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1. Personal History

I first met John Hammersley in Oxford during the years 1949–1952 when
I held an ICI Fellowship at the Clarendon Laboratory. David Kendall
used to run (with the aid of Pat Moran) a regular probability seminar
in which he encouraged research workers in widely differing disciplines to
participate. Hammersley then held an appointment in a department with
the intriguing title Lectureship in the Design and Analysis of Scientific

Experiment. David Finney was the lecturer from 1948–1955, and Michael
Sampford and John Hammersley were his assistants. Their job was to
provide mathematical, statistical, and computational advice to any of the
science departments in Oxford that requested it. Hammersley had thus
already begun his fruitful practice of “keeping open shop to all customers”
and whenever he delivered a talk at the seminar, one could be sure of
encountering a variety of stimulating new problems and ideas.

My wartime experience in radar research had introduced me to prob-
lems in geometrical probability, and whilst a graduate student at Cam-
bridge I had published papers on the covering of a line by random inter-
vals, and on the statistics of particle counters. It was useful for me to meet
others who shared my interest, and a number of the problems discussed at
the seminar were subsequently described in the monograph on Geometrical

Probability by Maurice Kendall and Pat Moran (1963).
But my major research interest had moved to problems of lattice statis-

tics, the Ising model, and order-disorder transitions in alloys. Moran (1947)
had considered the statistical problem of the distribution of black-white
joins in a lattice whose points could be black or white independently with
probabilities p, (1 − p), and had proved that the distribution is normal. I
felt it important to draw attention to the difference between the require-
ments of statistics and those of statistical mechanics. For the latter, the
normality of the distribution gives little information of physical importance;
the physicist, surprisingly, needs to determine all the higher moments and
cumulants, and it is on the asymptotic form of these that the interesting
critical behaviour depends.
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For me personally one of the great benefits which I derived from the
Oxford seminar was the introduction to the bright group of young statis-
ticians who were active in organizing the research section of the Royal
Statistical Society. Their public discussions and symposia were lively and
challenging, and they cast their net widely. Two of the papers which Ham-
mersley read to this section were On Estimating Restricted Parameters

(1950) which dealt with problems for example in which the parameter
sought was known to be an integer; and Poor Man’s Monte Carlo (with
K.W. Morton 1954) which discussed a Monte Carlo technique which did
not require the use of large machines.

Much of the latter paper was devoted to a lattice model of a polymer
molecule which took the excluded volume into account in a realistic way.
In this paper Hammersley attributed the model of a random walk on a
lattice which is not allowed to visit any site more than once to Meyer. He
gave no reference and I was unable to trace to which Meyer he referred. In
subsequent correspondence he suggested that it might have been J.E. Mayer
the architect of the well known cluster integral theory of a condensing
gas. I myself had been introduced to the model by G.S. Rushbrooke who
presumably heard of it from his supervisor R.H. Fowler; in a letter to me
Hammersley agreed that this may also have been his source.

Hammersley coined the term self-avoiding walk for the model, and this
was adopted universally. Previously such walks had been described by a
variety of names — non-intersecting, non self-intersecting and even simple

(but of course they are far from simple). Curiously enough the terminol-
ogy was challenged nearly thirty years later by Amit and his collaborators
(1983). The original model envisaged selecting from the total ensemble of
random walks these with no double or multiple points and giving equal
weight to each of them. Amit et al. (1983) generated and analysed walks,
which do not visit any site more than once, but whose probability of taking
a step at any point is inversely proportional to the number of unoccupied

neighbouring lattice sites; these they called true self-avoiding walks. The
early Monte Carlo workers were careful not to general walks of this type
(see e.g. Rosenbluth and Rosenbluth 1955) by weighting appropriately at
the vertices. The argument is clearly one of semantics.

In a discussion remark following the above paper of Hammersley and
Morton, Broadbent drew attention to a novel problem in which the random-
ness is associated with the medium rather than with the fluid. Subsequently
he collaborated with Hammersley (1957) in providing a comprehensive for-
mulation of this new class of problems which Hammersley described as
percolation processes, a term which also gained universal acceptance. Some
fifteen years later, when the important applications to solid state physics
became apparent, the literature on percolation processes grew at an incred-
ible rate.
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My own approach to problems of lattice statistics had been to gener-
ate exact series expansions of substantial length for the logarithm of the
partition function (the analogue of the cumulant generating function) and
to use them to assess the asymptotic behaviour of the coefficients. This
method had proved quite successful for the Ising model, for which a num-
ber of exact results were available by which the method could be checked.
The same approach could be used to explore the behaviour of self-avoiding
walks and percolation processes, and my research group at King’s College
established striking analogies between various features of these systems and
thermodynamic properties of magnetic models.

I presented a paper to the Royal Statistical Society on these topics
entitled Some Statistical Problems Connected with Crystal Lattices (1964)
and was grateful for Hammersley’s support in the discussion. Any talk
of drawing conclusions from extrapolation arouses suspicion in the mind
of the statistician. It was important to emphasize that our method was
not just conjectured extrapolation; we made use of physical knowledge and
insight to postulate an asymptotic form, and this postulate was tested and
its parameters fitted by statistical data in a fairly standard manner.

