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We present an introductory review of recent work on the control of open queueing net- 
works. We assume that customers of different types arrive at a network and pass through the 
system via one of several possible routes; the set of routes available to a customer depends on its 
type. A route through the network is an ordered set of service stations: a customer queues for 
service at each station on its route and then leaves the system. The two methods of control we 
consider are the routing of customers through the network, and the sequencing of service at the 
stations, and our aim is to minimize the number of customers in the system. We concentrate 
especially on the insights which can be obtained from heavy traffic analysis, and in particular 
from Harrison's Brownian network models. Our main conclusion is that in many respects dy- 
namic routing simplifies the behaviour of networks, and that under good control policies it may 
well be possible to model the aggregate behaviour of a network quite straightforwardly. 

Keywords: Brownian network models, resource pooling, threshold strategies, generalized cut 
constraints, heavy traffic analysis, pathwise solution, dynamic sequencing, shortest delay rout- 
ing. 

1. I n t r o d u c t i o n  

The success of  product-form queueing networks in modelling complex systems 
probably owes less to their ability to represent accurately the various detailed fea- 
tures of  a system than  to the simple framework they provide for such fundamenta l  
features as mean arrival rates and traffic intensities. Even when the dynamics of  in- 
dividual queues are far from those necessary for a product-form solution to hold 
precisely, the f ramework of  such solutions can be used to suggest approximations 
and asymptotics (see, for examPle, Gelenbe and PujoUe [11], Kelly [26], Whi t t  [48]), 
and simple routing and capacity allocation algorithms (see, for example, Gallager 
[10], Kelly [25], Kleinrock [28]). 

Dynamic  routing is, however, an important  feature of  many  systems that  is not 
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well represented in product-form queueing networks. If customers can choose 
their route through the network on the basis of information about the current states 
of various queues, then exercise of this choice may produce significant dependen- 
cies between different parts of the network. Further, such dependencies may be a 
major determinant of system performance. Our aim in this paper is to illustrate 
these aspects of dynamic routing, through a systematic discussion of a sequence of 
examples. We concentrate especially on the study of networks in heavy traffic, 
where the important features of good control policies are displayed in sharpest re- 
lief. In particular, we make extensive use of the Brownian network models devel- 
oped in a major and sustained campaign by Harrison, and his coauthors Reiman, 
Williams and Wein [15,16,19,20,22,23]. Our main conclusion is that in many re- 
spects dynamic routing simplifies the behaviour of networks, and that under good 
control policies it may well be possible to model the aggregate behaviour of a net- 
work quite straightforwardly. 

In section 2 we consider our first example, that of a collection of parallel 
queues, where an arriving customer can be routed to any one of the queues: see 
fig. 1 for the case of two queues. This problem has received much attention, and we 
begin section 2 with a brief review of the literature. We then describe the heavy traf- 
fic analysis of Foschini, Salz and Reiman [7,9,38]. They show that if customers 
are routed to the shortest queue, then in heavy traffic there is state space collapse: 
the limiting diffusion process representing queue lengths collapses to one dimen- 
sion. One consequence of this collapse is a resourcepooling effect: customer delay is 
distributed as in a system where there is a single queue with multiple servers. To 
illustrate the magnitude of this effect consider the special case where the arrival pro- 
cess is Poisson, service times are independent and exponential, and there are Kiden- 
tical servers. Then the resource pooling effect reduces mean delay by a factor K 
over a system where customers are allocated randomly on arrival to servers. Re- 
source pooling can also be achieved by many strategies which do not cause state 
space collapse, and as an example we describe in section 2 a simple threshold strat- 
egy: the key feature is that all servers be kept busy if there is substantial work in 
the system for any of them. 

In general the control of open queueing networks involves not just routing, but 
also sequencing. A routing policy determines which route a customer should take 
through the network; a sequencing policy specifies which type of customer to serve 
at each station, at each point in time. In section 3 we consider perhaps the simplest 
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Fig. 1. Two parallel queues. 
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Fig. 2. A network with sequencing. 

example of dynamic sequencing, that illustrated in fig. 2 and studied by Harrison 
and Wein [21]. In this network there are no routing decisions. Rather, the problem is 
to decide, at each point in time, which type of customer to serve at station 1 in order 
to minimize the mean delay of customers. In heavy traffic an optimal policy is to 
give priority to type B customers at station 1 unless the number of customers at sta- 
tion 2 is less than a threshold, in which case priority is given to type A customers. 
This dynamic sequencing poxlicy is able, in heavy traffic, to achieve two objectives: it 
exits customers from the system as quickly as possible, and also manages to keep ser- 
ver 2 busy whenever there is substantial work in the system for that server. 

In section 4 we consider our first example that involves both routing and sequen- 
cing, taken from Wein [46]. In fig. 3 type B customers require service at either 
station 1 or station 2: at the time of arrival a type B customer is routed to one or  
other of queues 3 and 4. In addition to these routing decisions, a control policy spe- 
cifies which type of customer to serve at stations 1 and 2. The optimal control in 
this network causes the two servers to act as a pooled resource, with substantial 
work building up only in queue 1. An explicit formula, expression (4.8), describes 
the mean system population in heavy traffic, and indicates the considerable bene- 
fits available from the optimal control. As illustration, we describe a simple exam- 
ple where in heavy traffic the optimal routing and sequencing policy reduces the 
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Fig. 3. Routing and sequencing. 
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Fig. 4. The four station network. 

mean number of customers in the system, or equivalently the mean delay, by a 
factor of 3. 

