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Abstract

A new substitution method improves bounds for critical probabilities of
the bond percolation problem on the Kagomé lattice, K. The method
theoretically produces a sequence of upper and lower bounds, in which the
second pair of bounds establish

.5182 ≤ pc(K) ≤ .5335.

1. Introduction

Percolation processes were introduced by Broadbent and Hammersley in
1957 as models for the flow of a fluid through a random medium. A bond

percolation model is comprised of an infinite lattice graph G, with each
bond independently designated as open with probability p, 0 < p < 1, and
closed with probability q = 1 − p. The open cluster containing a specific
vertex v ∈ G, denoted Cv, is the set of all vertices that can be reached from
v through a path of open bonds. Let Pp denote the probability measure
corresponding to parameter value p. The critical probability of the graph
G, denoted by pc(G), is defined by pc(G) = inf{p : Pp[|Cv| = ∞] > 0},
which is independent of the vertex v if G is connected.

Since the seminal papers on mathematical percolation theory (Broad-
bent and Hammersley 1957; Hammersley 1957), there has been considerable
interest in determining exact values of the critical probability for specific
lattices. Sykes and Essam (1964) gave a heuristic determination of exact
critical probability values for the square, triangular, and hexagonal lattice
bond percolation models, and the value 1

2
for the triangular lattice site
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percolation model. Verifying these values was a focus of research for nearly
two decades. Even now, their method has not been completely justified.

The first rigorous determination of the critical probability of a periodic
graph was due to Kesten (1980), who proved that the critical probability
of the square lattice bond model is 1

2
. Wierman (1981) verified the values

conjectured by Sykes and Essam for the triangular and hexagonal lattice
bond model critical probabilities. The critical probabilities of two lattices
for which no values were previously conjectured were found by Wierman
(1984). The key aspects of these proofs were the use of planar graph
duality, and (for graphs that are not self-dual) use of the star-triangle
transformation. However, only these few cases currently have rigorous
solutions, and there is no general method for rigorously determining critical
probability values. There are only a few techniques for generating bounds
on the critical probability of other graphs, and these provide unsatisfying
results. In no case do they provide bounds that completely determine
the leading digit of the critical probability value. For example, prior to
this work, the Kagomé lattice bond model was known to satisfy .4045 ≤
pc(K) ≤ .6180. (See Wierman 1988.) The purpose of this paper is to
introduce a rigorous method for determining much more accurate bounds
for two-dimensional bond percolation models.

A key aspect of the proofs of Wierman (1981, 1984) is use of the star-
triangle transformation, which was a crucial tool in Sykes and Essam’s
derivation for the triangular and hexagonal lattice bond models. Ottavi
(1979) also used the star-triangle transformation to compute upper and
lower bounds for the Kagomé lattice, by a non-rigorous argument. In each
case, two lattices are related by a substitution of portions of one lattice into
the other, while applying an appropriate transformation to the parameters
in the percolation model. In the cases considered by Wierman (1981, 1984),
transformations provide the equivalence of two models, while in Ottavi’s
case an exact transformation does not exist. Motivated by this previous
work, we propose a modified ‘substitution method’ which can be rigorously
verified. The method has the advantage of providing both upper and lower
bounds. In fact, by considering larger portions of the lattices as the basic
units of substitution, sequences of upper and lower bounds are obtained.
While the computations become increasingly unwieldy, the first two bounds
have been computed for the Kagomé lattice, and suggest that the bounds
converge rapidly to the true critical probability value, although there is no
proof of convergence.

To illustrate the method, and familiarize the reader with the basic
ideas, we begin §2 by calculating the first of the sequence of upper and
lower bounds for the Kagomé lattice: .5182 ≤ pc(K) ≤ .5413. The best
previous upper bound, derived by the contraction principle of Wierman
(1988), was pc(K) ≤ .6180, while the best lower bound was by containment
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Fig. 1. The Kagomé lattice.

in the bowtie lattice, giving pc(K) ≥ .4045. Later in §2, the upper bound
is improved further, to pc(K) ≤ .5335, by computing the second bound in
the sequence.

The bounds obtained contradict an early Monte Carlo estimate of
.449± .032 by Dean (1963), and a renormalization group method estimate
of .4697 by Murase and Yuge (1979). A Monte Carlo estimate of .526 by
Neal (1972) is consistent with these bounds. It is rare to have sufficiently
accurate rigorous bounds to rule out such estimates.