By a simple argument involving sub-additive functions Hammersley
had proved that the total number of self-avoiding walks of n steps on an
infinite lattice was asymptotically of order µn and he called µ the con-

nective constant (another term which gained wide acceptance). We were
able to provide convincing statistical evidence that the total number of
self-avoiding polygons of n steps was also asymptotically of order µn, and
Hammersley subsequently established this result rigorously (1961).

For me one of the most amazing results of later research was the for-
mulation in exact terms of the analogy we had discovered between self-
avoiding walk models and percolation models and magnetic systems. In
the n-vector model of ferromagnetism each site is occupied by an elemen-
tary magnetic spin which is free to rotate isotropically in n dimensions.
n = 1 corresponds to the Ising model, n = 2 is called the x–y model, n = 3
the classical Heisenberg model. In 1972 de Gennes showed that n = 0
corresponds to the self-avoiding walk model.

One of my outstanding graduate students during my stay at Oxford
was an Australian Rhodes Scholar named R.B. Potts. I had drawn his at-
tention to a magnetic model with three orientations in a plane which had
some properties analogous to those of the two orientation l Ising model.
I thought the model might generalize to q-orientations in a plane. Potts
demonstrated to me that the generalization which I sought was not as I
had thought, q vectors in a plane, but in space, and the vectors must be
such that the angle between any pair of them is the same. Potts published
his results in a paper in the Proceedings of the Cambridge Philosophi-
cal Society (1952) since we considered the investigation to be an abstract
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mathematical exercise with little chance of physical application.

For nearly twenty years the Potts model was ignored. Then interest
began to focus on magnetic models with different types of symmetry, and
the number of papers on the Potts model grew with amazing rapidity.
I can echo Hammersley’s remarks (1983) “When children become adults,
they embark on ideas and activities of which their parents are only dimly
aware”. Most surprising of all Kasteleyn and Fortuin (1969) demonstrated
that the Potts model with q = 1 corresponds precisely to the percolation
model.

In the present article I shall discuss problems arising from random
intervals on a line in which Hammersley and I were interested in the late
1940’s and early 1950’s. I will relate these problems to one dimensional
continuum percolation, a subject which has attracted interest and attention
recently.

2. Statistics of Counters

The following problem arises when the finite resolving time of a record-
ing apparatus is taken into account. Events are divided into two classes,
recorded and unrecorded. Any recorded event is followed by a dead interval
of length τ , during which any other event which occurs will be unrecorded.
A typical example is an α-particle counter; a recorded particle causes the
chamber to ionize, and no other particle can be recorded until the chamber
has de-ionized. I dealt with this problem (Domb 1948) in the following
manner.

Assume that the events are defined by a Poisson process, the proba-
bility of an event occurring in the interval [y, y + dy] being λdy. Let zn(y)
be the probability that n recorded events occur in [0, y]. It can be divided
into mutually exclusive groups: (i) Those in which the recorder is live at
point y, probability zn1(y). This means that no recorded event occurs in
[y − τ, y], and hence n recorded events occur in [0, y − τ ]. (ii) Those in
which the recorder is dead at point y, probability zn2(y). In this case a
recorded event occurs in [y − τ, y].

It is now easy to construct equations for zn(y + dy) in terms of zn1(y)
and zn2(y) leading to the following differential equation:

z′n(y) = λ
[

zn−1(y) − zn1(y)
]

. (2.1)

Thus, the function zn1(y) plays a key role in the structure of the equation.

When we look at zn1(y + dy) we see that all possibilities are covered
by two cases:

(a) The recorder is live at y and remains live at y + dy; n recorded events
occur in [0, y], no event occurs in [y, y + dy].
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(b) The recorder is dead at y but becomes live at y + dy; (n− 1) recorded
events occur in [0, y − τ ], one event occurs in [y − τ, y − τ + dy], and
no event occurs in [y, y + dy].

This gives rise to the differential equation:

z′n1(y) = −λzn1(y) + λz(n−1)1(y − τ). (2.2)

I then showed that equations (2.1) and (2.2) are amenable to treatment
by Laplace transforms, and that an explicit solution can readily be derived
for Zn(p) the Laplace transform of zn(y). Moreover, the treatment can
be generalized to a stochastic distribution of intervals u(τ)dτ . The only
change required for this is the replacement of the second term on the right
of (2.2) by the integral

λ

∫ y

0

u(τ)z(n−1)1(y − τ) dτ

and such a faltung can equally easily be handled by Laplace transforms.
A second type of instrument was used for recording events of a different

kind which remains dead as long as events follow one another at intervals
less than τ . This is closely related to the problem of covering a line by
random intervals, which I had discussed previously (Domb 1947), again
by means of Laplace transforms. I used my previous analysis to derive
the distribution of recorded events for this second type of counter (Domb
1950), but noted that it was no longer a simple matter to generalize to a
stochastic distribution. “The possibility of one interval completely covering
another which follows it causes considerable mathematical complications.”

