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Measurement-based connection admission control
R. J. Gibbens and F. P. Kelly
aStatistical Laboratory, University of Cambridge, 16 Mill Lane, CambridgB2 1SB

The performance of measurement-based admission control depends upon statistiaed
tions between several time-scales, ranging from the very short tinessassociated with cell
or packet queueing, through burst time-scales, to the time-scales asdauitht admission de-
cisions and the holding times of connections. In this paper we continue the development of
a modelling approach which attempts to integrate these several tines,saad illustrate its
application to the analysis of a family of simple and robust measuremend-bds@ssion con-
trols. A subsidiary aim of the paper is to shed light on the relationship betviregeadmission
control proposed for ATM networks by Gibbeasal [9] and that proposed for controlled-load
Internet services by Floyd [7]. We shall see that their common origin in Chielooinds al-
lows the definition of a simple and general family of admission controls, caedléeloring
for several implementation scenarios.

1. Introduction

There is by now a fairly good understanding of the behaviour of a queue whose arrival pro-
cess is the superposition of many independent stationary streams. Resultallgéased on
large deviations theory, have shed considerable light on how a resource in a mgiseoad-
band network can statistically multiplex a given collection of wellvaloterized sources. There
arise, however, several difficulties in the extension of this work to utaledsthe behaviour
of measurement-based admission control for multiservice networks where sooagenot be
well characterized. One major difficulty is that buffer overflow in saatetwork is generally a
consequence of the combined effects of both extreme measurement errors thabalioany
sources admissiandthe subsequent extreme behaviour of admitted sources. The first effect is
naturally analysed on the time scales associated with admissionahecasid the holding times
of connections, while any analysis of the second effect requires an understandiegsttisti-
cal characteristics of sources over time scales comparable to thaltippgy period preceding
a buffer overflow.

In [9] an attempt was made to study this interaction between time sgdlea simple Markov
chain model. In this paper we continue the development of this modelling approach usnd ill
trate its application to the analysis of a simple and general family of ailonigontrols.

Some of the theoretical background to the admission control of this paper is deseribed i
the Appendices; this background has motivated our choice of the acceptance regions for our
admission controls, but stops well short of providing a full understanding of the ittarac
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between time scales, and there remains much work to be done. Jamin andr§h&hkave
conducted a simulation-based comparison of several measurement-basesicadooistrol al-
gorithms, including [7] and [9]. We view the approach of this paper to be complementary t
the simulation approach: each has its strengths and weaknesses, and a fullstanddey of
measurement-based admission control will require contributions from theodglimg, simu-
lation and experiment. For several other approaches to admission contrd, 5ed 8].

2. The basic model
The description of our basic model is self-contained, but for further background se&{9].

n;(t)

S(t) = Z Si(t),  Si(t) =Y Xjlt) 1)

j:1 =1

whereX;(t), for distinct values of, j andt, are independent random variables with

PO = h =50 PG =0 =150 ’

m; m;
We interpretX;;(¢) as the load produced by a connection of claastimet. There aren; con-
nections of clasg each with peak rate; and mean rate:;. The rate of load lost at a resource of
capacityC is thenM (n) = E(S — C)*" wheren = (ny,ns, ... ,n;). Let connections of clags
arrive in a Poisson stream of ratg let the holding times of accepted connections be indepen-
dent and exponentially distributed with parameter Let S(t) = (S:(t), Sa(t), ... ,Ss(%))
and let A(n) be a subset oN’/. Suppose that a connection arriving at timé accepted
if S(t) € A(n) and is rejected otherwise; suppose also that if a connection is rejectetaro ot
arriving connection is considered for acceptance waftér a connection currently in progress
has ended. Call the period between the rejection of a connection and the timehehfestt
connection then in progress ends theckoff period1,2,9]. Letd(¢) = 1 or 0 according as at
time ¢ the system is in a backoff period or not. Thai(t),d(t)) is a Markov chain, with the
following off-diagonal transition rates

(n+e;,0) atratev;a(n)

(n,0) — ¢ (n —e;,0) atrateu;n; (3)
(n, 1) atrated_; v;(1 — a(n))
(n,1) — (n —e;,0) at ratey;n; . 4)

Heree; is a vector with d in the jth component and zeros otherwise aifd) is the acceptance
probabilitya(n) = P{S(t) € A(n)}.
The proportion of load lost is

I— E M (n)
EY 7 nym;

where the expectation is taken over the siatd the Markov chain.

