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1. Introduction and Results

Throughout this paper we use the following notation: {x} denotes the
fractional part of x. The distance from x to the nearest integer is denoted
by ‖x‖: ‖x‖ = min({x}, 1 − {x}). The cardinality of the finite set S is
denoted by |S|. The counting functions of the finite sets A,B, . . . of non-
negative integers are denoted by A(x), B(x), . . . so that, e.g., A(x) = |A ∩
{1, 2, . . . , [x]}|. If A is a finite or infinite set of integers, then let P(A)
denote the set of distinct integers n that can be represented in the form
n =

∑

a∈A
ǫaa where ǫa = 0 or 1 for all a and 0 <

∑

a∈A
ǫa < ∞. If A is a

set of integers such that no ai is the average of any subset of A consisting
of two or more elements, then A is said to be non-averaging.

Erdős and Straus raised the question of deciding the maximum car-
dinality f(N) of a non-averaging subset of {0, 1, 2, . . . , N}? This problem
has been studied by Abbott (1976, 1980, 1986), Bosznay (1989), Straus
(1968), and Erdős and Straus (1970), and the best estimates are due to
Bosznay (1989) and Erdős and Straus (1970) who proved that

f(N) ≫ N1/4 (1.1)

and
f(N) ≪ N2/3, (1.2)

respectively. Furthermore, Straus (1968) reduced the upper estimate of
f(N) to the following problem: what is the maximum number k = F (N)
such that there exist two subsets A = {a1, a2, . . . , ak},B = {b1, b2, . . . , bk}
of {0, 1, 2, . . . , N} so that the sums of non-empty subsets of A are different
from the sums of non-empty subsets of B, i.e., P(A) ∩ P(B) = ∅? He
conjectured that the maximum number F (N) is attained when A,B are of
the form A = {0, 1, . . . , k − 1} and B = {N − k + 1, N − k + 2, . . . , N} for
an optimal k. This construction leads to

F (N) ≥
[

(2N)1/2
]

− 1. (1.3)
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Furthermore, he proved that

f(N) ≤ 2F (N) + 1. (1.4)

In this paper, our goal is to give an upper bound for F (N) and thus,
by (1.4), also for f(N). In fact, we will prove

Theorem 1. For N > N0 we have

F (N) < 201(N log N)1/2. (1.5)

This is only by a factor (log N)1/2 worse than the conjectured F (N) ≪
N1/2 and probably also this (log N)1/2 factor could be eliminated by im-
proving on a lemma (Lemma 1) in our proof; we will return to this problem.

Combining Theorem 1 with (1.4) we obtain:

Corollary 1. For N > N0 we have

f(N) < 403(N log N)1/2.

(Compare with (1.2).)
In the second half of this paper our goal is to study the infinite analogue

of this problem: if A,B are infinite sets of positive integers such that

P(A) ∩ P(B) = ∅, (1.6)

then how large can min(A(x), B(x)) be? Of course, Theorem 1 implies that
min(A(x), B(x)) ≪ x1/2. We conjecture that (1.6) implies

lim inf
x→∞

min(A(x), B(x))

x1/2
= 0 (1.7)

and, perhaps, even

lim inf
x→∞

A(x)B(x)

x
= 0

holds; unfortunately, we have not been able to prove this. On the other
hand, we will prove that x1/2 in the denominator in (1.7) cannot be replaced
by x1/2(log x)−1/2−ǫ:

Theorem 2. Let β1, β2, . . . be an infinite sequence of positive real numbers
with

∞
∑

n=1

βn <
1

2
. (1.8)
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Then there exist two infinite sets A = {a1, a2, . . . },B = {b1, b2, . . . } of
distinct positive integers such that

max(an, bn) ≤ 8nβ−1
n for n = 1, 2, . . . (1.9)

and
P(A) ∩ P(B) = ∅. (1.10)

Thus, e.g., choosing βn = c
(

n log n(log log n)1+ǫ
)−1

here (where ǫ > 0
and c is a positive constant small enough in terms of ǫ) we obtain that
there exist infinite sets A,B of positive integers such that

lim inf
x→∞

min(A(x), B(x))

x1/2(log x)−1/2(log log x)−1/2−ǫ
> 0

and (1.10) holds.
On the other hand, it is easy to see that there exist infinite sets A,B

of positive integers such that (1.10) holds and both A and B have positive
upper density. In fact, to see this let xn = 22n

, and let

A =

∞
⋃

k=1

{x2k, x2k + 1, . . . , [3x2k/2]}

and

B =

∞
⋃

k=1

{x2k+1, x2k+1 + 1, . . . , [3x2k+1/2]}.

