. In the first instance one has rigid or fixed-

length n-vector models in which the simple Ising spins, si, are replaced by
n-component vectors, −→si , of magnitude which is most conveniently taken
as |−→si | =

√
n (Stanley 1968, 1969). The coupling term in (1.4) is replaced

by −→si ·−→sj and the trace operation in (1.6) becomes a product of integrations
over the orientations of each −→si .

A further generalization in this direction, crucial for renormalization
group ǫ-expansion theory (Wilson and Fisher 1972), is to regard the spins,
−→si , as continuously variable in magnitude. In this continuous or soft spin
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n-vector model the trace operation becomes a product of integrals of the
form

∫ ∞

−∞

ds
(1)
i · · ·

∫ ∞

−∞

ds
(n)
i e−w(s2

i
), (1.12)

in which the spin weighting function, e−w(s2), decays rapidly as s2 → ∞;
the form w(s2) = 1

2s2 + us4 with u > 0 is often considered.
Now it transpires, as first proposed by de Gennes (1972), that the

connection between self-avoiding walks and magnetic models is much closer
than originally suspected. Indeed, if one formally takes the zero-component
limit, n → 0, the susceptibility χn(t;L) for the rigid spin n-vector model
becomes identical to the self-avoiding walk generating function, C(z;L),
with z ∝ K. (See also Bowers and McKerrell 1973; Jasnow and Fisher
1976.)

If one studies the limit n → 0 for the continuous spin models with
weighting factor e−w(s2), one obtains self-interacting random walks: self-
intersections are now allowed but each site of the lattice which is visited
r (> 0) times by the walk carries a Boltzmann factor or statistical weight
given by

fr =
I(2r)

(r − 1)! I(2)

(

e0

2I(2)

)r−1

, (1.13)

in which

I(l) =

∫ ∞

0

e−w(s2)sl−1ds, (1.14)

while e0 = exp[−w(0)]. (Gerber and Fisher 1975; Jasnow and Fisher 1976.)
Note that f1 ≡ 1 always holds. When e0 = 0, which is the case for rigid
spins, one has fr = 0 for all r ≥ 2 so that the standard self-avoiding walk
is recaptured.

Finally, we remark that the limits n → ∞ and n → −2 also have a
special significance in that they correspond to exactly soluble models: this
point is expanded in the next section.

Now all the model ferromagnets discussed above pertain, like the
self-avoiding walks, to the spatially homogeneous, uniform, nonrandom
medium. Considerable interest centers, however, on the study of phase
transitions in random media. Following the example of the bond percola-
tion problem, the simplest models to consider are random-bond Ising models

in which, in place of (1.4), the Hamiltonian is

H = −
∑

(i,j)

Jijsisj , (1.15)

where the interactions, Jij , are independent, identically distributed random
variables drawn from a specified distribution with a well defined mean and
variance,

J̄ ≡ [Jij ]J and △J2 ≡ [(Jij − J̄)2]J . (1.16)
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Here and below, [·]J denotes an expectation over the distribution of cou-
pling constants. The simplest distribution is that of the so called ±J Ising
model in which each bond takes the value −J with probability p and +J
(> 0) with probability 1 − p. A Gaussian distribution of couplings is also
frequently considered.

Such random Ising models have a long history. If the mean, J̄ , is
positive and the width, △J , of the distribution is relatively small, one
obtains a disorded or impure ferromagnet. The critical temperature, Tc,
depends on the distribution of the couplings but the susceptibility still
diverges strongly as T → Tc+ and spontaneous magnetization arises below
Tc, as it does for the uniform system. (However, the values of the critical
exponents, γ, β, etc., describing the nature of the singularities at the critical
point will, in general, change.)

On the other hand, if J̄ is small enough relative to △J , ferromagnetism
is completely suppressed. The resulting, highly disordered system repre-
sents a spin glass. Real systems of this sort, made, for example, by alloying
ferromagnetic metals with non-magnetic metals, show freezing phenomena
into disordered states reminiscent of the behavior of ordinary glasses. A
central question is whether or not this freezing behavior in a spin glass re-
flects the presence of a true, equilibrium phase transition of some sort: see
the reviews by Binder and Young (1986) and Fisher, Grinstein and Khu-
rana (1988). For this purpose it probably suffices to focus, as we will, on
a symmetric spin glass for which J̄ (along with all other odd moments of
the coupling distribution) vanishes identically; the only parameter is then
the width, △J , or the reduced width, △J/kBT .

If there is a transition to a low-temperature spin-glass state — as is
now generally believed for systems of dimensionality d = 3 or greater —
many further questions arise. An obvious issue is the value of the transition
temperature Tc(L); we will address this specifically in Section 4 et seq.

2. Critical Points for Large Dimensionality

Obtaining explicit expressions for critical points — percolation thresholds,
self-avoiding walk limits, or transition temperatures for Ising models —
is, in general, a hard task. Exact results are available only in special
cases. Thus for the (d = 2)-dimensional square lattice the bond percolation
threshold is pc = 1

2 (Harris 1960, Kesten 1980) and the standard Ising

model critical point is given by tanh(J/kBTc) =
√

2 − 1 (Onsager 1944).
For no other hypercubic lattices are the precise answers known.