Section 5 is devoted to the four station network illustrated in fig. 4 and studied 
by Laws and Louth [34]. The system is used by two different types of customer: hor- 
izontal customers pass through the system by using the top row, queueing at 
station 1 and then at station 2 before leaving, or the bottom row, queueing at sta- 
tior,~ 3 then station 4. Similarly vertical customers use either the left or right hand 
column. The heavy traffic behaviour of this network under optimal control can be 
interpreted in terms of the reduced fork-join queueing system illustrated in fig. 5. 
Consider two queues, each with two servers. Let the first queue have the servers 
from stations 1 and 4 of the original network, and let the second queue have the ser- 
vers from stations 2 and 3 of the original network. Customers arrive as for the origi- 
nal network. Each arriving customer sends a token to both queues simulta- 
neously, and these progress independently. When both tokens have been served the 
customer leaves the system. In heavy traffic and under the optimal routing and se- 
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Fig. 5. The reduced fork-join system. 



F.P. Kelly, C.N. Laws / Dynamic routing 51 

quencing policies it is as  if servers 1 and 4, and servers 2 and 3, are combined to 
form t w o  pooled resources. Also the network behaves as  i f  customers queue for 
their service from these resources in parallel rather than in series. The reader should 
note that servers 1 and 4 form a c u t  for the original network: every customer enter- 
ing the network, whether horizontal or vertical, must be served by one of these ser- 
vers. Similarly servers 2 and 3 form a second cut. 

The analysis of the four station network has been generalized in various direc- 
tions by Laws [32]. In section 6 we briefly describe a network with two pooled 
resources each comprising four or more servers, and a network with three pooled 
resources, each comprising two servers. In each case the pooled resources corre- 
spond to disjoint cuts of the network, and the heavy traffic behaviour of the 
network under optimal control can again be interpreted in terms of a reduced fork-  
join queueing system. 

Must pooled resources correspond to disjoint cuts of the network? The answer 
to this question is no: a pooled resource can be more general than just a cut, and 
pooled resources may overlap. We demonstrate this in sections 6 and 7 with a dis- 
cussion of the 2 x 3 network illustrated in fig. 6. Let ~1, ~2 label the arrival rates of 
type 1 and type 2 customers respectively, and let #1, #2 , . . . ,  #6 label the service 
rates of servers 1 ,2 , . . . ,  6 respectively. Then for stability we must have 

3~1 + 2A2 ~<2#1 +2#5 +#3 + ] 2 6 ,  (1.1) 

as the following argument makes clear. Suppose that customers are charged 2, 2, 
1 and 1 units at stations 1, 5, 3 and 6 respectively. To pay to get through the net- 
work, type 1 and type 2 customers enter the system with 3 and 2 units respectively. 
If  the network is stable, the total arrival rate of revenue, 3~1 + 2~2, cannot exceed 
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Fig. 6. The 2 x 3 network. 
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the maximal charging rate, 2ptl q- 2#5 + ~3 + ]z6: but this is precisely condition 
(1.1). Observe that servers 1, 5, 3 and 6 form a pooled resource more general than a 
cut; we call condition (1.1) a generalized cut constraint. By symmetry there are an- 
other five generalized cut constraints of the form (1.1), and no two involve disjoint 
sets of servers. 

In many of the examples we discuss, the optimal control in heavy traffic pro- 
duces apathwise solution (Harrison [16]): the total number of customers in the sys- 
tem is simultaneously minimized for all times t t> 0. A pathwise solution is not 
always possible, and in section 6 we describe two examples. In the first example 
there is a conflict between the objective of keeping a pooled resource busy whenever 
there is work in the system for it, and the objective of exiting customers from the 
system as fast as possible; in the second example, the symmetric version of the 2 • 3 
network illustrated in fig. 6, there is a conflict between two pooled resources over 
which should be kept busy the longer. In examples such as these the problem of 
minimizing long-run expected averages is, even in heavy traffic, quite delicate. For 
instance the optimal control may depend upon second moments of interarrival 
and service times distributions. Wein [44,45] has considered in detail an example 
where the problem can be reduced to a singular control problem for a one-dimen- 
sional Brownian motion, and hence an explicit solution obtained. In Wein [47] a 
more general example is tackled using the method of finite difference approxima- 
tions developed by Kushner [29,30]. The associated analytical problems involve 
partial differential equations with oblique derivative boundary conditions: for a 
discussion of the issues involved and a survey of recent progress the interested read- 
er is referred to Dai, Harrison and Nguyen [3,17]. In this paper we concentrate on 
cruder insights: while the performance of the policies we discuss may depend on sec- 
ond moments, the policies themselves do not. 

How reasonable is it to assume that multiple pooled resources will approach hea- 
vy traffic together? This clearly depends on the context. If arrival and service rates 
are carefully balanced, as may be the case if the network represents a manufactur- 
ing system, then it is possible that several pooled resources may be simultaneously 
heavily loaded. If there are more customer types than stations and if arrival rates 
themselves vary over time, as may be the case if the network represents a communi- 
cations network, then we might expect to find at most a single pooled resource 
approaching overload. In section 7 we concentrate on this case, following the work 
of Laws [33]. We consider a quite general network structure, and describe the 
form of the optimal pathwise solution. Under this control the system population is 
a reflected Brownian motion, and a simple explicit formula, expression (7.18), de- 
scribes its mean. We also consider performance under shortest delay routing 
(SDR), a policy which sends customers via the route with the shortest expected 
delay. (Routing algorithms based on delay estimates are of considerable practical 
importance in communication networks: see Bertsekas and Gallager [2], Schwartz 
[41].) In general SDR is not optimal, but it does have desirable properties. In parti- 
cular, we describe how it achieves the important resource pooling property of the 
pathwise solution. 
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We make no attempt to justify the heavy traffic control policies we discuss via 
weak convergence results. The construction and analysis by Harrison and Reiman 
[19,20] of multidimensional reflected Brownian motion, and the weak convergence 
results of Reiman [38,39] for open queueing networks, parallel servers and priority 
queues, provide substantial motivation for the Brownian network model, but stop 
short of providing a complete justification (see Dai and Wang [4], and Harrison 
and Nguyen [18] in this issue). An approach to weak convergence in the control con- 
text is provided by Martins, Kushner and Ramachandran [31,35]. We simply note 
our view that the eventual rigorous treatment of pathwise solutions may well fall 
within a simpler framework, not involving the distributional properties of Brow- 
nian motion. 