A few years later Hammersley (1953) became interested in this second
type of counter in connection with a device for counting blood cells elec-
tronically which had been developed in the Clinical Pathology Department
of the Radcliffe Infirmary at Oxford. “A large number of blood cells, con-
tained in a shallow chamber, are scanned by a photoelectric cell. The depth
of the chamber and the concentration of blood cells in solution therein al-
low blood cells (supposed distributed at random through the chamber) to
overlap when viewed from above the scanner. The field of view of the scan-
ner at any instant is somewhat larger than the size of a blood cell, but
is, nevertheless, of much the same order of magnitude. With passage of
time the chamber moves underneath the photocell so that the field of view
traces out a long narrow path not crossing or overlapping itself and only
embracing a portion of the whole chamber. The blood cells have no motion
relative to the chamber. As each blood cell comes under the photocell it
produces an electrical impulse, whose duration depends upon the size and
shape and orientation of the blood cell. These impulses go to a counter,
which counts them except that it will not count any impulse which is over-
lapped by a previous impulse. The problem is to determine the number of
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blood cells in the chamber from a knowledge of the recorded count and the
distribution of the lengths of individual impulses.”

Hammersley came to discuss the problem with me, and I pointed out
to him that there was no difficulty in calculating the mean, mean-square
or any other moment; but I could not see how to provide a closed form
solution. Hammersley worked on the problem and did in fact produce a
complete solution. He made a handsome acknowledgement to me “I am
very much indebted to Domb, who showed me how to surmount these
difficulties by a brilliant application of the elementary theorem that the
expectation of the sum of several (possibly independent) quantities is the
sum of their expectations”. In fact, he had achieved far more than I had
ever thought possible.

A few years later Walter L. Smith (1957) re-derived Hammersley’s
results more neatly and concisely using the powerful methods of renewal
theory. The Cambridge mathematician A.S. Besicovitch used to say “A
mathematician’s reputation rests on his bad proofs” (Burkill 1971). He
wished to convey the idea that the originator of a result in mathematics
usually establishes it by long and complicated proofs. This paves the way
for the shorter and simpler proofs of later workers.

I wish to focus attention on one particular aspect of the solution,
the probability that the portion [0, y] of the line is completely covered.
Hammersley incidentally provides a formal solution to this problem, but
the expression he gives is complicated, and it seems to me that a direct
attack on the problem itself, using his approach, yields a solution more
readily.

3. Covering of a Line or Circle by Random Intervals1

When I returned to Cambridge in 1946 after radar-research for the Admi-
ralty in World War 2, I brought with me the above covering problem with
equal intervals. I needed to know whether anyone had tackled the prob-
lem previously, and Herman Bondi (who had been one of my colleagues
at the Admiralty) referred me to Harold Jeffreys, whom he described as
a mine of information on miscellaneous mathematical problems. Jeffreys
immediately thought of the ‘bicycle wheel problem’ which he himself had
formulated a few years previously as follows: A man is cycling along a road
and passes through a region strewn with tacks; he wishes to know whether
one has entered his tyre. Because of the traffic, he can only snatch glances
at random times. At each glance he covers a fraction x of the wheel. What

1The remaining sections are adapted from a recent paper by the author in the Journal
of Statistical Physics (Domb 1989). Detailed reference to other work on one-dimensional
continuum percolation will be found in this paper. The author is indebted to Plenum

Publishing Corporation for permission to reproduce some of this work.
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Fig. 1. The bicycle wheel problem.

is the probability that after n glances he has covered the whole wheel?
In mathematical terminology: n intervals are placed randomly on a circle,
each covering a fraction x of the circle. What is the probability that the
circle is completely covered (Figure 1)?

Jeffrey’s drew my attention to a paper published by W.L. Stevens in
1939 in the Annals of Eugenics, entitled Solution to a Geometrical Problem

in Probability, in which his problem was solved. Using a neat combinatorial
argument, Stevens found for the probability F (0) of complete coverage

F (0) = 1−

(

n

1

)

(1−x)n−1 +

(

n

2

)

(1−2x)n−1−

(

n

3

)

(1−3x)n−1+ · · · (3.1)

the series terminating at the kth term, k being the integral part of 1/x.
Stevens also derived a formula for F (i), the probability that there are i
gaps on the circle.

In 1929, R.A. Fisher published an article entitled Tests of Signifi-

cance in Harmonic Analysis, in which he calculated the probability that
the largest interval in the random division of a circle is less than x (Figure
2). When Stevens’s solution for F (0) appeared, Fisher noted that it was
identical with his, and a moment’s reflection is enough to convince one that
the two problems are identical. Fisher pointed this out in a note published
in 1940.

But surprisingly, R.A. Fisher, one of the founders of the modern the-
ory of statistics, was unaware that the distribution of length of the largest
interval in the random division of a line had been correctly solved by Whit-
worth many years before, and was reproduced in his classic book, Choice

and Chance (solutions to problems 666 and 667 published in 1897).
Problem 666: A line of length c is divided into n segments by n−1 random
points. Find the chance that no segment is less than a given length a,
where c > na (say, c − na = ma).
Problem 667: In the last question find the chance that r of the segments
shall be less than a and n − r greater than a.
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Fig. 2. Random division of a circle.