For infinite Cayley trees of uniform coordination number q, or Bethe
lattices (Domb 1960a), more detailed analytic progress can be made. The
branching ratio on such pseudo-lattice structures is σ = q − 1 and critical
points are invariably closely related to σ. For example, for percolation on



92 Fisher and Singh

a Bethe lattice one has pc = 1/σ (Fisher and Essam 1961). Self-avoiding
walks are obviously described by µ = σ while for Ising models one finds

tanh(J/kBTc) = 1/σ (2.1)

(Domb 1960a). Note that the inequalities (1.2) and (1.11) became equalities
in these cases. Indeed, the departures from these simple results which are
found for real lattices are directly related to the existence of closed self-
avoiding paths or cycles.

This last assertion can be seen in more quantitative terms in the for-
mal expansions for critical points in inverse powers in the dimensionality,
d, constructed by Fisher and Gaunt (1964) for the Ising model and self-
avoiding walk problem on hypercubical lattices, Ld. They obtained

T
(d)
c

T 0
c

= 1 − 1

q
− 1 1

3

1

q2
− 4 1

3

1

q3
− 21 34

45

1

q4
− 133 14

15

1

q5
− · · · , (2.2)

with T 0
c = qJ/kB and, as before, q = 2d = σ + 1, and

µ(d)

q
= 1 − 1

q
− 1

q2
− 3

q3
− 16

q4
− 102

q5
− · · · . (2.3)

In terms of σ this last result simplifies to

µ(d) = σ

(

1 − 1

σ2
− 2

σ3
− 11

σ4
− 62

σ5
− · · ·

)

, (2.4)

which shows that the corrections to the Bethe lattice value for µ are only
of order σ−2 ∼ d−2; the same is true for the Ising model critical points.
The detailed analysis sketched later shows that this correction reflects the
fact that through each site on a hypercubic lattice pass precisely 2d(d− 1)
distinct squares constructed of nearest-neighbour bonds (Fisher and Gaunt
1964), as is readily checked.

The question of the convergence of these 1/d expansions will be ad-
dressed below. It is worth noting here, however, that the first three terms
on the righthand sides of (2.2) and (2.3) provide rigorous upper bounds on
Tc(d) and µ(d) correct to order 1/d3 when d → ∞; see Fisher (1967).

The Ising model result (2.2) was extended by Gerber and Fisher (1974)
to the fixed-length n-vector model yielding

Tc(n, d)

T 0
c

= 1 − 1

q
− 1

q2

(

1 +
n

n + 2

)

− 1

q3

(

3 +
4n

n + 2

)

− 1

q4

(

16 +
(21n + 32)n

(n + 2)2
− 2n2

(n + 2)(n + 4)

)

− 1

q5

(

102 +
(129n2 + 422n + 340)n

(n + 2)3
− 16n2

(n + 2)(n + 4)

)

− · · · . (2.5)
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For n = 1, which corresponds to the simple Ising case, this reduces correctly
to (2.2). In addition, on setting n = 0, it evidently reproduces the self-
avoiding walk result (2.3)!

Another limit is also of interest here: specifically one may take n → ∞
to obtain

Tc(∞, d)

T 0
c

= 1 − 1

q
− 2

q2
− 7

q3
− 35

q4
− 215

q5
− · · · . (2.6)

Now, as first demonstrated by Stanley (1968b), the limit n → ∞ in the
n-vector model yields the spherical model devised by Berlin and Kac (see
Joyce 1972). This model is exactly soluble in a wide variety of cases. For
hypercubic lattices, the critical points, Tc(d), are given by d-fold integrals
over the basic lattice generating function which can be reduced to a sin-
gle integral involving the dimensionality, d, only through a factor [I0(x)]d,
where I0(x) is the Bessel function of zero order and pure-imaginary argu-
ment. Using this fact, Gerber and Fisher (1974) showed that Tc(d) extends
naturally into a function of d which is analytic on or near the real axis for
2 < d < ∞. Furthermore, the inverse dimensionality expansion (2.6) can
be checked (and extended indefinitely). The analysis also establishes that
the 1/d expansion is (for n = ∞) asymptotic rather than convergent and
suggests that truncation after the term of order 1/dl⋆ with l⋆ ≃ 1.62d is
optimal numerically2.

The analytic nature of Tc(n, d) and the asymptotic character of the 1/d
expansion have not been established for general n but it seems likely that
both are, in fact, true. Certainly the expansion produces good numerical
results even down to d = 3 and for n = 0 and 1 (see Gerber and Fisher
1974).

The dimensionality expansion can also be carried through for the gen-
eral, continuous-spin n-vector model (Gerber and Fisher 1975). The expan-
sion coefficients now depend on the reduced noninteracting-spin moments

M2k(n) = m2k(n)/mk
2(n) ≡ 〈|−→s |2k〉0/〈|−→s |2〉k0 , (2.7)

defined in terms of the spin-weighting function via

m2k(n) =

∫ ∞

0

s2k+n−1e−w(s2)ds

/
∫ ∞

0

sn−1e−w(s2)ds. (2.8)

2Abe (1976) has proposed a modification of the 1/d expansion which is actually conver-

gent in the spherical model limit.
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To order 1/d2 the calculations yield

Tc(n, d)

T 0
c (n)

= 1 − 1

q

[

1 − 1
2n(M4 − 1)

]

− 1

q2

[

2
n + 1

n + 2
− 1

2

n2

n + 2
(M2

4 − 1) − 1
8n2(M6 − 2M2

4 + M4)

]

− · · · , with T 0
c (n) = qJm2(n)/kB. (2.9)

The term of order 1/d3 was also found by Gerber and Fisher (1975) but
is not quoted here because of its length. It is interesting to note that the
moments M2k, of the spin-weighting factor enters for the first time only in
order 1/dk−1.