Although a general weak convergence underpinning is currently lacking, there 
is by now a reassuring body of numerical evidence for the asymptotic optimality of 
the routing and scheduling schemes we describe in this paper. Often pathwise low- 
er bounds on the total system population are available, and the scaled performance 
of the schemes is observed to approach the bounds as the load on the network 
increases (Harrison and Wein [21], Laws [33], Laws and Louth [34]). Indeed it is 
possible to devise simple schemes that perform well even in light or moderate traf- 
fic, although, as we would expect, the percentage improvement over other schemes 
(involving, for example, random or alternate routing, with fixed or no priorities) 
generally improves as the network load increases. These simple schemes often 
involve choices not completely specified by the heavy traffic analysis, for example 
the precise levels of threshold, or routing decisions when no part of a pooled 
resource is threatened with idleness; but the heavy traffic analysis does give clear 
insight into the important features to which routing and sequencing controls 
should be directed. 

2. Parallel queues 

Consider the two station system of fig. 1. There is a single stream of arriving cus- 
tomers and on arrival each customer is routed to one of the two stations where it 
queues for service. Such routing decisions are irrevocable: customers may not move 
between queues at a later stage. Each server operates a first come first served disci- 
pline and after its service a customer leaves the system. This simple system has re- 
ceived much attention in the literature; for early work see Haight [13] and Kingman 
[27]. Optimal control of the system has been analyzed as has the performance of 
the system under given routing policies. 

Suppose that there is a single exponential server of rate # at each station, that 
the arrival process is Poisson with rate A, where the traffic intensity p = A/2# < 1, 
and that arriving customers join the shorter queue. Winston [52] has shown that 
this dynamic policy minimizes the mean delay of customers in the system, and in- 
deed that it is optimal in the stronger sense of stochastic order. Weber [43] extended 
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this result to arbitrary arrival streams and service times with nondecreasing failure 
rate. The case of arbitrary arrivals and exponential servers was also considered by 
Ephremides et al. [5]. However, Whitt [49] has shown via light traffic analysis that 
the shorter queue policy is not optimal for general service times, even when the arri- 
val process is Poisson: there exists a service time distribution such that when the dif- 
ference between the numbers in the two queues is small, the longer queue is likely 
to have a sudden series of departures and hence be a better choice. Kingman [27] 
found that for p near 1 the distribution of a customer's waiting time is approxi- 
mately the same as for a single server with traffic intensity p2. Flatto and McKean 
[6] also compared the performance of the system to that of a single server, with a 
service rate of 2#, and showed that the mean population of the two server system is 
only slightly greater than that of the single-server system when p is near 1. Halfin 
[14] obtained bounds for the probability distribution of the number of customers in 
the system and its expected value in equilibrium; these bounds are tight as p T 1 
and again show that, in the limit, the two-server system behaves like a system with a 
single-server of rate 2#. Recently, Adan et al. [1] have shown that the stationary 
queue length distribution of the system can be represented by an infinite sum of 
product-form solutions and that this allows efficient numerical calculation of the 
distribution. 

When there are multiple servers (but only one queue) at each station the natural 
extension of the above policy is to join the queue with the shorter expected delay. 
Whitt [49] has shown that this policy is not optimal in general, even for Poisson arri- 
vals and exponential service times. However, Houck [24] has shown via simulation 
that it is close to being optimal in many cases. 

Returning to the case of identical single-server stations, the behaviour of the 
shorter queue policy has been analyzed in the heavy traffic limit (p T 1) by Foschini 
and Salz [9] for Poisson arrivals and exponential service times. The two separate 
servers act as a single pooled resource in the limit: that is, when p is near 1 the two- 
server system behaves as if it were an M / M / 2  queue with arrival rate )~ and servers 
of rate/z. The limiting mean delay is half of that found when routing arrivals to 
each queue with probability 1/2 (the policy minimizing mean delay amongst the 
class of quasi-static policies described by Gallager [10], Kelly [25]). Reiman [38] has 
generalized the heavy traffic analysis to the case of renewal arrivals and general ser- 
vice times. 

We now review the result of Reiman [38], established for the slightly more gener- 
al system illustrated in fig. 7. Arrival stream Aj exclusively feeds server j,  for 

Fig. 7. Parallel queues. 
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j = 1, 2, while customers in arrival stream A3 join the shorter of the two queues at 
the moment of arrival. Assume these three arrival streams form independent re- 
newal processes, with interarrival times in s t reamj having m e a n  .~71 and variance 
aj. Service times at server k, k = 1,2, are independent random variables with mean 
/ :1  and variance Sk. 