: (5)



The time parameterappearing in the above model describes the time-scale associated with
admission decisions and the holding times of connections. However the meassrefead,
that provide the random variables(t), are taken over a time periadthat is typically very
much shorter and comparable with the length of the typical busy period preceding dilow
from a cell or packet buffer. The step between the queueing model, describiogtant cor-
relation effects on the short time scale, and the above bufferless nu@sekibing admission
decisions on the longer time scale, is outlined in Appendix B.

Note that we daot allow the admission decision to depend upon the peak rate of the current
connection request, since this will produce an implicit bias towards connectitimtow peak
rates: for the above scheme blocking probabilities are constant across conmtasses. In
Section 5 we extend the admission mechanism to give explicit priority tainezonnections
when the resource is near capacity.

3. Admission control schemes

How should the regioni(n) be chosen? In this paper we investigate some choices, each mo-
tivated by a particular choice of Chernoff bound. The choices correspond to diffaregerits
to the effective bandwidth function, and are described in more detail in Appéndix

Tangent at peak: let

Ai(n) = {s 2 (b (1—e M) ny+e s < C} : (6)

Tangent at arbitrary location: let

An(n) = {S : Z{ e } (7 (e — 1) nj + h;S;) < C} (7)

(hy + 1 (eths —1))°

J

wherem; € (0, h;) are constants, which might be interpreted as predicted mean rates.

Tangent of slope one:Our next choice of acceptance regidiin) is that suggested by the
Hoeffding bound, a bound whose use for admission control has been carefully discussed by
Floyd [7]. Let

Tangent at origin: let

Ay (n) = {s : Zeshv‘sj < C} . (9)

Note that the various acceptance regions may have different implications pbermenta-
tions. For example, the acceptance regibi; (n) does not depend upon the entire vecor
but only upon the aggregate measuremEgtSj. In contrast, the acceptance regidn, (n)
depends upon the vect8t but not upon the vectai: this is referred to as thiwad onlycase
in [9].
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Figure 1. The left panel shows how the utilization decreases and the celatassmproves, as
the control parameter increases. The right hand panel concerns the third scheme for a fixed
values = 0.2; note that the posterior distribution tails off rapidly as bethandn, increase.

4. Numerical investigations

4.1. Trading off cell loss ratio against utilization

Any connection admission control must address the trade-off between cellndssgibza-
tion (or, equivalently, connection blocking). In our schemes the parametentrols this
trade-off, which is illustrated in the left panel of Figure 1, under the foltayiraffic condi-
tions (A1, hy, mq, 1) = (15,1,0.5,1), (Ag, hg, ma, po) = (5,4,0.1,1), where); = v;m; is the
offered loadfor a connection of typg andC' = 50. Note that the first and third schemes behave
similarly, as do the second and fourth schemes; no substantial differeabsdsved between
the schemes.

The right panel of Figure 1 shows contours of the posterior distribution for the vecgiven
that a cell loss has just occurredmn|cell los§ = 7(n)M(n)/ )", 7(n’)M(n'), wherer(n) is
the stationary distribution of the Markov chain These results used the third scheme with the
values = 0.2.

4.2. Sensitivity to traffic mix
Next we consider the sensitivity of the third scheme to traffic mix. (In [®ld4d, p 1112] a
similar investigation was considered for the fourth scheme.) Suppose thatgheityC' = 50
and there are three/(= 3) traffic types with parameters given By, m, u;) = (1,0.5,1),
(ha, ma, ug) = (2,0.5,1) and(hsz, m3, u3) = (4,0.5,1).
Table 1 show the results for the cell loss ratio, utilization and connectiokibigprobability
for the third scheme under a range of traffic patterns. In this investigatiaotiieol parametes
is fixed throughout at = (.75, a value which ensures a satisfactory cell loss ratio over the entire
range of traffic mixes considered.



Table 1
Cell loss ratio, utilization and connection blocking for the third scheme. @bdéat the cell

loss ratio remains well controlled over a wide range of traffic mix.