More precise dating of the solutions will be discussed in the next sec-
tion.

4. Whitworth’s Choice and Chance

We will preface this section with a few biographical details relating to
Whitworth, taken from the Dictionary of National Biography (1901–1911,
p. 655) and will continue with some comments on the different editions of
his famous publication Choice and Chance.

William Allen Whitworth was born in 1840, and entered St. John’s
College as a undergraduate in October 1858. His performance in the Math-
ematics Tripos was not distinguished — he was 16th Wrangler in 1862 —
but this does not seem to have represented his true ability. While still an
undergraduate he was principal editor of the Oxford, Cambridge and Dublin

Messenger of Mathematics, started at Cambridge in November 1861. The
publication was continued as The Messenger of Mathematics; Whitworth
remained one of the editors till 1880, and was a frequent contributor.

After leaving Cambridge in 1862 he was successively chief mathematics
master at Portarlington School and Rossal School, and professor of math-
ematics at Queen’s College, Liverpool (1862, 1864); he was a fellow of St.
John’s College from 1867 to 1882. At the same time Whitworth followed a
second career of distinction in the Church, being ordained deacon in 1865
and priest in 1866. He held appointments as a curate at three churches in
Liverpool from 1865 to 1875, and as vicar of two churches in London from
1875 until his death in 1905.

The first edition of Choice and Chance was published in 1867 while
he was in Liverpool, and was a reproduction of lectures given to ladies in
Queen’s College Liverpool in the Michaelmas term of 1866. The book was
subtitled Two Chapters in Arithmetic, and its aims, as described in the
Preface, were modest enough:

I had already discovered that the usual method of treating ques-
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tions of selection and arrangement was capable of modification
and so great simplification, that the subject might be placed on a
purely arithmetical basis; and I deemed that nothing would better
serve to furnish the exercise which I desired for my classes, and to
elicit and encourage a habit of exact reasoning, than to set before
them, and establish as an application of arithmetic, the principles
on which such questions of “choice and chance” might be solved.

He expressed the hope that his publication might be of service “in conduc-
ing to a more thoughtful study of arithmetic than is common at present;
extending the perception and recognition of the important truth, that arith-
metic, or the art of counting, demands no more science than good and exact
common sense”.

Chapter 1 was devoted to “Choice”, and was followed by 24 questions;
Chapter 2 to “Chance”, followed by 20 questions. The questions were all
arithmetical in character. An appendix was devoted to Permutations and

Combinations Treated Algebraically: “In my experience as a teacher I have
found the proofs here set forth more intelligible to younger students than
those given in the text books in common use”. Whitworth here derived a
number of standard elementary combinatorial formulae, and ended with a
new combinatorial proof of the binomial theorem.

The second edition, published only three years later (1870) from St.
John’s College, Cambridge, added three appendices containing more sophis-
ticated material. Appendix II was devoted to Distributions (into different
groups or parcels), Appendix III to Derangements: “a series of proposi-
tions are given which are not usually found in text books of algebra. But I
can see no reason why examples of such simple propositions . . . should be
excluded from elementary treatises in which more complex but essentially
less important theorems find place”. Appendix IV was concerned with the
celebrated St. Petersburg problem and its background. More than 100
miscellaneous new examples were added.

In the third edition, published in 1878, the material in the appendi-
ces was revised and enlarged, and incorporated into the main text. There
were now four chapters on Choice and four chapters on Chance, the fi-
nal, brief eighth chapter carrying the title, The Geometrical Representa-

tion of Chances, the number of examples was increased to 300, and they
were divided into different classes. The Preface contained the proclama-
tion, “Questions requiring the application of the Integral Calculus are not
included in the book, which only fulfills its title to be an Elementary Trea-
tise”.

In the fourth edition, published in 1886, the number of examples grew
to 640, and a new chapter in the Choice section was added dealing with
problems where the order in which gains and losses occur is relevant, e.g., if
there is a condition that losses must never exceed gains. A short additional
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chapter in the Chance section entitled, The Rule of Succession, was devoted
to a precise treatment of situations in which the probability of an event is
supposed completely unknown, but the results of a number of trials are
available. What can now be predicted about future trials?

The fifth and final edition was not published until 1901. But in 1897
there appeared a volume entitled, DCC Exercises in Choice and Chance.
which provided fairly detailed solutions to the 640 examples of the fourth
edition, and to 60 new examples, several of which were concerned with
the random division of a line by a number of points. Questions 667 and
668, which were quoted in the previous section, are included among the
latter. The preface to the fifth edition, which now contained 1000 examples,
described the new category as follows: “A new feature will be recognized
in a class of problems which found scarcely any place in former editions;
the class which includes investigations into the mean value of the largest
part, (or the smallest, or any other in order of magnitude) or of functions
of such a part, when a magnitude is divided at random”.