Consider now a sequence of such systems, indexed by n, such that Aj(n)--+ Aj, 
#(n) --+/z, and 

nl/2(Al(n)+A2(n)+A3(n)-2tz(n))---~O as n---~ c ~ ,  (2.1) 

where 0 < oo. Assume also aj(n)--~ aj, sk (n)~  Sk and that all interarrival and ser- 
vice times have a uniformly bounded moment of order 2 + e for some E > 0. Condi- 
tion (2.1) defines heavy traffic; we also require [A1 - A2[ <A3, so that there are 
enough customers with a choice to balance arrival rates at the queues. Let Q(n) (t) be 
the number of customers in the queue for server k at time t, including the customer 
in service, if any. Let Q(n)(t) --- (QI ~) (t), Q(2 ~) (t)), and define the scaled queue length 
process 

Q(n)(nt) 
Z (n)(t) = nl/2 

Reiman [38] shows that 

sup [zln)(t) - z~n)(t)[ P 0 as n--->oo (2.2) 
0~<t~<l 

and that 

zln)(t) + z~n)(t) ~ Z(t) ,  (2.3) 

where Z(t) is a certain reflected Brownian motion. The result (2.2) shows that the 
stream A3 is able to keep the two queue lengths Q1 (t), Q2(t) approximately equal. 
The reflected Brownian motion Z(t) is that which would obtain if all arrivals joined 
a single queue served by the two servers: namely a Brownian motion with drift 0 
and variance (~-~31/~3aj + #3 ~-~2=1Sk), reflected at the origin. 

Assuming 0 < 0, the mean of the stationary distribution of the reflected Brow- 
nian motion Z(t) is 

ms =1 aj + #3 ~~ sk [Of -I , 

\ j= l  k=l 

and Reiman [38] has shown how this expression can be used to compare the perfor- 
mance of routing strategies. Suppose A1 = A2, al = a2, Sl = s2 and consider two 
other routing strategies, the coin-toss strategy and the alternating strategy. Under 
the coin-toss strategy customers of type 3 flip a fair coin to determine which queue 
to join, while under the alternating strategy they alternate deterministically be- 
tween the two queues. Under these strategies the means of the normalized number 
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in the system, Z 1 (t) -[- Z2(t) ,  are, in the heavy traffic limit, 

mc = 1(gAla1 + A3 + A]a3 + 4/Z3Sl)[0[ -1 , 

mA = {(4A~al + A]a3 + 4#3s,)101 - '  , 

respectively, while that for the shorter queue policy is 

1 3 A]a3 2#3Sl)101-1 ms = ~(2Alal + + 

Clearly ms <~ma <~mc. For the special case where all distributions are exponen- 
tial, a3 = A~ -2, and so ms = 1inc. Thus queue lengths are halvedby using the shorter 
queue policy (Foschini and Salz [9]). 

Let us now consider further the special case where all distributions are exponen- 
tial. The key feature of the shorter queue policy, that allows it to halve mean queue 
lengths, is that is keeps both servers busy when there is substantial work to be 
done in the system. To show that this is the key feature, rather than the stronger 
property (2.2) that both queue lengths are held equal, and to quantify the term sub- 
stantial, we consider a threshold strategy. Suppose that each queue has a threshold 
parameter r and that customers from arrival stream A3 are routed randomly, in ac- 
cordance with the tosses of a fair coin, except when one queue is below threshold 
and the other queue is above threshold, in which case the customers from stream A3 
are routed to the former queue. The aim of this threshold strategy is to prevent a 
server becoming idle when there is substantial work in the other queue. 

Figure 8 describes some of the transition rates of the Markov chain (Ql(t), 
QE(t)) under the threshold strategy. Observe that while a sample path remains off 
the lines {Q1 = 0} and {Q2 = 0}, the number in the system, Ql(t) + Q2(t), behaves 
as the number in a coupled M / M / 2  queue. However, if a sample path hits the line 
{Qk = 0} while Q3-k > 1 then there is the possibility that a customer might be served 
by server k in the coupled M / M / 2  queue but not in the system under considera- 

q~ 

1 A1 A1 + ~A3 

A1 + A3 ~ A1 + 7 3 

# # 
. . . . . . . . . . . . . . . .  u . . . . . . . . . . . . . . . . . . . . . . . . . .  

f i @  A1 
# 

7" Q1 

Fig. 8. Transition rates for threshold routing strategy. 
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tion. This would leave the number in the system, Ql(t) + Q2(t), above that in the 
coupled M/M/2 queue. We shall see that we can bound the probability P of such 
an event occurring, for a sample path starting at (Q1 (0), Q2(0)) = (r, r) in the peri- 
od before the sample path next returns to the set {Q1 ~< r, Q2 ~< r}. 

Note first that while the sample path remains in the region (Q1 f> r, Q2/> r}, the 
pair (Ql(t) - r, Q2(t) - r) behave as two independent M/M/1 queues each with 
traffic intensity p = (A1 + �89 The expected number of times that a pair of such 
independent M/M/1 queues hits one or other axis between visits to (0, 0) is 
(2p + 1)/(1 - p), by an analysis of the associated jump chain. Consider now a sam- 
ple path (Ql(t), Q2(t)) that leaves the region {Q1 >r,  Q2>r} by hitting the line 
{Q1 = r}. The probability this sample path hits (Q1 = 0} before leaving 
{Q1 ~< r, Q2 > r) is bounded above by [#/(A1 + A3)] r, by a simple gambler's ruin cal- 
culation. A coupling argument then shows that 

# 
2/) + 1 AI ~ P~< 1 - - i - ~  + 

Under the heavy traffic regime defined earlier, P will approach zero provided 
r(n), the threshold associated with the nth system, satisfies 

l + e  
r(n)>>.21og(.~l ~ Aai logn (2.4) 

for some e > 0. The coupling argument can be extended to show that provided 
(2.4) holds, the normalized total queue length process, ZI n) (t) + Z~ n) (t), satisfies 
(2.3) where Z(t) is again the reflected Brownian motion describing the two server 
queue. The limit process (Z1 (t), ZE(t)) is now two-dimensional: it is a Brownian 
motion in the positive orthant reflected on the axes at angles of 7r/4 towards the 
origin and out from the origin along the diagonal. (This process is of some interest 
in its own right: note that the angles of reflection on the axes are critical, just failing 
the condition of Harrison and Reiman [20]. See Varadhan and Williams [42] for 
the existence and uniqueness of the process, and Williams [50,51] for further 
properties.) 