Yet another exactly soluble magnetic model is now accessible, namely,
the so called Gaussian model characterized by the spin weighting function
w(s2) = w0s

2. This model was originally studied by Kac and Berlin in
connection with the spherical model (Joyce 1972). The spin moments for
the Gaussian model are

M2k(n) = (n + 2)(n + 4) . . . (n + 2k − 2)/nk−1, (2.10)

for k ≥ 2. On substituting this form into the terms of order q−1, q−2, and
q−3 in (2.9) one finds that all the coefficients vanish identically! This is, in
fact, in agreement with the exact Gaussian model result Tc(n, d) = T 0

c (n);
clearly the series converges absolutely in this special case!

It has, furthermore, been demonstrated that if the n-vector model
is continued to n = −2, the Gaussian model is again recaptured (Balian
and Toulouse 1973; Fisher 1973) irrespective of the form of w(s2). This
conclusion, which is contingent on w(s2) remaining bounded as s2 → 0, can
also be checked in (2.9) by analytically continuing the integrals in (2.8) to
n < 0. One finds M2k(−2) = 0 for k ≥ 2 (see Gerber and Fisher 1975);
this value agrees with the Gaussian form (2.10).

Lastly, it is worth quoting the limit for self-interacting walks which
follows from (2.9) with (1.13). One obtains

M{fr}
q

= 1 − (1 − f2)q
−1 − (1 − f3)q

−2

− (3 + f2 − 4f2
2 − 2f2f3 + 3f2

3 − f4)q
−3 + · · · , (2.11)

which, of course, reproduces (2.3) when the weight factors, fr, for r-fold
intersections vanish. Conversely, when fr = 1 for all r the series reduces
simply to µ = q.
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3. Expanding in Inverse Dimensionality

The results summarized above for uniform, nonrandom lattices rest on an
analysis of the high-temperature series expansions for the susceptibilities,
χn(T ;Ld), for the magnetic systems in question (Fisher and Gaunt 1964).
In terms of K = J/kBT one has

χn(T ;Ld) =

∞
∑

l=0

al(n, d)K l. (3.1)

In practice one observes that all the coefficients al are nonnegative. Then
the nearest singularity of χn(T ) lies on the real positive K axis at a Kc

which locates the physical critical point, Tc(d). Consequently one can write

ln[kBTc(d)/J ] = lim sup
l→∞

l−1 ln al(n, d). (3.2)

The aim is then to calculate al(n, d) to leading orders in d for all sufficiently
large l.

Now, rather generally, the susceptibility expansion coefficients can be
written in graphical form as

al(n, d) =
∑

Gl

(Gl,Ld)A(n; Gl), (3.3)

in which Gl represents a graph or multigraph of l lines (following the graph-
theoretical terminology set out by Essam and Fisher 1970). The dominant
graph in all cases is a chain, Cl, of l lines and l + 1 vertices. The statis-
tical weights, A(n; Gl), depend on the nature of the interaction, the spin-
dimensionality, n, and on the graph Gl but not on the lattice Ld. Often the
theory is arranged so that A(n; Gl) vanishes if Gl is not a connected graph.
In more favorable cases the weights may also vanish if Gl is not multiply
connected; the sum in (2.14) may then be restricted to star graphs which
is advantageous since they are much less multitudinous.

The lattice-dependence of al(n, d) and, hence, the dependence on di-
mensionality, is isolated in the embedding constants or lattice constants,
(Gl,Ld), which represent the number of ways of embedding the graph, Gl,
in the lattice Ld per site. (The rules of embedding may depend on the
details of the analysis but the so called weak lattice constants — see Es-
sam and Fisher — are usually most convenient.) As stressed by Fisher
and Gaunt (1964) the lattice constant, (Gl,Ld), for a graph of l lines is,
on reflexion, easily seen to be a polynomial in d or, equivalently, in q or
σ, of degree at most l. Thus for the chain, Cl, the lattice constant is
(2d)l[1 + O(d−1)]; the square has a lattice constant 1

2d(d − 1); in leading
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order the lattice constant for a double bond with one or two tails (of all
possible lengths totalling l − 2 lines) varies as 1

2 (l − 1)(2d)l−1; and so on.
Finally, then, the coefficient al(n, d) is itself a polynomial in d of or-

der l, the coefficient of dl−k being a polynomial in l of order at most k.
This structure enables one to remove a factor dl in (3.2) leading to an
overall additive term ln l. Then one may expand the logarithm formally
in powers of d−1 and take the limit l → ∞ term by term. The desired
large-dimensionality expansion or, rather its logarithm, results.

This method adapts readily to other problems when a susceptibility-
like function can be identified. Thus Gaunt, Sykes and Ruskin (1976) and
Gaunt and Ruskin (1978) considered site and bond percolation problems,
respectively. Working with S(p), the mean cluster size function for p <
pc, which diverges strongly as p → pc, they obtained expansions for the
percolation threshold. Specifically Gaunt and Ruskin (1978) found

pc(d) = σ−1
(

1 + 2 1
2σ−2 + 7 1

2σ−3 + 57σ−4 + · · ·
)

, (3.4)

for bond percolation while, for site percolation one has

pc(d) = σ−1
(

1 + 1 1
2σ−1 + 3 3

4σ−2 + 20 3
4σ−3 + · · ·

)

, (3.5)

(Gaunt, Sykes and Ruskin 1976). It is interesting that site percolation
has a leading correction of order σ−1 whereas for bond percolation, as for
self-avoiding walks, see equation (2.4), this term vanishes.