It is clear that Whitworth was actively working on this type of problem
at the time. Quoting again from the same preface, “the most important
addition in the body of the work is the very far-reaching theorem . . . which
enables us to write down at sight the mean value of such functions as α3,
α3β4, αβγ etc. when α, β, γ, . . . are the parts into which a given magnitude
is divided at random. I first published this theorem in a pamphlet in the
year 1898”. The calculations of quantities of this type given in the DCC

Exercises volume did not make use of the theorem, and were much longer.

From the above discussion it is clear that the problem with which we
are concerned was tackled by Whitworth at some date between 1886 and
1897, most probably close to the latter date.

5. Whitworth’s Solution

Whitworth divided the line into a number of discrete segments, which would
eventually be allowed to become very large. He then used standard combi-
natorial formulae which he had developed in the text to enumerate various
cases outlined in examples 666 and 667 (see Section 3).

We shall retain Whitworth’s notation for historical reasons, but shall
find it convenient to use generating functions to reproduce his combinatorial
formulae. Whitworth assumed that the line of length c was divided into
ωc equal elements. The given length a would then contain ωa elements.
Take a dummy variable x1 to enumerate the possible configurations of the
first segment, x2 the second segment, . . . , xn the nth segment. Then the
generating function which enumerates all configurations in any division of
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the line by n − 1 points is

F (t, x1, x2, . . . , xn) = (tx1+t2x2
1+· · · )(tx2+t2x2

2+· · · ) · · · (txn+t2x2
n+· · · )

(5.1)
assuming no two points are identical. The total number of segments is ωc
and therefore all possible configurations are enumerated by the coefficient
of tωc in F (t; x1, . . . , xn). If we need the total number of configurations,
we put x1 = x2 = · · · = xn = 1 and find the coefficient tωc−n in (1 − t)−n,
which is

(

ωc − n + n − 1

n − 1

)

=

(

ωc − 1

n − 1

)

=
(ωc − 1)(ωc − 2) · · · (ωc − n + 1)

(n − 1)!
.

(5.2)
For problem 666 one needs to enumerate all configurations with each

of the segments containing ωa or more elements, and Whitworth realized
that this was identical with finding all possible configurations which divide
a line of length c − nωa into n parts. This is clear from the generating
function approach, since the appropriate enumerator is now

tωaxωa
1 (1 + tx1 + t2x2

1 + · · · )tωaxωa
2 (1 + tx2 + t2x2

2 + · · · ) · · ·

× tωaxωa
n (1 + txn + t2x2

n + · · · ). (5.3)

We therefore require the coefficient of tω(c−na), i.e., of tωma (ma =
c − na) in (1 − t)−n, which is

(

ωma + n − 1

n − 1

)

=
(ωma + n − 1)(ωma + n − 2) · · · (ωma + 1)

(n − 1)!
. (5.4)

Hence the probability that no segment is less than a is found by taking the
quotient of (5.4) by (5.2) and is equal to

(ωma + n − 1)(ωma + n − 2) · · · (ωma + 1)

(ωc − 1)(ωc − 2) · · · (ωc − n + 1)
. (5.5)

When ω increases indefinitely, this reduces to

[ma/c]n−1 (5.5′)

For example 667, Whitworth pointed out that all orders of choice of
the r segments less than a, and the n− r segments greater than a, give rise
to the same number of configurations, and we can therefore deal with the
case in which the r segments are at the beginning and the n− r at the end,
and multiply by

(

n
r

)

. The enumerating generating function is then

(tx1 + t2x2
1 + · · · + tωa−1xωa−1

1 )(tx2 + t2x2
2 + · · · + tωa−1xωa−1

2 ) · · ·

× (txr + t2x2
r + · · · + tωa−1xωa−1

r )tωaxωa
r+1(1 + txr+1 + t2x2

r+1 + · · · )

× tωaxωa
r+2(1 + txr+2 + t2x2

r+2 + · · · ) · · · tωaxωa
n (1 + txn + t2x2

n + · · · ).
(5.6)
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Fig. 3. Random intervals on a line.

The total number of configurations is the coefficient of tωma+ωra−r in

(1 − tωa−1)r

(1 − t)r
(1 − t)−(n−r) = (1 − tωa−1)r(1 − t)−n. (5.7)

Expanding the first factor by the binomial theorem, we derive the series
(

n + ω(m + r)a − r − 1

n − 1

)

−

(

r

1

)(

n + ω(m + r − 1)a − r

n − 1

)

+

(

r

2

)(

n + ω(m + r − 2)a − r + 1

n − 1

)

− · · ·

+ (−1)s

(

r

s

)(

n + ω(m + r − s)a − r + s − 1

n − 1

)

+ · · · . (5.8)

In the limit of very large ω this simplifies very considerably; dividing by
(5.2) and taking the limit, we obtain

(

m + r

m + n

)n−1

−

(

r

1

) (

m + r − 1

m + n

)n−1

+

(

r

2

) (

m + r − 2

m + n

)n−1

+ · · ·

+ (−1)s

(

r

s

) (

m + r − s

m + n

)n−1

+ · · · + (−1)r

(

m

m + n

)n−1

. (5.9)

Expression (5.9) must be multiplied by
(

n
r

)

to obtain the complete solution.
Although (5.8) looks complicated, the generating function (5.7) from

which it is derived is quite simple, and the calculation of averages and
higher moments can be undertaken by standard routine.