Thus the halving of mean queue lengths, achieved in heavy traffic by the shorter 
queue policy, can also be achieved by a threshold strategy. Further, the relation 
(2.4) establishes that the threshold need only grow rather slowly with n: recall that 
the mean number in the system is of order n 1/2. Of course for any given value of n 
the shorter queue policy will improve on the performance of threshold routing. 
However, the relative improvement is generally slight, and disappears in heavy 
traffic. When later we discuss more general networks, we shall see that threshold 
strategies are able to achieve additional effects which improve relative perfor- 
mance and come to dominate in heavy traffic. 

Foschini [7] has considered the heavy traffic advantage of an M/M/K system 
with service rates (#1, #2 , . . . ,  #K) over a system of K independent M/M/1 queues 
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with service rates/Zl, ]z2,... ,/d K respectively. Suppose that arrivals at the latter sys- 
tem are distributed over the K queues in accordance with the roll of an optimally 
biased die, where the best bias can be found by a simple Lagrangian analysis. Then 
the mean number in the M/M/K  system is smaller by a factor of 

(Ef f= l '  1/2'~ 2 
-k j (2.5) 

EK=I •k 

in heavy traffic. Again the improvement can be obtained by any strategy which 
keeps all servers busy when there is substantial work to be done in the system. 

3. Dynamic sequencing 

In this section we consider the two station network in fig. 2. This is the system 
studied by Harrison and Wein [21], whose analysis we follow. Customers of types A 
and B arrive at station 1 according to independent renewal processes. Assume inter- 
arrival times from each of these processes have mean A -1 and variance a. Type A 
customers require service at station 1 and then at station 2; type B customers 
require service at station 1 only. Servers 1 and 2 process independently customers 
according to general service time distributions with means of (2#) -1 and #-1, and 
variances ofsl and s2. 

In contrast with the system of the previous section, there are no routing deci- 
sions in this network. Rather, dynamic sequencing decisions specify, at each point 
in time, which type of customer to serve at station 1. The traffic intensity at each 
station is p = A/#, and the Brownian approximation we shall use requires p to be 
near 1 so that the system is close to heavy traffic. More formally, the heavy traffic 
limit concerns a sequence of systems, indexed by n, such that A(n) ~ A,/z(n) ~ # 
and 

n l / 2 ( A ( n )  -- #(n))--*O as n--*c~, 

where 0 < oo. 
Type A customers wait in queue 1 for server 1 and then in queue 2 for server 2, 

and type B customers wait in queue 3 for server 1. Define the queue length process 
Q = (Q1, Q2, Q3) where Qk(t) is the number of customers in queue k (including 
the one in service, if any) at time t. Also define the idleness process I = (I1,/2) where 
Ii(t) is the cumulative amount of time that server i is idle in the interval [0, t]. With 
the parameter n fixed, now define the scaled queue length and idleness processes 

Z(t) Q(nt) I(nt) 
--n-~/2 , U(t) = nl /2  . 

Note tha t  the process U is necessarily non-decreasing, since it represents cumula- 
tive idleness. 
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We shall find it helpful to define sequencing controls relative to a simple nom- 
inal policy, under which the behaviour of the network is well understood. Under 
the nominal policy, suppose that server 1 devotes precisely half its service effort to 
queue 1 and half to queue 3. Under this nominal policy, queues 1 and 3 will behave 
as independent queues, each heavily loaded. Under a more general sequencing con- 
trol, let Tk(t) be the cumulative service time so far received at queue k in [0, t]. 
Nowle t  

�89  Tk(nt) 
- - -nl / -~-----  k = 1 , 3 ,  

Yk(t) = n t -  Tk(nt) 
nl/2 k = 2. 

Thus Yk(t) is a centred and scaled measure of how much service has been received 
by customers in queue k in [0, t], centred by the maximum amount that could have 
been received under the nominal policy. The process Y = (Y1, YE, Y3) thus repre- 
sents the sequencing policy. From their definitions we have the following link be- 
tween the (scaled) cumulative idle time of servers U and the (centred and scaled) 
sequencing policy Y: 

AY(t) = U( t ) ,  (3.1) 

where 

(10 010) A =  1 " 

The matrix A simply records which queues are attached to which stations: A/k is 1 
or 0 according to whether queue k is at station i. Thus the first component of the 
vector equation (3.1) records the fact that server 1 is either serving queue 1 or queue 
3 or is idle: the second component of (3.1) records that server 2 is either serving 
queue 2 or idle. 

We can write the relationship between the (scaled)" queue length process Z and 
the (centred and scaled) sequencing policy Y as 

Z(t) = X(t) + RY( t ) ,  (3.2) 

where 

(2~ R = #  - 2  1 . 

0 0 

Here X is a three-dimensional process which we shall approximate by a Brownian 
motion with drift vector O and covariance matrix r where 
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0 = nl/Z(.~ - p.) (1,0, 1) T 

and 

F = 

A3a + 4/Z3Sl -4/Z3Sl 0 ) 

-4/Z3Sl /z3(4Sl + s2) 0 . 

o 0 A3a + 4/Z3Sl 

The process X can be interpreted as follows. Suppose for the moment that 
ZI(0), Z2(0), Z3 (0) > 0, and that station 1 devotes precisely half its service effort to 
queue 1 and half to queue 2, so that Yk(t) only increases when Zk(t) = 0: this is 
the nominal policy described earlier. Then Xk(t) represents the (scaled) queue 
lengths up until the time that one of the queue lengths hits zero. Further, in the hea- 
vy traffic limit the queue lengths Z are indeed given by a reflected Brownian 
motion (3.2), with reflection matrix R (Harrison and Reiman [20], Reiman [39]). 
Note that Rkt is just the rate at which service of queue l depletes queue k. Under 
other sequencing policies Y the process Z can take other forms: for example if 
server 1 serves the longer queue then ZI (t) and Z2(t) will be held approximately 
equal. Harrison's [16] Brownian approximation is to take X to be a (0,F)- 
Brownian motion in (3.2), whatever the sequencing policy Y. 