The substitution method introduced and applied to the Kagomé lat-
tice in §2 may also be applied to other lattices. Preliminary work on the
pentagon lattice bond percolation model indicates substantial improvement
over the best previous bounds, obtained by Wierman (1988) by the con-
traction principle. Research in progress is investigating the possibility of
extending the method to site percolation models, and suggests that the
best current bounds for the square lattice site model may be improved.

Some necessary definitions and background material are included in
the description of the substitution method presented in §2. The proof
itself is given in §3. It shows the equivalence of two partial orders on the
set of probability measures on a partially ordered set.

2. Kagomé Lattice Computations

We begin by illustrating the computation of bounds for the Kagomé lat-
tice bond percolation critical probability, deferring the justification for the
computations until §3. The Kagomé lattice is shown in Figure 1. It arises
as the dual graph of the dice lattice, and also as the covering graph or line
graph of the hexagonal lattice.
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Fig. 2. Superposition of a triangle and a three-star.

Comparison with the Hexagonal Lattice

Note that the Kagomé lattice may be partitioned into disjoint triangles.
By substituting a three-star for each triangle in K, we obtain the graph
H⋆, which may be recognized as a subdivision of the hexagonal lattice H
with one vertex subdividing each edge of H. Since the critical probability
of bond percolation on H is exactly 1−sin π

18
(see Wierman 1981), the bond

percolation critical probability of H⋆ is q0 = {1 − 2 sin π
18
}1/2 ≈ .807901.

In the remainder of this section, we first construct two probability mea-
sures on partitions of the vertices on the boundary of the triangle and the
three-star, derived from the bond percolation models on the Kagomé and
subdivided hexagonal lattices. We introduce a concept of stochastic order-
ing which allows us to compare these probability measures, and determine
a parameter value pL so that the probability measure corresponding to per-
colation on K is stochastically smaller than that associated with H⋆ with
parameter .807901, and a parameter value pU such that the reverse holds.
In §3, we show that pL and pU are in fact lower and upper bounds for
pc(K).

Boundary Partitions

Consider a three-star and a triangle superimposed as in Figure 2, denot-
ing the vertices on the boundary by A, B, and C. Any configuration (a
designation of bonds as open and closed) on the triangle partitions the
boundary vertices {A, B, C} into clusters of vertices which are connected
by open bonds, and similarly for configurations on the three-star. Each
such boundary partition may be denoted by a sequence of vertices and ver-
tical bars, where vertices are in distinct open clusters if and only if they
are separated by a vertical bar.

The percolation model on the Kagomé lattice with parameter p in-
duces a probability measure on the set of boundary partitions, in which
the probability of a particular boundary partition is the sum of the prob-
abilities of all configurations on the triangle which produce that boundary
partition. Simple calculations show that this probability measure, which
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we denote by PK
p , is given by

PK
p [ABC] = 3p2(1 − p) + p3,

PK
p [AB | C] = PK

p [AC | B] = PK
p [A | BC] = p(1 − p)2,

PK
p [A | B | C] = (1 − p)3.

Similarly, a different probability measure on the boundary partitions is
determined by the percolation model on the subdivision of the hexagonal
lattice with parameter q. We denote this probability measure by PH

q , and
compute that

PH
q [ABC] = q3,

PH
q [AB | C] = PH

q [AC | B] = PH
q [A | BC] = q2(1 − q),

PH
q [A | B | C] = 3q(1 − q)2 + (1 − q)3.

We will compare these two probability measures to derive the critical prob-
ability bounds for the Kagomé lattice.

The Partition Lattice

For two boundary partitions π and σ, we say that σ dominates π, denoted
π ≤ σ, if any two elements u and v that are in a cluster in π are also
in a cluster in σ. Equivalently, π ≤ σ if and only if every cluster of π is
wholly contained in a cluster of σ, or, conversely, every cluster of σ fully
decomposes into clusters of π. If this is the case, π is called a refinement

of σ. The set of boundary partitions on a given graph, when ordered by
refinement, is a partially ordered set which is in fact a lattice, called the
partition lattice.

In our example above, we see that ABC dominates each of AB |
C, AC | B, and A | BC in the refinement ordering, which in turn each
dominate A | B | C.

Stochastic Ordering of Probability Measures on Partially Ordered Sets

Let (S,≤) be a finite partially ordered set (also called a poset). A function
P : S → [0, 1] is a probability measure on S if P (s) ≥ 0 for all s ∈ S and∑

s∈S P (s) = 1. P may be defined on subsets of S by P [A] =
∑

s∈A P (s).
(Note that we use the same notation for the probability measure and its
frequency function.)