The probability of complete coverage, with which we have been con-
cerned, corresponds to r = n, and is given by

1 −

(

n

1

) (

c − a

c

)n−1

+

(

n

2

) (

c − 2a

c

)n−1

+ · · ·

+ (−1)s

(

n

s

) (

c − sa

c

)n−1

+ · · · (5.10)

the series terminating at the last term before c − sa becomes negative.
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The solutions given above are the same as those derived later by Fisher
(1929) and Stevens (1939), with the slight adaptation needed for a problem
on a circle rather than on a line.

6. Use of a Poisson Process: Equal Intervals

The problem to be considered is the following (Figure 3).
Events occur at random on a line in a Poisson distribution, the proba-

bility of an occurrence in [y, y + dy] being λdy. Each event is the left-hand
end of an interval of length τ . Choose any section [0, y] of the line. Calcu-
late the probability z(y) that the section is completely covered.

We divide z(y) into mutually exclusive classes z(y, ξ) in which the last
event occurred between y − ξ and y − ξ − dξ. Then if y > τ , ξ cannot be
greater than τ or the section [0, y] would not be covered. Also, z(y, ξ) can
be decomposed into three independent contributions: (i) No event occurs
in [y−ξ, y]; (ii) an event occurs in [y−ξ−dξ, y−ξ]; (iii) the section [0, y−ξ]
is covered. Hence, we deduce that

z(y) =

∫ τ

0

z(y, ξ) dξ =

∫ τ

0

λe−λξz(y − ξ) dξ (y > τ). (6.1)

If y ≤ τ , we must take into account the additional possibility that an
event occurs in [y − τ, 0], and no event occurs in [0, y]; we easily find that

z(y) =

∫ y

0

λe−λξz(y − ξ) dξ + e−λy − e−λτ (y ≤ τ). (6.2)

Taking Laplace transforms in y in (6.1) and (6.2), we derive for the Laplace
transform Z(p) of z(y),

Z(p) =
p(1 − e−λτ ) − λe−λτ (1 − e−pτ )

p + λe−(p+λ)τ
. (6.3)

If the denominator is expanded as [1+ (λ/p)e−(p+λ)τ ]−1 and the terms are
interpreted individually, the combinatorial solution is obtained. If further
the solution is broken down into mutually exclusive classes in which exactly
n events occur in [0, y], the identity

z(y) =

∞
∑

n=0

λn

n!
e−λfn(y) (6.4)

can be deduced, where fn(y) is the probability for n events. In this way
the solution of Whitworth, Fisher, and Stevens can be simply derived.
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Fig. 4. Solution of xe−x = βe−β giving asymptotic decay.

But if we are interested in large y/τ , the asymptotic behaviour of z(y)
is determined by the zeros of the denominator of (6.3), i.e. by solutions −γ
of

q + βe−(β+q) = 0 (q = pτ, β = λτ). (6.5)

There is only one real root, −γ, which dominates the asymptotic behaviour,
the complex roots providing transients which rapidly decay. γ is the solu-
tion other than β of the equation

xe−x = βe−β (6.6)

(see Figure 4). We then find the asymptotic solution

z(y) ∼
e−β(β − γ)

γ(1 − γ)
e−γν (y = ντ). (6.7)

When β is large (high density of events), γ is small, and when β is small,
γ is large. The probability of an infinite cluster of overlapping intervals in
a one-dimensional percolating system is zero; equation (6.7) describes the
approach to zero as a finite system grows large.

The calculation for zk(y), the probability that the line contains k clus-
ters, follows similar lines. The integral equation is now

zk(y) =

{

∫ y

0 λe−λξzk(y − ξ) dξ (ξ ≤ τ)
∫ y

0 λe−λξzk−1(y − ξ) dξ (ξ > τ)
(6.8)

with special treatment for k = 1. Taking Laplace transforms, we find

Zk(p) =
λe−τ(p+λ)

p + λe−τ(p+λ)
Zk−1(p) =

(

λe−τ(p+λ)

p + λe−τ(p+λ)

)k−1

Z1(p). (6.9)
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Fig. 5. Stochastic distribution: covering of intervals.

From this it can be deduced that the asymptotic distribution of clusters,
in the limit of large ν (= y/τ), is normal with mean νβe−β and variance
ν[βe−β − 2β2e−2β ].

The calculation of W (x, y)dx, the probability that the covered portion
of the line is between x and x+dx, is more complicated, and the distribution
contains δ-function terms corresponding to various discrete probabilities.
The moments of the distribution can be calculated in a straightforward
manner. For example,

〈x〉 = y(1 − e−β)

〈x2〉 = y2(1 − e−β) − e−β

(

y2 −
2y

λ
+

2

λ2

)

+ e−2β

[

(y − τ)2 −
2(y − τ)

λ
+

2

λ2

]

. (6.10)

7. Stochastic Distribution of Intervals

When the intervals are not all equal the previous method breaks down
because an early event can overlap a later one (Figure 5). The behaviour
at the point y is no longer dependent only on the latest event at y− ξ1, but
all previous events at y − ξ1, y − ξ1 − ξ2, . . . , must be considered. The way
in which to deal with this new situation was demonstrated by Hammersley,
as we mentioned above in Section 2.