Define the matrix M = (M~k) by 

M = A R - I = # - I ( 1 / 1 2  01 1/02)" 

Then Mik is the expected amount of time that server i must devote to a customer 
in queue k before the customer leaves the system. Define W = (W1, W2) by 

W(t) = MZ(t ) .  (3.3) 

Thus W/(t) is the (scaled) workload for server i in the system at time t. We can 
find an equation for the workload process W by multiplying (3.2) by M and using 
(3.1) to obtain 

W ( t ) = B ( t ) + U ( t ) ,  (3.4) 

where B (t) = MX(t)  and is hence a Brownian motion with drift vector M0 and cov- 
ariance matrix M F M  T. Thus given a sequencing policy Y we can construct U and 
Z satisfying (3.3) and (3.4). Conversely, given U and Z satisfying (3.3) and (3.4), 

Y(t) = R- I (z ( t )  - X(t)) 

satisfies (3.1) and (3.2). The problem of choosing a pair (U, Z), with U non-decreas- 
ing and Z non-negative, to satisfy (3.3) and (3.4) and to minimize a performance 
measure is termed the workload formation of the Brownian network model. 
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Suppose now that the system starts from empty at time t = 0: take 
Z(0)=X(0)=0.  Consider the equation (3.4). The Brownian mot ion B is given, and 
so we can minimize W/(t) for i = 1,2 over non-decreasing Ui by taking 

Ui(t) = -  inf Bi(s). (3.5) 
O<~s<<.t 

Then, from (3.3) and (3.4), 

where 

and hence 

However,  observe that  

l(Zl(t) q- Z3( t ) )=b l ( t ) ,  
Zl(t) + ZE(t) = bE(t), 

bi(t)--#(Bi(t)- inf Bi(s)'l 
O<~s<~t / 

3 

Z Zk(t)~2bl(t) V b2(t). (3.6) 
k=l  

Zl(t)  = 2bl(t) A b2(t), 

Z2(t) = [bz(t) - 2bl(t)] + , 

Z3(t) = [2b~(t) - bz(t)] + (3.7) 
attain the bound (3.6). Hence we can find apathwise solution (Harrison [16]): that  
is a pair (U, Z), given by (3.5) and (3.7), which minimizes Y'2~k Z~(t) at all times t i> 0 
simultaneously. 

Under  the pathwise solution, 

Ui only increases when IVi = 0 i = 1,2 (3.8) 
and  

either Z2(t) or Z3(t) = O. (3.9) 

Condi t ion (3.8) will be satisfied for i = 1 provided that  server 1 is never idle when 
there are customers waiting at station 1. An extreme way to at tempt to satisfy (3.8) 
for i = 2 is to give priority to type A customers at station 1. Al though even under 
this policy server 2 may be idle when its workload is non-zero (the first arrival after 
t -- 0 is a type A customer, for example) the policy does satisfy (3.8) in heavy traffic 
(Peterson [36]). However,  this static priority discipline violates condition (3.9): it 
retains more customers in the system than necessary in the short term since type B 
customers leave the system immediately after service at 1 whereas type A do not. 
To at tempt to satisfy (3.8) and (3.9), type A customers should be given priority at 
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station 1 only when station 2 is threatened with idleness. Perhaps the simplest way 
to do this is to give priority to type B customers at station 1 unless the number of 
customers at station 2 is less than some threshold value, in which case priority is 
given to type A customers. 

The above example illustrates an important feature in the control of open queue- 
ing networks: there is a trade-off between short term minimization of the system 
population and long term minimization of server idleness. The first of these objec- 
tives suggests giving priority to customers of type B over type A at station 1 while 
the second suggests reversing these priorities. The above dynamic priority policy 
attempts to handle this trade-off. Simulation results (Harrison and Wein [21]) sug- 
gest that the threshold policy will achieve its aim, and that the improvements of 
the policy over first come first served or either of the two possible static priority dis- 
ciplines at station 1 are significant. 

4. Rou t ing  and sequencing 

We now extend the two station network of section 3 to that shown in fig. 3; this 
example is from Wein [46]. Type B customers now require service at either station 1 
or station 2: at the time of arrival, a type B customer is routed to either queue 3 or 
queue 4. 