It can be shown easily that these sets A,B have the desired properties.
Also, it would be interesting to decide how fast A(x)B(x) can grow

for infinite sets A, B satisfying (1.10). In the construction above we have

A(x)B(x) ≫ x3/2

for infinitely many x. Perhaps, this inequality is nearly best possible.
Let A = {a1, a2, . . . },B = {b1, b2, . . . } be infinite increasing sequences

of positive real numbers with the property that

∣

∣

∣

∣

∞
∑

i=1

ǫiai −
∞
∑

i=1

ǫ′ibi

∣

∣

∣

∣

≥ 1

whenever ǫi = 0 or 1 for all i, ǫ′i = 0 or 1 for all i, 0 <
∑∞

i=1 ǫi < ∞ and
0 <

∑∞

i=1 ǫ′i < ∞. Perhaps, these assumptions imply that

lim inf
x→∞

max(A(x), B(x))

x
= 0
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and

lim
x→∞

min(A(x), B(x))

x
= 0

(where A(x) = |{i : ai ≤ x}|, B(x) = |{i : bi ≤ x}|); we have not been able
to prove this.

2. Two Lemmas

The proof of Theorem 1 will be based on the following result of Sárközy
(1989):

Lemma 1. Let N be a positive integer with N > 2500, let A ⊂ {1, 2, . . . ,
N} and

|A| > 100(N log N)1/2.

Then there are integers d, y, z such that

1 ≤ d < 104N |A|−1,

z > 7−110−4|A|2,
y < 7 · 104Nz|A|−2

and
{yd, (y + 1)d, . . . , zd} ⊂ P(A).

We need one more lemma:

Lemma 2. Let M, N, t, d be positive integers with M ≤ N ,

d ≤ t ≤ N, (2.1)

and let

A ⊂ {M, M + 1, . . . , N}, (2.2)

|A| = t. (2.3)

Then for every integer u with

0 ≤ u ≤ M(t − d), (2.4)

there is an integer s such that

u ≤ s < u + Nd, (2.5)

d | s (2.6)
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and s can be written in the form

s =
∑

a∈A

ǫaa where ǫa = 0 or 1 for all a (2.7)

(so that either s = 0 or s ∈ P(A)).

Proof of Lemma 2: It suffices to show that there are integers x0, x1, . . . ,
xr such that x0 = 0,

xi−1 < xi ≤ xi−1 + Nd for i = 1, 2, . . . , r, (2.8)

xr > M(t − d),

d | xi for i = 0, 1, . . . , r (2.9)

and
xi ∈ P(A) for i = 1, 2, . . . , r. (2.10)

In fact, if x0, x1, . . . , xr are defined in this way and u satisfies (2.4), then
there is an xi with u ≤ xi < u + Nd so that (2.5), (2.6), and (2.7) hold
with xi in place of s.

These numbers x0, x1, . . . , xr can be defined recursively. Let x0 = 0.
Assume that x0, x1, . . . , xi (i ≥ 0) have been defined with the desired
properties and

xi ≤ M(t − d). (2.11)

Then by (2.10) (and x0 = 0) there is a subset A1 ⊂ A (A1 = ∅ for i = 0)
such that

∑

a∈A1

a = xi. (2.12)

By (2.1), this implies

xi ≥
∑

a∈A1

M = |A1|M. (2.13)

It follows from (2.11) and (2.13) that

|A1| ≤ t − d. (2.14)

Let us write A2 = A \A1 so that, by (2.3) and (2.14),

|A2| = |A| − |A1| = t − |A1| ≥ d.

Let A3 be a subset of A2 with |A3| = d. Then there is a non-empty subset
A4 of A3 with

d |
∑

a∈A4

a. (2.15)
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(In fact, if A3 = {a1, a2, . . . , ad}, then either there is a k with a1 + a2 +
· · ·+ak ≡ 0 (mod d) so that we may choose A4 = {a1, a2, . . . , ak}, or there
are k, l with k < l, a1 + a2 + · · · + al ≡ a1 + a2 + · · · + ak (mod d) so that
A4 = {ak+1, ak+2, . . . , al} can be chosen.) Let

xi+1 = xi +
∑

a∈A4

a. (2.16)

Then by (2.9) and (2.15) we have d | xi+1. Furthermore, xi+1 ∈ P(A)
follows from (2.10) and (2.16). Finally, by (2.2) and (2.16) we have

xi < xi+1 ≤ xi +
∑

a∈A4

N

= xi + N |A4| ≤ xi + N |A3|
= xi + Nd

and this completes the proof of Lemma 2. �

3. Completion of the Proof of Theorem 1

We have to show that N > N0,

A = {a1, a2, . . . , ak} ⊂ {1, 2, . . . , N},
B = {b1, b2, . . . , bk} ⊂ {1, 2, . . . , N} (3.1)