Assume a probability distribution of intervals u(τ)dτ , and divide z(y)
into mutually exclusive classes as follows:

z(y) = z(y; ξ1) + z(y; ξ1, ξ2) + z(y; ξ1, ξ2, ξ3) + · · · + z0(y) (7.1)

where z(y; ξ1) represents the class in which the point y is covered by the
last event at y − ξ1, z(y; ξ1, ξ2) represents the class in which the point is
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not covered by the last event at y − ξ1, but is covered by the last but one

at y − ξ1 − ξ2; z(y; ξ1, ξ2, ξ3) represents the class in which the point y is
not covered by the last two events, but is covered by the last but two at
y−ξ1−ξ2−ξ3; z0(y) represents the class in which no covering event occurs
in [0, y] but the point y is covered by an event occurring before. Write

U(τ) =

∫ τ

0

u(t) dt (7.2)

which represents the probability of an interval of length not exceeding τ ;
1 − U(τ) then represents the probability of an interval greater than τ . It
is easy to derive the following relations (Figure 5):

z(y; ξ1) =

∫ y

0

λe−λξ[1 − U(ξ1)]z(y − ξ1) dξ1 (0 < ξ1 < y)

z(y; ξ1, ξ2) =

∫∫

λe−λξ1U(ξ1) dξ1 λe−λξ2 [1 − U(ξ1 + ξ2)]

× dξ2 z(y − ξ1 − ξ2) (0 < ξ1, ξ2 < y, ξ1 + ξ2 < y)

z(y; ξ1, ξ2, ξ3) =

∫∫∫

λe−λξ1U(ξ1) dξ1 λe−λξ2U(ξ2) dξ2 λe−λξ3

× [1 − U(ξ1 + ξ2 + ξ3)] dξ3 z(y − ξ1 − ξ2 − ξ3)

(0 < ξ1, ξ2, ξ3 < y, ξ1 + ξ2 + ξ3 < y).
(7.3)

To see the structure of these relations, it is convenient to transform to
new variables,

η1 = ξ1, η2 = ξ1 + ξ2, η3 = ξ1 + ξ2 + ξ3, . . . (7.4)

so that the limits of integration in the new variables are

0 < η1 < η2 < η3 < · · · < y. (7.5)

We then find

z(y; η1) =

∫ y

0

λe−λη1 [1 − U(η1)]z(y − η1) dη1

z(y; η1, η2) =

∫∫

λ2U(η1) dη1 e−λη2 [1 − U(η2)]z(y − η2) dη2

z(y; η1, η2, η3) =

∫∫∫

λ3U(η1)dη1U(η2)dη2 e−λη2 [1 − U(η3)]z(y − η3)dη3.

(7.6)
The integration in η1 in z(y; η1, η2) yields a function of η2. Similarly, the
integrations of η1, η2 in z(y; η1, η2, η3) yield a function of η3. The structure
of equation (7.1) is therefore

z(y) =

∫ y

0

v(η)z(y − η) dη + z0(y) (7.7)
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which is still of the form amenable to Laplace transforms. The function
v(η) can be calculated by summing the successive contributions in (7.6).

However, we shall use a shortcut to evaluating v(η) by considering
a related problem, the probability ζ(y) that the point y is covered by an
event occurring in [0, y]. We can decompose ζ(y) in a similar manner to
(7.1)–(7.6) and we obtain the same integrals without the z(y − η) factors,
i.e.,

ζ(y) =

∫ y

0

v(η) dη. (7.8)

But the probability 1 − ζ(y) that the point y is not covered by an event
occurring in [0, y] was calculated in an elementary manner by Hammersley
(1953) to be

exp

[

−λy + λ

∫ y

0

U(t) dt

]

. (7.9)

The derivation is straightforward. Let us call an event which occurs in [0, y]
and covers the point y a covering event. The probability that a covering
event does not occur in the interval [y − ξ − dξ, y − ξ] is

exp
{

−λ[1 − U(ξ)] dξ
}

. (7.10)

But all such intervals from ξ = 0 to ξ = y are independent. Hence the
probability that no covering event occurs in [0, y] is the product of factors
of type (7.10) from ξ = 0 to ξ = y, and this leads directly to (7.9). Hence
we can derive v(y) by differentiating (7.8),

v(y) = λe−λy [1 − U(y)] exp

[

λ

∫ y

0

U(t) dt

]

. (7.11)

On examining (7.11) and comparing with (7.5) and (7.6), it is not diffi-
cult to see how the formula could be derived directly, the successive terms in
(7.6) corresponding to successive terms in the expansion of exp[λ

∫ y

0
U(t)dt].

It is convenient to introduce a function U(y) which is the complement
of U(y),

U(y) + U(y) = 1. (7.12)

Relations (7.9) and (7.11) assume a simplified form in terms of U(y) as
follows:

1 − ζ(y) = exp

[

−λ

∫ y

0

U(t) dt

]

, (7.13)

v(y) = λU(y) exp

[

λ

∫ y

0

U(t) dt

]

. (7.14)
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For a distribution u(τ)dτ which is zero for τ ≥ τ0, U(y) is also zero for
τ ≥ τ0; for a long-range distribution, U(y) provides a direct representation
of the tail.