A filter in a partially ordered set S is a subset F ⊂ S such that if
g ≥ f and f ∈ F , then g ∈ F. For A ⊂ S, the set {x ∈ S : x ≥ a for some
a ∈ A} is a filter, denoted F (A), called the filter generated by A.

For two probability measures P and Q defined on a partially ordered
set S, we say that P is stochastically smaller than Q, denoted P ≤S Q,
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if for each filter F , P [F ] ≤ Q[F ]. If the partially ordered set is a subset
of the real line with the usual ordering, this definition agrees with the
usual concept of stochastic ordering. Note that two probability measures
may be incomparable with respect to the stochastic partial ordering ≤S .
Any filter is generated by its minimal elements. Thus, it is not necessary
to check the inequality for filters generated by all subsets, but only for
the filters generated by sets called anti-chains (in which all elements are
incomparable).

Computation of Bounds

In §3, it is shown that if PK
p ≤S PH

q0
, then p is a lower bound for the critical

probability of the bond percolation model on the Kagomé lattice, and that
if PH

q0
≤S PK

p , then p is an upper bound for the critical probability of the
bond percolation model on the Kagomé lattice. Therefore, to compute a
lower bound for pc(K), we solve for the largest p satisfying the following
four inequalities: from the filter consisting of only ABC,

3p2(1 − p) + p3 ≤ q3

0 ;

from the filters generated by one, two, or all three of AB | C and AC | B
and A | BC,

p(1 − p)2 + 3p2(1 − p) + p3 ≤ q2

0(1 − q0) + q3

0

2p(1 − p)2 + 3p2(1 − p) + p3 ≤ 2q2

0
(1 − q0) + q3

0

3p(1 − p)3 + 3p2(1 − p) + p3 ≤ 3q2

0
(1 − q0) + q3

0
.

(The filter generated by A | B | C consists of the entire partially ordered
set, which has probability one in both measures.) Numerical solution of
the inequalities produces the upper bound

pc(K) ≤ .5413.

Reversing all four inequalities and solving, we obtain the lower bound

pc(K) ≥ .5182.

Sequences of Bounds

By partitioning the Kagomé lattice into larger regions, and carrying out
the same process of substitution of corresponding regions of the H∗ lattice,
a sequence of bounds may be obtained.

To illustrate, a second pair of bounds for pc(K) may be obtained by
considering a region consisting of two adjacent triangles, shown in Figure 3.
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Fig. 3. Superposition of a pair of triangles and a pair
of three-stars, used in determining the second set of critical
probability bounds.

For the percolation model on K with parameter p, the probability measure
PK

p is given by:

PK
p [ABCD] = [3p2(1 − p) + p3]2,

PK
p [ABC | D] = PK

p [ABD | C] = PK
p [ACD | B] =

= PK
p [BCD | A] = [3p2(1 − p) + p3]p(1 − p)2,

PK
p [AB | CD] = 2[3p2(1 − p) + p3]p(1 − p)2 + p2(1 − p)4,

PK
p [AC | B | D] = PK

p [AD | B | C] = PK
p [BD | A | C] =

= PK
p [BC | A | D] = p2(1 − p)4,

PK
p [AB | C | D] = PK

p [CD | A | B] =

= p(1 − p)[4p(1 − p)3 + (1 − p)4 + p2(1 − p)2] + (1 − p)4p2.

For the percolation model on H∗ with parameter q0, we determine PH
q0

to
be:

PH
q0

[ABCD] = q6

0 ,

PH
q0

[ABC | D] = PH
q0

[ABD | C] = PH
q0

[ACD | B] =

= PH
q0

[BCD | A] = q5

0
(1 − q0),
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PH
q0

[AB | CD] = q4

0(1 − q2

0),

PH
q0

[AC | B | D] = PH
q0

[AD | B | C] = PH
q0

[BD | A | C] =

= PH
q0

[BC | A | D] = q4

0(1 − q0)
2,

PH
q0

[AB | C | D] = PH
q0

[CD | A | B] =

= q2

0 [(1 − q0)
2 + 2q0(1 − q0)(1 − q2

0)].

Numerical solution of the inequalities generated by all filters provide
the bounds

.5182 ≤ pc(K) ≤ .5335.

The upper bound is an improvement over the first calculation, but the lower
bound is identical, since the inequality generated by the filter consisting of
ABCD is equivalent to that in the first step, and is the active constraint.
The smallest region that will produce an improvement in the lower bound
is a ring of six triangles in K, for which the computations have not been
completed.