(where a1 < a2 < · · · < ak, b1 < b2 < · · · < bk) and

k ≥ 201(N log N)1/2 (3.2)

imply that
P(A) ∩ P(B) 6= ∅. (3.3)

We may assume that a[k/2]+1 ≤ b[k/2]+1. Let us write

M = a[k/2]+1,

A′ = {a2, a3, . . . , a[k/2]+1},
B′ = {b[k/2]+1, b[k/2]+2, . . . , bk}

so that, in view of (3.1) and (3.2) for N > N0 we have

N > M = a[k/2]+1 ≥ k/2 > 100(N log N)1/2, (3.4)

A′ ⊂ {1, 2, . . . , M}, (3.5)

|A′| = [k/2] > 100(N log N)1/2 ≥ 100(M log M)1/2, (3.6)

B′ ⊂ {M, M + 1, . . . , N} (3.7)
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and

|B′| = k − [k/2] ≥ k

2
. (3.8)

By (3.4), (3.5) and (3.6), for large N we may apply Lemma 1 with
M and A′ in place of N and A, respectively. We obtain that there exist
integers d, y, z such that

1 ≤ d < 104M |A′|−1, (3.9)

z > 7−110−4|A′|2, (3.10)

y < 7 · 104Mz|A′|−2 (3.11)

and
{yd, (y + 1)d, . . . , zd} ⊂ P(A′). (3.12)

To prove (3.3), it suffices to show that

P(A′) ∩ P(B′) 6= ∅. (3.13)

If there is a positive integer s such that

yd ≤ s ≤ zd, (3.14)

d | s (3.15)

and
s ∈ P(B′), (3.16)

then by (3.12), also s ∈ P(A′) holds so that s ∈ P(A′) ∩ P(B′) whence
(3.13) follows. Thus it suffices to show that there is a positive integer s
satisfying (3.14), (3.15) and (3.16). To prove this, we are going to apply
Lemma 2 with B′, |B′| = k−[k/2] and yd in place of A, t and u, respectively.
Then (2.2) holds by (3.7). Furthermore, by (3.1), (3.2), (3.6), (3.8) and
(3.9) we have

t = |B′| ≥ k

2
(3.17)

and

d < 104M |A′|−1 ≤ 104N
(

100(N log N)1/2
)−1

= 100N1/2(log N)−1/2 = o(k) (3.18)

so that also (2.1) holds. Finally, it follows from (3.5), (3.6), (3.11) and
(3.12) that

u = yd < 7 · 104Mz|A′|−2d

= 7 · 104M |A′|−2(zd) < 7 · 104M |A′|−2|A′|M
= 7 · 104M2|A′|−1 < 7 · 104M2

(

100(M log M)1/2
)−1

= 700M3/2(log M)−1/2 (3.19)
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and by (3.2), (3.17) and (3.18), for large N we have

t − d ≥ k

2
− o(k) >

k

3

> 60(N log N)1/2

≥ 60(M log M)1/2. (3.20)

(2.4) follows from (3.19) and (3.20). Thus, in fact, all the assumptions in
Lemma 2 hold so that the lemma can be applied. We obtain that there is
an integer s such that

u = yd ≤ s < yd + Nd, (3.21)

d | s (3.22)

and

s ∈ P(B′). (3.23)

(Note that s 6= 0 by s ≥ yd > 0.)
It follows from (3.6), (3.10), (3.11) and (3.21) that

s < (y + N)d <
(

7 · 104Mz|A′|−2 + N
)

d

<
{

(7 · 104Nz
(

100(N log N)1/2
)−2

+ 10−4(log N)−1|A′|2
}

d

=
(

o(z) + o(z)
)

d = o(zd). (3.24)

(3.15) and (3.16) hold by (3.22) and (3.23) while (3.14) follows from (3.21)
and (3.24), and this completes the proof of Theorem 1. �

4. Proof of Theorem 2

We are going to define the sequences a1, a2, . . . and b1, b2, . . . recursively.
Let α = (

√
5 + 1)/2. Let a1 and b1 be the least positive integers a

and b such that 0 < {aα} < β1 and 1 − β1 < {bα} < 1, respectively. If
a1, a2. . . . , an−1 and b1, b2, . . . , bn−1 have been defined, then let an and bn

be the least positive integers a and b such that

0 < {aα} < βn, a /∈ {a1, a2, . . . , an−1}

and

1 − βn < {bα} < 1, b /∈ {b1, b2, . . . , bn−1},

respectively.
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First we are going to prove (1.10). If A′ is a finite (non-empty) subset
of A, then in view of (1.8) we have