The solution of (7.7) by Laplace transforms is very simple in principle,
and gives for the Laplace transform Z(p) of z(y)

Z(p) =
Z0(p)

1 − V (p)
(7.15)

where V (p) is the Laplace transform of v(y). As in Section 6 the asymptotic
behaviour of z(y) is determined by the roots of the denominator of (7.15),
and we shall find close parallels to the behaviour for equal intervals.

8. Distributions with a Finite Mean Value

It is important to discuss the general behaviour of the function V (p) as p
decreases from +∞ through zero to −∞. First note that v(y) is positive
for all y. Hence

V (p) =

∫

∞

0

v(y)e−py dy (8.1)

increases monotonically as p decreases. Thus, there can be only one real
root of the equation V (p) = 1.

We illustrate this behaviour by reconsidering the case of equal inter-
vals, for which

u(t) = δ(t − τ) (8.2)

v(y) =

{

λe−λy y ≤ τ

0 y > τ
(8.3)

V (p) =
λ

p + λ

[

1 − e−τ(p+λ)
]

. (8.4)

For large positive p, V (p) is small; as p decreases to zero, V (p) rises to
(1 − e−λτ ); and at p = 0, it is therefore less than 1; for negative p, it
continues its steady increase, becoming 1 at a unique negative value −γ/τ ;
it then increases exponentially for large p.

Let us now consider a general distribution with a finite cutoff τ0. From
(7.14) we see that v(y) is zero for y > τ0. The general pattern of behaviour
is similar to that for equal intervals, the value for p = 0 being given, from
(8.1), by

V (0) =

∫

∞

0

v(y) dy. (8.5)

Using (7.8) and (7.13), we find that

V (0) = 1 − exp

[

−λ

∫

∞

0

U(t) dt

]

. (8.6)
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But
∫

∞

0

U(t) dt =
[

tU(t)
]

∞

0
+

∫

∞

0

tu(t) dt = τ (8.7)

which is the average length of interval. Therefore

V (0) = 1 − e−λτ (8.8)

which is again less than 1. Hence V (p) reaches the value 1 for a negative
value of p = −γ/τ , and by analogy with (6.7) the asymptotic behaviour of
z(y) is an asymptotic decay, exp(−γy/τ). The probability of the line [0, y]
being covered tends to zero for large y, i.e., there is no percolating cluster.

Now consider a distribution with a long tail of the form

u(τ) ∼
A

τs
. (8.9)

Then

U(y) =

∫

∞

y

u(τ) dτ ∼
A

(s − 1)y
. (8.10)

Reverting to equation (8.7), the integral on the left-hand side exists if s > 2,
τ is defined, and the equation remains valid. Hence the argument of the
previous paragraph can be repeated, and there is no percolating cluster.

The argument can be extended to a distribution of the form

u(τ) ∼
A

τ2(ln τ)s
(s > 1) (8.11)

for which the integral of tu(t) converges to give a finite mean value τ . We
now have

U(y) ∼
A

(s − 1)y(ln y)s−1
(8.12)

and equation (8.7) is still valid. Again there is no percolating cluster for
large y. The argument applies equally for

u(τ) ∼
A

τ2(ln τ)(ln ln τ)s
,

A

τ2 ln τ(ln ln τ)(ln ln ln τ)s
, . . . (s > 1) (8.13)

the general conclusion being that as long as the mean interval of the dis-
tribution is finite, z(y) decays exponentially for large y.

9. Distributions with an Infinite Mean Value

For a distribution u(τ) for which the integral of tu(t) does not converge, i.e.,
for which τ becomes infinite, the argument of the previous section would
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indicate that V (0), which is equal to 1− e−λτ , becomes equal to 1. Hence,
from (7.15) the dominating term in the asymptotic behaviour of z(y) will
no longer be an exponential decay, but a constant. Therefore the system
should now have a percolating cluster.

We can use the argument of Section 7 to specify in more detail what
happens. Consider the probability that the point y is not covered by an
event which has occurred in [−y0, 0]. Using equation (7.10), we see that
this probability is given by

exp

[

−λ

∫ y+y0

y

U(ξ) dξ

]

. (9.1)

But for any of the distributions of the previous section for which τ is
infinite [(8.9) with s ≤ 2; (8.11) and (8.13) with s ≤ 1] the integral of U(ξ)
diverges, and by choosing y0 sufficiently large, (9.1) can be made as small
as we please. Hence there is probability 1 that the point y is covered by an
event occurring before 0, i.e., that the interval [0, y] is completely covered
by such an event. This corresponds to a percolating cluster.

We therefore find that with such distributions percolation occurs how-
ever small the value of λ, so that the system becomes critical however small
the percolation probability.
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