It should also be mentioned that Harris (1982) has reviewed the use
of 1/d expansions in a more general context and has developed a method
which, in principle, can cast a variety of problems into amenable form.
With his methods, he obtained explicit results for the critical fugacity for
lattice animals and for the mobility edge in localization theory.

Here we ask the question: “How can similar results be obtained for
spin glasses and what do they tell us?” In the following sections we answer
these questions. [A brief announcement of our results has been published
(Singh and Fisher 1988).]

4. Ising Spin-Glass Susceptibilities

We will study the Ising spin glass with Hamiltonian (1.15) and spins si =
±1 at each site i of Ld. For simplicity we restrict attention to symmetric
spin glasses for which

[(J2k+1
ij ]J = 0 (k = 1, 2, . . . ). (4.1)

Such distributions embody the crucial ‘frustration’ induced by com-
peting interactions which lies at the heart of the spin-glass problem. While
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retaining symmetry, it is of interest, however, to allow for general distribu-
tions of the Jij . In particular one would like a theoretical basis for com-
paring the predictions of Monte Carlo simulations of spin glass behavior,
notably by Bhatt and Young (1985) and Ogielski and Morgenstern (1985)
(see also Ogielski 1985), which in some cases have used only a Gaussian dis-
tribution, with extensive series expansion studies by Singh and Chakravarty
(1986, 1987a,b) which employed the ±J model.

The basic indicators of order are the spin-spin correlation functions,
〈sisk〉; see (1.6). For a general Ising model these have a graphical expansion
in terms of the auxiliary temperature variables

vij = tanh(Jij/kBT ), (4.2)

which may be written

〈sisk〉 = Z−1
∑

G2(i,k)

∏

(j,l)

vjl (i 6= k), (4.3)

where the partition function, Z, has a similar expansion, namely,

Z = 1 +
∑

G0

∏

(j,l)

vjl. (4.4)

In these expressions the sums run over all distinct weak embeddings of the
graphs G2(i, k) and G0 in the lattice L, which is most conveniently regarded
here as finite with N sites and periodic boundary conditions. The products
run over all lattice bonds, (j, l), covered in the embedding of the graph.
The graphs G0 are generalized polygons: they have no repeated lines and
at each site of the lattice an even number, 0, 2, 4, . . . , of lines must meet.
The prescription for the two-rooted graphs, G2(i, k) is the same except that
an odd number of lines must meet at the sites i and k. Note that both Z
and the numerator for 〈sisk〉 are linear functions of each vjl.

Having obtained the correlation functions, or any other property, for a
given realization, {Jij}, of the couplings of the spin glass, one must perform
the average, [·]J , over the coupling distributions. Because of the linearity of
Z and 〈sisk〉Z in the vjl, each term in the full expansion of 〈sisk〉 contains
an odd power of at least one bond variable, vjl. Consequently we have

[〈sisk〉]J ≡ 0 (all i 6= k). (4.5)

This result will remain true in the thermodynamic limit, N → ∞, in the
disordered, high-temperature region above any transition. As a result,
the standard susceptibility of a spin glass, as calculated by averaging the
expression in (1.7), reduces simply to a constant, explicitly one has χ =
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[〈s2
0〉]J = 1. Evidently this susceptibility is totally independent of the spin-

spin interactions and contains no information about any possible spin-glass
transition!

The way around this difficulty is to consider, instead, the generalized
susceptibilities

χ(q,r)(T ) = N−1
∑

i

∑

k

[〈sisk〉q]rJ (4.6)

(Singh and Chakravarty 1987a). Indeed, the case q = 2, r = 1 corresponds
to the so called spin-glass susceptibility, χSG, introduced originally by Ed-
wards and Anderson (1975). We will focus on this special susceptibility.
[Of course, χ(q,r) vanishes identically whenever q is odd; the next nontrivial
case, q = 2, r = 2, yields extra information in studies based on the numeri-
cal extrapolation of high-temperature power series (Singh and Chakravarty
1987a).]

The graphical expansion for χSG follows from (4.3) by squaring, di-
viding through using (4.4), and averaging over the bond distribution term
by term. It is instructive to consider, first, a spin glass on a Bethe lattice.
This problem is analytically tractable having been first studied by Japanese
workers (Oguchi and Ueno 1976; Katsura, Fujiki and Inawashiro 1979: see
also references in Chayes et al. 1986). It has been revisited more recently
by Thouless (1986) and coworkers (Chayes, Chayes, Sethna and Thouless
1986), particularly to investigate behavior in an external field.

Now there are no closed polygons on a Bethe lattice so, by (4.4), one
has Z = 1. Likewise, any two sites, i and k, are connected by a single chain
of l(i, k) bonds. Thus, after averaging, the only graphical contribution to
[〈sisk〉2]J comes from a chain, C2(i, k), of doubled bonds reaching from i to
k. If we define the moments of the coupling distribution via

wq(T ) = [v2q
ij ]J ≡ [tanh2q(Jij/kBT )]J , (4.7)

we thus have
[〈s0sk〉2]0J = w

l(0,k)
1 , (4.8)

where the superscript zero indicates the Bethe lattice. To use this, we may
formally take the thermodynamic limit in (4.6) by dropping the first sum-
mation and the factor N−1; this yields the analogue of (1.7). To perform
the remaining sum over the sites k, we note that there are just qσl−1 dis-
tinct self-avoiding paths of l steps leaving the origin, 0, of a Bethe lattice of
coordination number q. Summing on l yields the explicit, high-temperature
spin-glass susceptibility for a Bethe lattice, namely,

χ0
SG = [1 + w1(T )]/[1 − σw1(T )]. (4.9)

Evidently χ0
SG diverges at a critical point given by

w0
1c ≡ [tanh2(Jij/kBT 0

c )]J = 1/σ. (4.10)
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This is a natural analogue of the formula (2.1) for a ferromagnetic Bethe
lattice. Note, incidentally, that for a ±J distribution one has △J = J (> 0)
and the moments become wq = tanh2q(J/kBT ). Thus (4.10) reduces sim-
ply to tanh(J/kBTc) = 1/

√
σ. Comparing with (2.1) shows that the criti-

cal temperature of the spin glass is much lower than of the corresponding
ferromagnet, in accord with the obvious effects of having negative antifer-
romagnetic bonds competing with positive, ferromagnetic couplings.