As in section 3 the two types of customers arrive according to independent 
renewal processes, interarrival times having mean A -1 and variance a. Assume that 
servers 1 and 2 process customers independently and according to general service 
time distributions, each with mean #-1 and variance s. Also, assume that 3A - 2/~ is 
of order n -1/2 so that both stations are heavily loaded. With n fixed, define scaled 
queue length and idleness processes Z = (Zk, k = 1,2, 3,4) and U = (U i, i = 1,2) 
as in section 3. Again we shall find it helpful to describe a simple nominal policy, 
under which the behaviour of the network is well understood: both routing and se- 
quencing controls will be defined relative to the nominal policy. Under the nom- 
inal policy suppose customers of type B are routed randomly to queues 3 and 4, 
each with probability 1/2 and independently of previous routing decisions. 
Further, suppose that server 1 devotes precisely 2/3 of its effort to queue 1, and 1/3 
to queue 3. Thus queues 1 and 3 will behave as independent queues, and the 
(2/3) : (1/3) split ensures both are heavily loaded. Similarly suppose that server 2 
devotes 2 / 3 of its effort to queue 2, and 1 / 3 to queue 4. Let 

{  nt- rk(nt) 
nl/2 

Yk(t) 
] n t -  Tk(nt) 

nl/2 

k = 1,2, 

k = 3,4, 

where Tk (t) is the amount of service time received at queue k in [0, t]. 
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Define the matrix P = (Pkt, k, l = 1,2, 3, 4) where Pkl is the probability that a 
customer joins queue l after queue k; so P12 = 1 and Pkt = 0 otherwise. Let/4 be the 
four-dimensional identity matrix and let 

R =  (I4 - p T ) ,  

so that, as in section 3, R~t is the (possibly negative) rate at which service of queue 
l depletes queue k. Then the relationship between Z and the sequencing policy 
Y = ( Yk, k = 1,2, 3, 4) is given by 

Z(t)  = X(t) + RY(t) .  

We make the approximation, which is again that of Harrison [16] and justified for 
the nominal policy by Reiman [39], that X is a Brownian motion with drift vector 0 
and covariance matrix F where 

0 = n1/2(3A - 2#) (2, 0, 1, 1) T 
6 

and 

F = 

A s + 2 3s -2 3s 0 

s 4 ,3s 0 

o o 
0 0 l (A3a -  A) 

To include the effect of routing decisions on Z let ~'t(t) be the number of arrivals 
actually routed to queue l minus the number routed to I under the nominal (ran- 
dom routing) policy in [0, t], for l = 3, 4, and let 

l"l(nt) 
Vl(t) = n1/2 l = 3,4. 

Thus Vs (t) + V4(t) = 0. Let V(t) = (Vs (t), Vn(t)). Then the approximate relation- 
ship between the queue length process Z, the control policY (Y, V) and the (0, F)- 
Brownian motion X is given by 

Z(t) = X(t) + RY(t) + GV(t) ,  (4.1) 

where the matrix G = (02, I2) T links the routing controls (V3, V4) directly to the 
queue lengths (Z3, Z4). Here 02 and I2 are the 2 x 2 zero and identity matrices 
respectively. The control policy (Y, V) and idleness process U satisfy 

AY(t) = U(t), HV(t) = 0, (4.2) 

where 
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So under the Brownian network model we choose a sequencing policy Y and a 
routing policy V satisfying eqs. (4.1) and (4.2), with U non-decreasing and Z non- 
negative. As in section 3, we can find a reduced form of this model in terms of a 
workload process. Again the (i, k) element of the matrix 

A R - I = # - I ( l l  0 1 1  0 01) 

gives the expected amount of time that server i must devote to a customer in queue 
k before the customer leaves the system. But now define 

M = (1, 1)AR -t = #-1(2, 1,1, 1) ; 

Mk is thus the expected amount of time that must be devoted to a customer in 
queue k by either or both servers before the customer leaves the system. Again let 

W(t) = MZ(t).  (4.3) 

Then W is the system workload process: W(t) is the (scaled) expected amount of 
service time required at stations 1 and 2 by the customers in the system at time t. 
Using equations (4.1) and (4.2) we find 

W(t) = B(t) + U1 (t) + U2(t), (4.4) 

where B(t) = MX(t). So given a control policy (Y, V) we can construct a pair (U, 
Z) which satisfy eqs. (4.3) and (4.4). Similarly given any pair (U, Z) which satisfy 
the equations for the reduced system model, (4.3) and (4.4), it can be shown that 
there is a (Y, V) satisfying eqs. (4.1) and (4.2). Hence the workload formulation of 
the Brownian network model, that of choosing a pair (U, Z) with U non-decreas- 
ing and Z non-negative to satisfy eqs. (4.3) and (4.4), is equivalent to the original 
formulation of the model in terms of the control policy (Y, V). 

Since U1, U2 represent cumulative idleness, we minimize W(t) at all times simul- 
taneously by choosing U1, U2 non-decreasing such that 

inf B(s). (4.5) 
O<~s<~t 

Vx(t) + u 2 ( t )  = - 

Then eqs. (4.3) and (4.4) imply 

where 

4 

E Zk(t) >I lb(t), (4.6) 
k=l  

b(t)=Iz(B(t)- inf B(s)). 
O<~s~t ,/ 

Further, the bound (4.6) is attained for all t by 
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Z l  (t)  = l b ( t ) ,  

Zk(t) = 0 k = 2, 3, 4. (4.7) 

As in the previous section we can minimize )-~k Zk(t) for all t I> 0, through the 
pair (U, Z) given by (4.5), (4.7), to obtain a pathwise solution. Again the existence 
of a pathwise solution implies that the system population over the short term and 
server idleness over the long term can be minimized simultaneously. However, here 
the equations for the reduced system model, (4.3) and (4.4), involve the combined 
workload for stations 1 and 2 and not the workloads for these stations individually. 
It is the inclusion of routing decisions which causes these two workloads to merge. 
As a result, the system exhibits resource pooling under the pathwise solution: 
when one of servers 1 and 2 is busy so is the other, and both are idle only when there 
is no work anywhere in the system. It is as though servers 1 and 2 are combined to 
form a single pooled resource. Further, a customer in queue 1 comprises twice the 
system workload of a customer in another queue and, since W is constrained by 
(4.4), the system population is minimized by taking Zk > 0 if and only i fk  = 1. Var- 
ious forms of control can achieve these desired effects in h e a w  traffic: for exam- 
ple, route a customer of type B to queue 3 if there are fewer customers there than in 
queues 2 and 4 together, and give priority to queue 3 at station 1 except when the 
total number of customers-at station 2 is below a threshold. 