A1 Ao A; Cellloss ratiolog,,(L) Utilization Blocking
25.000 0.000 0.000 -11.01 23.66 0.054
12.500 12.500 0.000 -8.14 21.41 0.144

0.000 25.000 0.000 -12.38 13.47 0.461
0.000 12.500 12.500 -9.93 10.13 0.595
0.000 0.000 25.000 -10.23 7.18 0.713
12.500 0.000 12.500 -9.78 11.37 0.545
6.250 9.375 9.375 -9.57 12.08 0.517
6.250 6.250 12.500 -9.83 10.72 0.571
9.375 6.250 9.375 -9.53 12.48 0.501
12.500 6.250 6.250 -9.14 14.91 0.404
9.375 9.375 6.250 -9.20 14.35 0.426
6.250 12.500 6.250 -9.25 13.82 0.447
8.333 8.333 8.333 -9.44 12.90 0.484

5. Priorities

In this section we consider a model of two traffic classes with timgiugroffered loads.
The backoff mechanism discussed earlier is amended so that explicitipa@adtn be assigned
to connections offered to the system. This is achieved by extending the stagevsipia an
indicator taking values di, 1 or 2. The precise description of the off-diagonal transition rates
for the Markov chain are as follows

(n+e;,0) atratev;a(n)
(n,0) — ¢ (n —e;,0) atrateu;n; (10)
(n,2) atrate) , v;(1 — a(n))

n—e;, 1) atrateyn;(1 — )

(
(1) — (n —e;,0) atratey;n;a (11)
n, : i

(n+e;,1) atratev;a(n)p

(n,2) atrate , v;(1 — a(n))
(n,2) — (n—e;,1) at ratey;n,; . (12)

In this model a connection of any traffic class is a high priority connection pvitbability p
or a low priority connection with probability — p, independent of the state of the Markov
chain. If the indicator is in staté then both high and low priority connections are eligible
for admission. If the indicator is in statethen only high priority connections are eligible



for admission. If a connection is rejected by the scheme while the indicator ssates)
or 1 (irrespective of the connection’s priority) the indicator switches to statdn state2,
no connections are eligible for admission and the indicator remains in thatusti#téhe first
connection clears down when it switches to statelf a connection clears down while the
indicator is in staté then the indicator switches to statevith probability« and both high and
low priority connections become eligible for admission. The parametsra simple device to
manipulate the degree of priority given to the high priority traffic.

Figure 2 illustrates the operation of this modified form of backoff with the thaldeme with
the parametenr = 0.1. The capacity is” = 50, the proportion of high priority connections
isp = 0.5 and the choice = 0.3 was selected. The parameters considered waten,, ji;) =
(1,0.5,1), and(hy, mo, o) = (4,0.1,1). Thus there are essentially four types of connection,
since priority can be high or low for each possibility (@f;, m, 1;).
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Figure 2. The figure shows the variation over time of cell loss ratio, utibmaand connection
blocking. Note that although the cell loss ratio is relatively constant, thizatibn may vary
substantially as the traffic mix, and hence the potential multiplexing gaires/axier time.

A. Chernoff bounds

LetS = Zszl X, where X, X, ..., Xk are independent non-negative random variables.
ThenP{S > C} < E[e**~®)], where here and throughowut> 0. Hence

logP{S > C} <s <Z ag(s) — c) (13)



whereay(s) = s 'logE [e*¥*]. Specialize now to the case whef¢X; = hy} = my/hy
andP{X, = 0} = 1 — my/hy. Thusmy, h; are respectively the mean and peak of an on-off
source, and
1 Mk, sh
ap(s) = = log |1+ —("" —1)] . (14)
S hk
A.1. Tangent at the peak (;(n))

Regardo, (s) as a function ofny; it is a concave function of;,, and hence bounded above
by its tangent at the point; = h;. Thus

eshr — 1
ag(s) < hy — (hy — mk)m (15)
Hencelog P{S > C} < —+ is assured if there exists arsuch that
Z[hk—(hk—mk)esm;l +l<c. (16)
. shyeshr s
The value ofs minimizing the left-hand side of inequality (16) satisfies
sh
S the =) S =, (17)
and, with this value of, inequality (16) becomes
Z hy — Z e M (hy, —my) < C. (18)
k k