5. Expansion for a Hypercubic Spin Glass

We may anticipate that (4.10) will provide the leading large-d behavior
for spin glasses on hypercubic lattices with q = 2d. To show this, we
must allow for the lattice polygons. The first point then is that, cl(Ld),
the total number of self-avoiding paths or chains, Cl, of l steps leaving
the origin, is no longer given by qσl−1. Rather this large-d form must
be multiplied by a correction factor λ(Cl) — the reduced lattice constant

(Gerber and Fisher 1974). It is instructive to reproduce the calculation of
this lattice constant in leading nontrivial order. The dominant correction
to cl ≃ qσl−1 comes from the closure of a square, P4, of four bonds (or
steps). This may occur at any one of (l − 4 + 1) = (l − 3) positions along
the chain. As mentioned in Section 2, through each point in the lattice
there pass 2d(d − 1) = 1

2 (σ + 1)(σ − 1) distinct squares. Each such square
may be traced by a chain/walk in two possible senses. The remaining l− 4
bonds of the chain may, in leading order be regarded as ‘free’ and so are
associated with qσl−5 configurations. In total, therefore, one must subtract
the term (l − 3)(σ2 − 1)qσl−5 from qσl−1. Finally, to leading order, the
desired correction factor is thus

λ(Cl) = 1 − (l − 3)σ−2 − · · · . (5.1)

A little reflection shows that allowing for hexagons, P6, yields a correction
of order σ−4; however, a correction of lower order, σ−3, arises from sub-

tracting generic configurations, to be denoted CP
(1)
4 , in which the chain or

path overlaps one side of the square so yielding a doubled bond: see the
graph labelled [c] in Fig. 1. Such configurations were not eliminated in
the leading order calculation. This term and higher order ones up to order
σ−5 were originally calculated by Fisher and Gaunt (1964). The resulting
formula for λ(Cl) and for other reduced lattice constants needed here have
been listed correct to order σ−5 by Gerber and Fisher (1974).

To go further in the calculation of χSG, one must account for polygons
which arise directly in the graphical expansion as products of bond factors
vij . To this end let {G} denote the sum of all products of the vij corre-
sponding to the embeddings in L of all graphs isomorphic to G, as required
in (4.3) and (4.4). Then the expansion of the correlation function may be
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Fig. 1. Generic graphs of l lines which are needed in the
calculation of the 1/d expansion for a spin glass. Except for
[u] and [x], the labelling follows Gerber and Fisher (1974)
who give the reduced lattice constants. Note the graphs
[c], [j] and [x] have the same skeleton graph of l′ = l−1, l−3,
and l−5 lines and thus have simply related lattice constants.

written

〈s0sk〉 =
∑

l

{Cl} + {Cl, P4} + {Cl, P6} + {Cl, P4, P4} + · · ·
1 + {P4} + {P6} + {P4, P4} + {P8} + · · · , (5.2)

for k 6= 0. Here it is understood that each chain of l lines, Cl, is rooted
at site 0 and terminates at site k. The polygons of m sides, Pm, may
occur singly or, as indicated by a comma, as disconnected multiplets, which
means, in the present case, that they have no common bonds although they
may share one or more sites. In dividing out the denominator one obtains
products of terms; most, however, cancel to leave only terms with repeated
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bonds. Thus one has

{Cl, Pm} − {Cl}{Pm} = −
m−1
∑

r=1

{ClP
(r)
m } −

∑

{ClP
∗
m}. (5.3)

Here, as above, ClP
(r)
m denotes a generic multigraph consisting of a polygon

Pm and a chain, Cl, which overlaps it in all possible ways, on r bonds (which
are thus doubled); such graphs cannot appear in the numerator of (5.2).
The extra terms {ClP

∗
m} include contributions from connected graphs in

which the chain touches the Pm at an isolated vertex two or more times
but does not overlap a bond of Pm; such graphs do arise in the numerator
of (5.2) but they appear only once whereas the product in (5.3) generates
them more often. Likewise, excess terms having both overlapping bonds
and vertex contacts must be subtracted. Leading contributions to the
expansion on a hypercubic lattice are then

〈s0sk〉 =
∑

l

(

{Cl} − {ClP
(1)
4 } − ({ClP

(2)
4 } + {ClP

(1)
6 } + {ClP

†
6 })

− ({ClP
(3)
4 } + {ClP

(2)
6 } + {ClP

(1)
8 } + · · · )

− ({ClP
(3)
6 } + {ClP

(4)
6 } + {ClP

(5)
6 } + · · · )

− (−{ClP
2(1)
4 } + · · · ) − · · ·

)

. (5.4)

The second term, involving P
(1)
4 , generates a contribution of relative order

σ−3 in the expansion for the critical point of an Ising ferromagnet; succes-
sive terms in parentheses likewise contribute to terms of order σ−4, σ−5, . . . .
The symbol ClP

†
6 in the third term denotes a chain which cuts a hexagon

diametrically forming two squares sharing a common bond: see the graph
[i] in Fig. 1. This will not actually be needed to the order developed

here. However, the generic graph ClP
2(1)
4 , in the last term displayed, will

be needed: this is a chain of l single bonds that overlaps a square, P4, of
doubled bonds along one side: see graph [x] in Fig. 1.