0 <
∑

ai∈A′

{aiα} <
∑

ai∈A′

βi <

∞
∑

i=1

βi <
1

2

whence

0 <
∑

ai∈A′

{aiα} =

{(

∑

ai∈A′

ai

)

α

}

<
1

2
. (4.1)

Furthermore, it follows from (1.8) and the definition of the set B that if B′

is a finite (non-empty) subset of B, then we have

|B′| =
∑

bi∈B′

1 >
∑

bi∈B′

{biα} >
∑

bi∈B′

(1 − βi)

= |B′| −
∑

bi∈B′

βi > |B′| −
∞
∑

i=1

βi > |B′| − 1

2

whence
1

2
<

{

∑

bi∈B′

{biα}
}

=

{(

∑

bi∈B′

bi

)

α

}

< 1. (4.2)

It follows from (4.1) and (4.2) that

∑

ai∈A′

ai 6=
∑

bi∈B′

bi

which proves (1.10).
To prove (1.9), we need the following lemma:

Lemma 3. Let α = (
√

5 + 1)/2. If δ is a real number with 0 < δ < 1 and
x, y are arbitrary real numbers, then there is an integer m such that

x < m ≤ x + 4δ−1 (4.3)

and

‖mα − y‖ < δ. (4.4)

Proof: This can be proved by using standard tools of the theory of con-
tinued fractions (see, e.g., Hardy and Wright 1960); for the sake of com-
pleteness we give the proof. Let qo = 1, q1 = 1, . . . , qn = qn−1 + qn−2, . . .
denote the Fibonacci numbers. These numbers are the denominators of the
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convergents of the continued fraction expansion of α so that for all n there
is an integer pn such that

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

< q−2
n (for n = 0, 1, 2, . . . ). (4.5)

Clearly, qn = qn−1 + qn−2 ≤ 2qn−1 for n ≥ 2. Thus there is an integer k
with

2

δ
< qk ≤ 4

δ
. (4.6)

Then we have

x < [x] + i ≤ x + 4δ−1 for i = 1, 2, . . . , qk. (4.7)

Write j =
[

qk(y − [x]α)
]

so that

∣

∣

∣

∣

j

qk
−

(

y − [x]α
)

∣

∣

∣

∣

<
1

qk
. (4.8)

Define the integer ij by

ijpk ≡ j (mod qk), 1 ≤ ij ≤ qk (4.9)

and write m = [x]+ ij . Then (4.3) holds by (4.7), and it follows from (4.5),
(4.6), (4.8) and (4.9) that

‖mα − y‖ =
∥

∥

(

[x] + ij
)

α − y
∥

∥

=

∥

∥

∥

∥

ijpk

qk
+ ij

(

α − pk

qk

)

+
(

[x]α − y
)

∥

∥

∥

∥

=

∥

∥

∥

∥

j

qk
−

(

y − [x]α
)

+ ij

(

α − pk

qk

)∥

∥

∥

∥

≤
∣

∣

∣

∣

j

qk
−

(

y − [x]α
)

∣

∣

∣

∣

+ |ij |
∣

∣

∣

∣

α − pk

qk

∣

∣

∣

∣

<
1

qk
+ qk · 1

q2
k

=
2

qk
< δ

so that also (4.4) holds and this completes the proof of the lemma. �

Now we are going to prove (1.9). By the construction of the sets A,B,
it suffices to show that there are at least n integers a and at least n integers
b such that

∣

∣{a : 0 < a ≤ 8nβ−1
n , 0 < {aα} < βn}

∣

∣ ≥ n (4.10)
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and
∣

∣{b : 0 < b ≤ 8nβ−1
n , 1 − βn < {bα} < 1}

∣

∣ ≥ n, (4.11)

respectively.
To prove (4.10), it suffices to show that for i = 0, 1, . . . , n− 1, there is

an integer a such that

8iβ−1
n < a ≤ 8(i + 1)β−1

n , 0 < {aα} < βn. (4.12)

In fact, applying Lemma 3 with βn/2, 8iβ−1
n and βn/2 in place of δ, x and

y, respectively, we obtain that there is an integer m such that

x = 8iβ−1
n < m ≤ x + 4δ−1 = 8iβ−1

n + 4(βn/2)−1 = 8(i + 1)β−1
n

and
∥

∥

∥

∥

mα − βn

2

∥

∥

∥

∥

<
βn

2

whence
{mα} < βn

(and {mα} > 0 since α is irrational) which proves (4.12). Similarly, ap-
plying Lemma 3 with βn/2, 8iβ−1

n and 1 − βn/2 in place of δ, x and y,
respectively, we obtain that there is an integer b with

8iβ−1
n < b ≤ 8(i + 1)β−1

n , 1 − βn < {bα} < 1

which implies (4.11) and this completes the proof of the theorem. �
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