A.2. Tangent at arbitrary location (A;;(n))
Regardoy (s) as a function ofn,: it is a concave function of;,, and hence bounded above
by its tangenti (s, my,) + bi (s, Ty )my at an arbitrary pointn, € (0, hy). Thus

ak(s) < ak(s,mk) + bk(s,mk)mk s (19)

and sdogP{S > C} < —~ is assured if there exists arsuch that

Z [ag (s, M) + by, (s, M) mi] + % <C. (20)
- :
Using the minimizing choice of this inequality becomes

eshk
S e ) ) <. @

— U (hg + Ty, (e3P — 1))2

Information on good choices for,, £ = 1, ... , K may come from a variety of sources, for
example users may provide information through their tariff choices [12,17], or theorietnay
have available long-term averages for traffic of different types.



A.3. Tangent of slope oneA;;;(n))

Suppose tha} , m,, is known, but not individual values ofi,. Can we bound the right-hand
side of inequality (13)? One method leads to the Hoeffding bound [10], which we obtain as
follows.

Again regardyy (s) as a function ofny; it is a concave function afi,, with a tangent of unit
slope at the poirithy, = s~ — hy(e® — 1)~1. Thus

h 1 e — 1 h;
4~ log® <y + 2k (22)
s shy, 8

< _
ag(s) < my . + T

see [10, pp. 106, 110] for the second inequality. Hence from inequality (&3}, {S > C} <
—~ is assured if there exists arsuch that

h2
Z<mk+%’€>+lgc. (23)
S

k

1/2
The value ofs minimizing the left-hand side of inequality (23) is— 2 (z?m) , and with
this choice ofs inequality (23) can be written as either

1/2
Somi+ 7Y M <C o ka+<%2h§) <C; (24)

the second inequality is familiar as the Hoeffding bound. The schemes considé&rablénl
and Figure 2 keep, rather thany, fixed as the traffic mix alters.

A.4. Tangent at the origin (4, (n))
Regardy, (s) as a function ofny: it is a concave function, and bounded above by its tangent
at the origin;m; = 0. Thus

65hk -1

Shk

ak(s) < my, (25)

and sdogP{S > C'} < —~ is assured if there exists arsuch that

shy -1
3oL mi+~ < C. (26)
- shy, s

Takes to be the value minimizing the left-hand side of inequality (26). Then a simlerelif-
tiation establishes that

5 o1+ 1] e

With this value ofs inequality (26) becomes

Z eSem,, < C. (28)

k



B. Large deviation limits

Suppose that the amount of work arriving at a queue over the pgriotis

X[0,7]=>" Z X;i[0,7] (29)

j=1 i=1

where (X;[0, 7]) ;; are independent processes with stationary increments whose distributions
may depend upon but not uponi. Let L(C, b, n) be the proportion of workload lost, through
overflow of a buffer of sizé > 0, when the server has raté andn = (ny,ns,... ,ny).

Then [3,6,16]

.1 :
A}gr;c N log L(¢cN,bN,nN) = sup 12f ST Z njo;(s,7) — s(b+cr) (30)
i
where
1 .
aj(s,7) = —logE [es’\f"'[o’ﬂ] (31)

ST

is theeffective bandwidthA recent review of the effective bandwidth concept is given in [13];
in [8] the effective bandwidth function is obtained for traces of etherndidrafd MPEG video
sources across a broad range of time and space scales. This motivategeheeldations
approximation fory = — log L(c, b, n) of

v & —supinf | s Z njai(s,7) —s(b+ecr)| . (32)

J

Henceforth lets, 7 be the extremizing pair in relation (32). Then the approximation (32)
aligns with the Chernoff bound (13) under the correspondenge- X;;[0,7], C = b+ cr
andra;(s, 7) = aj(s). The critical time scale- has a straightforward interpretation under
the large deviations limit as the time for which the server has been busydmgca buffer
overflow [6].

Next suppose that a source of types policed by leaky buckets labelléd= 1,2, ... , K, so
that X ;;[0, 7] < By; + pi; T, forall T > 0, and fork = 1,2, ... , K. Then with probability one

0 < X;[0,7] < hj = mkiﬂ{ﬁkj + P} (33)

and so, ifm; = EX;[0, 7], then an upper bound foi; (s, 7) is

1 .
Tay(s,7) < —log |1+ % (e —1)| , (34)
5 J

corresponding with equation (14) under the identification(s, 7) = «;(s).
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