The first three terms presented in (5.4) actually suffice to generate the
expansion (2.2) for a hypercubic Ising ferromagnet correct to order 1/q4.
For the spin glass, however, it transpires that most of the further graphical
terms exhibited are also needed even at order 1/q3. To see which matter,
we square the expansion for 〈s0sk〉 and perform the spin-glass average,
[·]J . Prior to averaging, the expansion will contain multigraphs with bonds
of all multiplicities; but, on averaging, any graph containing a bond of
odd multiplicity makes a vanishing contribution. On the other hand, each
double bond contributes a factor w1(T ), each quadruple bond, a factor
w2(T ), and so on. Evidently the square of each term in (5.4) contributes
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directly so that, for example, {ClP
(1)
4 } (see [c] in Fig. 1) appears with each

bond doubled and weight wl+2
1 w2, the factor w2 arising from the doubling

of the original doubled bond. However, cross terms also contribute. Thus

the product {Cl}{ClP
2(1)
4 } of the first and last terms displayed in (5.4)

appears twice and yields two further terms of the same weight. The product

{ClP
(1)
4 }{Cl} yields a contribution with the same skeleton as ClP

(1)
4 but

with each bond doubled and hence weight wl+3
1 . (In the skeleton, G, of a

multigraph G, all multibonds are collapsed to single lines.)
Overall, we obtain the spin-glass susceptibility in the form

χSG(T ; d) ≡
∑

k

[〈s0sk〉2]J = 1 +
∑

l=1

wl
1bl(d), (5.5)

with coefficients given graphically by

bl = [Cl] − 4[Cl−3P
(1)
4 ] − 2[Cl−2P

(2)
4 ] − 2

5
∑

r=1

[Cl−6+rP
(r)
6 ]

+ 3(w2/w2
1)[Cl−4P

(1)
4 ] + · · · , (5.6)

where the notation [G] now denotes the generic lattice constants with one
end of the chain rooted at the origin. Note the factor (w2/w2

1) which
comes from the quadruple bond which arises as explained above. Factors,
(w4/w4

1), (w3/w3
1), etc. appear in higher order terms.

As mentioned, all but one of the required lattice constants in (5.6)
have been computed by Gerber and Fisher (1974). It is clear that a given
lattice constant depends only on the skeleton graph; however, the precise
expressions for the reduced lattice constants, λ(G), depend on the total
number of lines. With this in mind, the spin-glass susceptibility coefficient
may be written, adapting the notation of Gerber and Fisher (1974), as

bl(d) = qσl−1
{

λ([a]l) − 4λ([c]l+1) − λ([d]l+2) − 4λ([h]l+1) − 4λ([n]l+2)

− 4λ([u]l+3) − 3(w2/w2
1)λ([c]l) + · · ·

}

. (5.7)

The generic graph [u] corresponds to ClP
(3)
6 (see Fig. 1). It was not

considered by Gerber and Fisher but its lattice constant is the same, to
leading order, as that for [n]. Finally, using the data for the λ(G) yields

bl(d) = qσl−1

{

1 − 7l − 11

σ2
− 24l − δ − 3(l − 4)w2/w2

1

σ3
− · · ·

}

, (5.8)

where the integer δ is determined by terms of order l0 in the lattice con-
stants, which were not retained by Gerber and Fisher (1974); however, the
value of δ proves immaterial here.
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Now, following the procedure outlined in Section 3, we may finally
compute the expansion for (bl)

1/l and take the limit l → ∞ in order to
identify the critical value, (w1c)

−1 : this yields

1

w1(Tc)
= σ

(

1 − 7

σ2
− 24 − 3(w2/w2

1)

σ3
− · · ·

)

, (5.9)

which is the desired critical point expansion.

In the case of the ferromagnetic models we remarked, in partial justi-
fication of the last step, that the known expansion coefficients, al, for the
susceptibility, χ, are observed to be positive; if true for all l, this means
the limit of (al)

1/l does correctly generate the physical singularity. For the
spin-glass susceptibility, χSG, however, one finds negative coefficients, bl, for
d = 2 and 3 (Singh and Chakravarty 1986). The known coefficients (with
l ≤ 15) for d = 4 are all positive but have a strong alternation and might
well become alternating in sign for a larger l. For low d, at least, it thus
seems likely that the nearest singularity in the complex 1/T plane is not

the physical singularity. In that case an exact computation of the limit of
[bl(d)]1/l at fixed d would not yield the critical point. We believe, nonethe-
less, that the procedure we have used will generate the correct asymptotic
expansion for the spin-glass critical point.