If one considers a sequence of larger regions, each a union of copies
of its predecessor, one will obtain monotone sequences of upper and lower
bounds. It is not known if these sequences converge to the true critical
probability value, although the computational results suggest rapid con-
vergence.

3. Justification

The Flow Ordering

Let Q be a probability measure on a partially ordered set (S,≤). If s ∈ S
with Q[s] > 0, and t ∈ S with t < s, we may construct a new probability
measure P by moving probability mass x, 0 < x < Q[s], from s to t.
Formally, define P by letting P [s] = Q[s] − x, P [t] = Q[t] + x, and P [u] =
Q[u] for u 6= s, t. Since the construction moves probability downward in
the poset (from one element to another that it dominates), we say that P
is constructed from Q by a downward flow.

The concept of downward flow leads to a partial ordering on the set
of probability measures on the poset (S,≤). We call a finite sequence of
downward flows a flow sequence. A flow sequence on a subset F of S moves
probability only between elements of F , leaving the probability measure
unchanged elsewhere. Define the flow ordering, ≤F , by letting P ≤F Q if
and only if P may be constructed from Q using a flow sequence.
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The downward flow operation may be interpreted in terms of random
variables. The probability measure Q is the distribution of an S-valued
random variable X . A downward flow moving probability mass x in Q from
s to t, where s > t, produces a probability measure which is the distribution
of the S-valued random variable which takes the value X if X 6= s or if
Bx,s,t = 0, and the value t if X = s and Bx,s,t = 1, where Bx,s,t is a
Bernoulli random variable, independent of X , with P [Bx,s,t = 1] = x/Q(s).
We will denote this random variable by X ∗ Bx,s,t. Thus, if P ≤F Q
and X has distribution Q, there exist Bernoulli random variables Bxi,si,ti

,
i = 1, 2, . . . , n, (corresponding to a flow sequence) such that X ∗Bx1,s1,t1 ∗
· · · ∗ Bxn,sn,tn

has distribution P .

Inequalities Between Percolation Probabilities

Consider probability measures PK
p and PH

q on a partition lattice derived
from percolation models on the Kagomé and H∗ lattices. Fix the param-
eter values p and q so that PK

p ≤F PH
q . We will construct related bond

percolation models on K and H⋆ by the following procedure.

Superimpose K on H∗ so that each triangle in K exactly contains
one three-star of H∗. Construct the percolation model on H⋆ as usual,
by declaring each edge to be open with probability q, independently of all
other edges. This creates a random boundary partition Xσ with probability
distribution PH

q on the set of boundary vertices of each star-triangle pair
σ in H∗.

Since PK
p ≤F PH

q , there is a flow sequence which produces PK
p from

PH
q . Thus, for each star-triangle pair σ there exist independent Ber-

noulli random variables (independent of those for other star-triangle pairs)
Bσ,xi,si,ti

such that Yσ = Xσ ∗Bσ,x1,s1,t1 ∗ · · · ∗Bσ,xn,sn,tn
has distribution

PK
p exactly.

Define vertices u and w of K to be in the same open cluster if and
only if there exists a sequence of vertices u = v0, v1, v2, . . . , vk−1, vk = w
for some k, such that for each i = 1, 2, . . . , k, vi−1 and vi are on a common
star-triangle pair σ and are in the same boundary partition set in Yσ. With
this definition, for each connected subgraph C in K, the probability that C
is an open cluster is identical in the model just described and in the bond
percolation model on the Kagomé lattice with parameter p.

Let C(H∗) denote the open cluster in H∗ containing a fixed vertex v ∈
K, and let C(K) denote the open cluster in K containing v. By construction,
the boundary partition of each triangle in K is a refinement of the boundary
partition of the corresponding three-star in H∗. Therefore, u ∈ C(K)
implies u ∈ C(H∗), so C(K) ⊂ C(H∗). If q < pc(H

∗), then PH
q [|C(H∗)| =

∞] = 0, so PK
p [|C(K)| = ∞] = 0 also. Thus, q < pc(H

∗) implies p < pc(K).

It follows that to compute a lower bound for pc(K) it is sufficient to
find the largest value of p such that PK

p is smaller than PH
q0

in the flow
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ordering. Similar reasoning applies to the determination of upper bounds.
In order to conveniently compute such values of p, in the following we show
that the flow ordering is equivalent to the stochastic ordering.

