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Outline

• The processor sharing queue
• Sharing in networks – proportional fairness
• A related queueing network – product form
• Heavy traffic for a flow model –

proportional fairness and product form



Processor sharing discipline

• Often attractive in practice, since gives 
– rapid service for short jobs
– the appearance of a processor continuously 

available (albeit of varying capacity)
• Tractable analytically – a symmetric discipline. 

E.g. for M/G/1 PS  
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Kleinrock, 1967, 1976;  Boxma tutorial, informs 2005

(similar tractability for LCFS, Erlang loss system, 
networks of symmetric queues)



The M/G/1 processor sharing queue
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The M/G/1 processor sharing queue
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The M/G/1 processor sharing queue
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What is the network equivalent?
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J - set of resources

- set of routes 
- if resource j  is on route  r
- otherwise

resource

route



Rate allocation

r
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x
n - number of flows on route r

- rate of each flow on route  r

Given the vector 
how are the rates  
chosen ?
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Optimization formulation
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Suppose                    is chosen to

(weighted    -fair allocations,  Mo and Walrand 2000)α
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Solution

JjxnACnp

Jjnp

RrxJjCxnA

r
r

rjrjj

j

rjr
r

rjr

∈≥⎟
⎠

⎞
⎜
⎝

⎛
−

∈≥

∈≥∈≤

∑

∑

0)(

0)(

0;where

KKT 
conditions



- maximum flow  
- proportionally fair
- TCP fair 
- max-min fair)1(
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Example
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Multipath routing
Suppose a source-destination pair has access to 
several routes across the network:  

resource

routesource

destination
sr

S
∈

- set of source-destination pairs
- route  r serves s-d pair  s

Combined multipath routing and congestion control: a robust 
Internet architecture. Key, Massoulié & Towsley



Routing and optimization formulation   
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Suppose                    is chosen to

( H is an incidence matrix, showing which 
routes serve a source-destination pair )



Example of multipath routing
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Routes, as well as flow rates, 
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over source-destination pairs  s)log( s
s

s xn∑

213 ,CCC <



First cut constraint
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Cut defines a single pooled resource



Second cut constraint

1C

2C

3C

3C
1n

2n 3n

333112
1 Cxnxn ≤+

Cut defines a second pooled resource



Routing and optimization formulation   
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We may suppose                    is chosen to

where is the set of pooled resources, 
and  has non-negative entriesA

J



Proportional fairness

Henceforth we specialize to the case of proportional 
fairness,

This case has interpretations in terms of axiomatic  
definitions of fairness, bargaining games, and distributed 
pricing.

Our aim is to explore the stochastic flow level model, to 
see if it shares some of the features of single resource 
processor sharing.  

Why might one think it might?

.1,1 == wα



C1 C2 C3

• Documents arrive as a Poisson process of rate       on route r
• Documents comprise an arbitrarily distributed number of packets 
• These packets are transferred one by one through the network
• Packets have an arbitrary phase-type distribution of service 
requirement, which can differ from queue to queue 
• each queue has a processor sharing discipline 

A queueing network

Massoulié, Proutière 2003, Bonald and Proutière 2004,Walton 2009

rν



Flow level model

Define a Markov process
with transition rates
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- Poisson arrivals, exponentially distributed file sizes     
- model originally due to Roberts and Massoulié 1998



If JjCA jr
r
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Stability

De Veciana, Lee & Konstantopoulos 1999;  
Bonald & Massoulié 2001

then the Markov chain
is positive recurrent
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Heavy traffic
We’re interested in what happens when we approach 
the edge of the achievable region, when

JjCA jr
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Fluid model for a network operating under a fair bandwidth-sharing 
policy.  K & Williams   Ann Appl Prob 2004
Product form stationary distributions for diffusion approximations to 
a flow level model operating under a proportional fair sharing policy.
Kang, K, Lee & Williams  Performance Evaluation Review 2007
State space collapse and diffusion approximation for a network 
operating under a proportional fair sharing policy.
Kang, K, Lee & Williams Ann Appl Prob to appear



Fluid and diffusion scalings

Consider a sequence of networks, labelled by N, 
where as

θρμμνν →−→→ )(,, CAN NNN
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Fluid scaling:                   Diffusion scaling:
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Fluid and diffusion scalings
(after Harrison, Bramson, Williams)

Fluid scaling:                             Diffusion scaling:

N
tNn

N
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t

On this time scale, traffic and 
capacity  are balanced, and we 
expect a law of large numbers

On this time scale, there is a 
drift of  θ,  and we expect a 
central limit theorem



Balanced fluid model
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State space collapse: invariant manifold

The following are equivalent:
• n is an invariant state
• there exists a non-negative vector p with 
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Thus the set of invariant states forms a  J 
dimensional subspace, parameterized by  p. 



Example

Rrr ∈= ,1μ
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Each bounding face corresponds 
to a resource not working at full 
capacity
Entrainment: congestion at some 
resources may prevent other 
resources from working at their 
full capacity. 1W

2W
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Stationary distribution?

1W

2W

02 =p

01 =p

1p

2p

Williams (1987) determined sufficient conditions, in 
terms of the reflection angles and covariance matrix, for 
a SRBM in a polyhedral domain to have a product form 
invariant distribution – a skew symmetry condition 



Local traffic condition

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

10000
01000
00100
00010
00001

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

A

Assume the matrix  A contains the columns of the 
unit matrix amongst its columns:

i.e. each resource has 
some local traffic -



Product form under 
proportional fairness

Rrwr ∈== ,1,1α
Under the stationary distribution for the reflected 
Brownian motion, the (scaled) components of  p
are independent and exponentially distributed.
The corresponding approximation for  n is

where 
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Dual random variables are independent and exponential



Product form under proportional fairness
In general, stability requires

JjCA js
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- a collection of generalized cut constraints.
Provided        contains a unit matrix, we have the 
approximation
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Independent dual random variables, one for each generalized 
cut constraint – network generalization of processor sharing



Processor sharing for a network?

Large deviations and heavy traffic point to subtly different 
results in the case where the matrix  A  does not contain a 
unit matrix – this case is important for resource pooling 
applications.

Challenge: establish straightforwardly the approximation -
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