The factor (w2/w2
1) on the right of (5.9) takes the value unity for

the ±J distribution. More generally, however, it must depend on Tc: see
equation (4.7). In that case the expansion is really implicit rather than
explicit. Furthermore, by examining the higher order terms one sees that
factors (w2/w2

1) and (w2/w2
1)

2 appear in order σ−4. The reduced sixth
moment of the bond distribution appears first, via a factor (w3/w3

1) only
in order σ−6. One may, however, generate an explicit expansion for the
spin-glass critical temperature for a fixed bond-coupling distribution with
reduced moments

ρq = [(Jij)
q]J/[(Jij)

2]
q/2
J , (5.10)

by expanding w1 = [tanh2(Jij/kBT )]J in powers of 1/T , reverting the series
and using (5.9). This yields

k2
BT 2

c

△J2
= σ

[

1 − 2
3ρ4

1

σ
−

(

7 + 4
9ρ2

4 − 17
45ρ6

) 1

σ2

−
(

24 − 3ρ4 + 62
315ρ8 − 34

45ρ4ρ6 + 16
27ρ3

4

) 1

σ3
− · · ·

]

. (5.11)

Before discussing the expansion in quantitative terms we present an
alternative method of derivation which has enabled us to generate the series
for the ±J models correct to order σ−5.
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6. The Inverse Susceptibility Expansion

Singh and Chakravarty (1986, 1987a) discovered that it was possible to
expand the free energy and inverse spin-glass susceptibility, 1/χSG, of an
Ising spin glass on a general lattice in a way that only required star graphs
(i.e., multiply connected graphs). The significant advantage of such an
expansion, which entails a cluster algorithm to generate the appropriate
weights, is that for a given number of lines there are far fewer star graphs
than the more general graphs required in a direct calculation of χSG. As a
result, for hypercubic lattices Singh and Chakravarty were able to calculate
the expansion for the ±J model to orders w19

1 , w17
1 , and w15

1 for the square,
simple cubic, and (d = 4)-dimensional hypercubic lattices, respectively.
This greatly extended the pioneering work of Fisch and Harris (1977) whose
series proved, unfortunately, too short for reliable numerical extrapolation.

Now, as explained in Section 3, the lattice constant for a given star
graph is a finite polynomial in d (or q) with, as one easily sees, a vanishing
constant term. The most ‘open’ star graph of l lines is a polygon. Since a
polygon of l = 2p lines can explore at most p different spatial dimensions
its lattice constant is of order at most dp (Fisher and Gaunt 1964). Thus
each term in the expansion for 1/χSG can be written as a polynomial in
d. Furthermore, since the star graphs of l lines enter no earlier than in the
term of order wl

1, the expansion to order w2p
1 entails no powers of d higher

than dp.
Given this information it is actually possible to obtain the polyno-

mials representing the expansion coefficients of 1/χSG for a fixed bond
distribution knowing only their numerical values for various dimensionali-
ties. Specifically, from the numerical expansions in dimensions d = 1 [for
which the Bethe lattice form (4.9) is exact], and d = 2, 3, and 4 (Singh and
Chakravarty 1986) one can compute the first nine polynomials. However,
using the lattice constants of Fisher and Gaunt, which include all stars of
10 lines, one can go to order w10

1 and use the numerical results as a cross
check. Writing w1 ≡ w, the result for the ±J model is found to be

χ−1
SG(T ) = 1 − qw + qw2 − qw3 + (7q2 − 13q)w4

− (30q2 − 59q)w5 + (44q3 − 169q2 + 163q)w6

− (352q3 − 1712q2 + 2017q)w7

+ (405q4 − 3026q3 + 8503q2 − 8141q)w8

− (3968 2
3q4 − 35266 2

3q3 + 107011 1
3q2 − 104704 1

3q)w9

+ (4712q5 − 61157q4 + 336356q3 − 846314q2 + 761069q)w10

− · · · . (6.1)

Now the critical point is determined by the divergence of χSG or the
vanishing of χ−1

SG. If we set qw = y in the result (6.1), we can write the
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critical equation χ−1
SG(y) = 0 as

y = 1 + y2q−1 + (7y4 − y3)q−2 + (44y6 − 30y5 − 13y4)q−3

+ (405y8 − · · · + 59y5)q−4 + (4712y10 − · · · + 163y6)q−5

+ O(q−6). (6.2)

This is readily solved by reversion which finally yields the expansion

1

w1(Tc)
= q

(

1 − 1

q
− 7

q2
− 28

q3
− 219

q4
− 1905 1

3

q5
− · · ·

)

. (6.3)

Of course, this result for the ±J model can be checked to order 1/q3 against
the original 1/σ expansion (5.9). However, the two further terms prove
helpful in using the expansion numerically. For convenience we also quote

1

tanh (J/kBTc)
=

√
σ

(

1 − 3 1
2

σ2
− 10 1

2

σ3
− 91 1

8

σ4
− 699 5

12

σ5
− · · ·

)

. (6.4)

d 1/σ series High-T series Biassed Padé
wc order wc wc

3 0.5036 4 0.48 ± 0.04 0.48 (± 0.04)
4 0.2133 5 0.21 ± 0.01 0.21 (± 0.01)
5 0.1322 5 0.139 ± 0.002 0.133 ± 0.003
6 0.1002 5 0.102 ± 0.002 0.1005 ± 0.0006
7 0.0818 5 0.083 ± 0.001 0.0819 ± 0.0002
8 0.0696 5 0.070 ± 0.001 0.06964 ± 0.00005

Table 1. Estimates of critical temperatures for the ±J Ising
spin glass on a d-dimensional hypercubic lattice: values of wc =
tanh2(J/kBTc) are listed.