Combinations of Flow Sequences

Let f and g be flow sequences on a poset (S,≤). For λ ∈ [0, 1], define λf
to be the sequence of flows which moves probability mass λa from s to t
whenever f moves a from s to t. Define f + g to be the downward flow
sequence which moves a + b from s to t whenever f moves a and g moves
b from s to t.

Suppose Qf and Qg are the probability measures obtained from Q
by applying the downward flow sequences f and g respectively. Then the
measure Qλ, corresponding to fλ = λf +(1−λ)g, satisfies Qλ[s] = λQf [s]+
(1− λ)Qg[s] for all s ∈ S, so is a linear function of λ at each element of S.

Equivalence of Stochastic Ordering and Flow Ordering

It is easy to see that if P is obtained from Q by a flow sequence, then
P is stochastically smaller than Q. (It suffices to check this for a single
downward flow.) We next show that the converse is true, so, in fact, the
partial orders ≤S and ≤F on the set of probability measures are equivalent.

Let P and Q be probability measures on a partition lattice S, satisfying
P ≤S Q. The excess of Q relative to P at a set V of elements of S is defined
by eQ/P (V ) = max {Q[V ]−P [V ], 0}. Similarly, the deficit of Q relative to
P on V is defined by dQ/P (V ) = max {P [V ] − Q[V ], 0}.

Suppose that there does not exist a flow sequence which produces P
from Q. Consider the set F of filters F for which no flow sequence on F
can produce a probability Q′ from Q which satisfies Q′[s] ≥ P [s] for all
s ∈ F . F is non-empty, since the entire poset S is in F by hypothesis.

Let A be a minimal filter in F (when F is ordered by set inclusion).
Consider the probability measure Q′ obtained from Q by a flow sequence
on A which minimizes the sum of deficits (of Q′ relative to P ) of elements
in A. If there exist elements of A which are not minimal and have positive
excesses, allow the excess to flow downward so that only minimal elements
of A have positive excesses. This cannot increase the deficit sum, since
it removes probability only from elements with positive excesses. It also
cannot decrease the deficit sum, since the original flow sequence minimizes
the deficit sum. Denote the resulting flow sequence by f0 and the corre-
sponding probability measure by Q0.

If Q0 has no positive excess relative to P at any element of A, then since
by hypothesis there is an element with a positive deficit, the filter A satisfies
P [A] > Q0[A]. However, the flow sequence f0 kept all Q-probability in A
while constructing Q0, so Q0[A] = Q[A], which implies that P [A] > Q[A].
This exhibits a filter for which the stochastic ordering condition fails, so
P ≤S Q does not hold.



Critical Percolation Probability of the Kagomé Lattice 359

If Q0 has a positive excess relative to P at an element of A, let E
denote the set of elements with positive excesses and D denote the set of
elements with positive deficits.

Note that the set A \E is a filter, since all elements of E are minimal
in A. By the minimality of A, there exists a flow sequence f1 on A \ E
which produces a probability measure Q1 satisfying Q1[s] ≥ P [s] for all
s ∈ A \ E.

Consider the flow sequences fλ = λf0 + (1 − λ)f1, where 0 < λ < 1,
denoting the resulting probability measures by Qλ.

If s ∈ A \ (E ∪D), we have P [s] = Q0[s] ≤ Q1[s] and thus by linearity
Qλ[s] ≥ P [s] = Q0[s] for all λ.

If s ∈ E, then by definition Q0[s] > P [s]. Although Q1[s] may be less
than P [s], by linearity there exists ǫs > 0 such that Qλ[s] ≥ P [s] for all
λ < ǫs. Since E is a finite set, there exists ǫE such that for all s ∈ E and
for all λ ≤ ǫE we have Qλ[s] ≥ P [s].

If s ∈ D, then Q0[s] < P [s] and Q1[s] ≥ P [s], so Qλ[s] is a strictly
increasing function of λ, and thus the deficit of Qλ relative to P at s is
strictly decreasing as a function of λ.

Thus, for λ ≤ ǫE , Qλ has no positive deficits relative to P except at
elements of D, at which the deficits are strictly decreasing functions of λ.
Hence, each fλ, 0 < λ < ǫE , is a flow sequence on A which produces a
smaller sum of deficits at elements of A than f0. Since this is a contradic-
tion, there actually is no element s with eQ0/P (s) > 0.

Therefore, if there is no flow sequence that can obtain P from Q, there
exists a filter A such that P [A] > Q[A], so P ≤S Q does not hold. Hence,
the partial orderings ≤F and ≤S on the set of probability measures on a
poset S are equivalent.
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