7. Spin-Glass Critical Temperatures

Having obtained the expansions (5.9), (6.3) and (6.4) for the critical points,
Tc(d), of Ising spin-glass models on hypercubic lattices, let us examine the
numerical aspects. Note, first, that the ratios of successive coefficients in
(6.3) are increasing rapidly; the pattern is somewhat erratic but suggests an
approximately linear increase with order. Thus it seems likely, as in other
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Fig. 2. Plots of
√

wc = tanh(J/kBTc) vs. 1/
√

σ with
σ = 2d − 1 for the critical temperature of the ±J Ising
spin-glass model on a d-dimensional hypercubic lattice. The
numerals 1, . . . , 5 label the order of truncation of the 1/d
expansion for 1/wc. The first-order truncation is exact for
Bethe lattices of coordination number q = σ+1. The curves
marked ‘Padé’ represent approximants to the 1/σ expansion,
of equation (6.4), biassed to reproduce the favored estimates
for d = 3 and 4, marked by solid circles. (These estimates
result from high-temperature series analysis.)

cases, that the series for Tc(d) is no better than asymptotic as d → ∞.
For numerical estimation, truncation of the series close to the smallest
term, which is roughly that of order 1/qd+1, thus seems reasonable. Table
1 shows values of wc = tanh2(J/kBTc) for the ±J model calculated this
way from (6.4) for dimensions d = 3, 4, . . . , 8. Also shown are correspond-
ing estimates for wc based on the high-temperature series extrapolation
analysis of Singh and Chakravarty (1986, 1987). The agreement is rather
encouraging.

A graphic portrayal of the large d series is presented in Fig. 2 which
plots

√
wc = tanh(J/kBTc) vs. 1/

√
σ. In such a plot the values for a Bethe

lattice of coordination number q = σ + 1 lie on a straight line. The partial
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sums to order 1/qk of the series (6.3) are shown; the corresponding sums
of the 1/σk series, (6.4), are quantitatively very similar.

In order to improve the numerical performance of the large-d expansion
we have accepted the central values of the high-temperature series estimates
for d = 3 and 4: see Table 1. Then one may generate Padé approximants
to the (truncated) series (6.4) biassed to ensure that the preferred values
are reproduced for d = 3 and 4. The four near-diagonal biassed approxi-
mants, [2/5], [3/4], [4/3], and [5/2] are displayed: they agree very closely
for d > 4. Indeed we believe that these approximants are rather reliable
for d & 3: their predictions are listed in the last column of Table 1. The
uncertainties assigned there take into consideration the uncertainties in the
biassing points at d = 3 and 4.

An interesting theoretical point may be addressed using the Padé ap-
proximants for Tc(d); this concerns the lower critical (or borderline) di-

mensionality, d<, for Ising spin glasses. The lower critical dimensionality
is defined for systems with Hamiltonians that belong to a given universal-
ity class, in the usual renormalization-group or critical-phenomena sense
(see e.g. Fisher 1983), as the dimensionality below which the critical point,
Tc(d), vanishes. For Ising-like ferromagnets etc., (with n = 1) one has
d< = 1; however, for n-vector ferromagnets with n ≥ 2 one finds d< = 2.
As regards Ising spin glasses, the Monte Carlo simulations and the high-T
series analyses strongly suggest 2 < d< < 3 (Bhatt and Young 1985; Ogiel-
ski and Morgenstern 1985; Singh and Chakravarty 1986). If one notes that
wc = 1 implies Tc = 0, it is evident that the intersections of the plots of
the biassed Padé approximants for Tc(d) with the frame in Fig. 2 provide
explicit estimates for d<. It is reasonable to conclude

d< ≃ 2.50 ± 0.015. (7.1)

However, if, as is not implausible, Tc(d) departs from zero like (d − d<)ω

with ω > 1, this estimate could prove somewhat too high since such be-
havior cannot be accounted for in the high-d approximants. Nevertheless,
the value d< ≃ 2.5 agrees quite well with various approximate real-space
renormalization-group calculations (see, e.g., Bray and Moore 1984).

Finally, it is of interest to gain some feel for the effect of the actual
distribution of couplings on the spin-glass critical temperature (Singh and
Fisher 1988). By (5.9) we can write the deviation of Tc(d) from that for
the ±J model in the form

wc − w
(±J)
c

w
(±J)
c

=
3[1 − (w2/w2

1)]

σ3
+ O

(

1

σ4

)

, (7.2)

while to the same order one might replace w2/w2
1 by ρ4: see (5.10). The

Gaussian distribution of the Jij is usually taken proportional to
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exp(− 1
2J2

ij/J2). From the value of wc ≡ w1(Tc) for d = 3 in Table 1 we

find kBT
(±J)
c /J = 1.2± 0.1; for the Gaussian model, however, this value of

w1(Tc) implies kBT
(G)
c /J ≃ 0.79 ± 0.09. The correction to this implied by

(7.2) increases kBT
(G)
c /J by about 0.02 . Although small, the change does

serve to bring the series-based estimate for T
(G)
c somewhat closer to the

central estimate of kBT
(G))
c /J = 0.9 ± 0.1 obtained by Bhatt and Young

(1988) in their Monte Carlo simulations. For d = 4 the value of wc in Table

1 yields kBT
(±J)
c /J = 2.02±0.06; the corresponding, uncorrected Gaussian

estimate is kBT
(G)
c /J ≃ 1.74 ± 0.07. The result (7.2) again yields only a

small increase, to about 1.76; however, that compares well with the Monte

Carlo estimate kBT
(G)
c /J ≃ 1.8 (Bhatt and Young 1988).

In summary, the large-dimensionality expansions for the critical points
of Ising spin glasses prove effective and informative. Of course, the remain-
ing theoretical challenge, which seems likely to prove hard, is to provide
some better basis for the expansions (5.9) and (6.3) than the heuristic cal-
culations we have expounded here. Mathematical progress along such lines
could add significant insight into the statistical mechanics of random sys-
tems, a subject in which Hammersley’s pioneering contributions remain a
striking landmark.
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