For simplicity of exposition we have assumed that servers 1 and 2 are identical, 
and that the two arrival streams have the same characteristics. The analysis can be 
generalized to the case where service times at station i have a general distribution 
with mean/z} -1 and variance s~, for i = 1,2, and where interarrival times of type A 
(respectively B) customers have mean ,~1 (A~I) and variance aA (as). Assume 
2AA + As approaches #1 + #2 so that the system is in heavy traffic, and that 
AA </Zl,/z2 so that no server is individually overloaded. Under the optimal control 
the total (scaled)number of service completions necessary to empty the system is 
approximated by a reflected Brownian motion with drift nl/2(2A~ + As - #1 - #2) 
and variance (4A3aA + A3as + #~Sl +/z3s2). This represents twice the (scaled) 
number of customers in queue 1: hence in heavy traffic the total (scaled) number of 
customers in the system (equivalently, in queue 1) will be a reflected Brownian mo- 
tion with drift 0 = nl/2(2)~A q- A B  - - / Z l  - -  #2)/2 and variance (4A3aA + A3as + ]z~s1 
+#3s2)/4. Assuming 0 < 0, the mean of the stationary distribution of this reflected 
Brownian motion is 

3 -1 1(4A3a A + A3aB + I~Sl -Jr- 1~2s2)[01 . (4 .8)  

To illustrate the magnitude of the improvement possible, consider the special 
case where the arrival processes are Poisson, service times are exponential, type B 
customers are routed randomly in accordance with the toss of a fair coin, queues 
operate a first come first served discipline and A1 = A2 = A,/Zl = #2 = #. Then the 
mean number of customers in the system is readily calculated to be 6A(2# - 3A) -1 . 
If  the system of two servers is replaced by a single server operating at twice the 
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rate, with customers of type A recycled to the end of the queue after their first ser- 
vice, then the mean number of customers becomes 3A(2# - 3A) -1. Thus resource 
pooling can be viewed as responsible for a factor of 2 improvement. By holding the 
workload in queue 1 the optimal policy improves on this by a further factor of 
3/2. 

5. A four station network 

We next consider control of the network with four single-server stations shown 
in fig. 4. The system is used by two different types of customers, horizontal and ver- 
tical, and there are two queues at each station to distinguish between these differ- 
ent customer types. Horizontal customers pass through the system by using either 
the top row, queueing at station 1 and then at station 2 before leaving, or the bot- 
tom row, queueing at station 3 then station 4. Similarly vertical customers use 
either the left or right hand column. A network control policy determines both rout- 
ing and sequencing decisions. A routing policy specifies, at the time of a customer's 
arrival, which route it takes through the network. A sequencing policy specifies 
which type of customer to serve at each station at each point in time. 

Horizontal and vertical customers arrive according to independent renewal pro- 
cesses and each server processes customers according to a general service time dis- 
tribution, the service times of all customers being independent. Suppose 
horizontal and vertical customers arrive at rates ALr and ),r- respectively, and that 
all service times have mean #-1. 

We again use the general framework of Harrison [16] to obtain a Brownian net- 
work model which approximates the system described above. Assume that 
AH + Av -- 2# is of order n -1/2 s o  that the system is close to heavy traffic. With n 
fixed, define the scaled idleness and queue length processes U and Z (four- and 
eight-dimensional, respectively) as in section 3. The obvious nominal policy is to 
route each arrival to one of the two available routes with probability 1/2, and to 
have each server devote proportions PH and P v  of its service effort to horizontal 
and vertical customers respectively, where 

AH Av 
P H - - A H + A V ,  PV----AH+AV 

Let 

( pr in t  -- Tk(nt) 

Yk(t) = ] p z n t -  Tk(nt) 

t 

k = 1,3,5,7,  

k = 2, 4, 6, 8, 

where Tk(t) is the amount of service time received at queue k in [0, t]. Let 
P = (Pkl, k, l = 1 ,2 , . . . ,  8) where Pkl is the probability that a customer joins queue 
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l after queue k; so ek,k+4 = 1 for k = 1 , . . . ,  4 and Pkt = 0 otherwise. Also, let I8 be 
the eight-dimensional identity matrix and let 

R = # (18  - p T ) .  

Then the relationship between Z and the (centred and scaled) sequencing policy 
Y - -  (Yk, k =  1 ,2 , . . . ,  8) isgivenby 

Z(t) = X(t) + RY( t ) ,  

where we approximate the eight-dimensional process X by a Brownian motion 
with a certain drift vector and covariance matrix. That X is indeed an approximate 
Brownian motion follows from a heavy traffic limit theorem of Reiman [39], at 
least for the nominal policy. 

To include the effect of routing controls on Z, let ~'t(t) be the number of arrivals 
actually routed to queue l minus the number routed to l under the nominal (ran- 
dom routing) policy in [0, t], and let 

Vt(t) - Vl(nt) 
nl/2 

Then the approximate relationship 

I - -  1,2,3,4.  

between Z, the control policy 
Y = (Y~, k = 1 ,2 , . . . ,  8), V = (Vt, l = 1,2, 3, 4), and the Brownian motion X is 
given by 

Z(t) = X(t) + RY(t)  + GV(t) ,  (5.1) 

where G = (I4, 04) T, and In and 04 are the 4 x 4 identity and zero matrices. The con- 
trol policy (Y, V) must also satisfy 

AY(t) = U(t), HV(t) = 0,  (5.2) 

where U is the (scaled) idleness process. Here A - -  (Aik, i = 1, 2, 3, 4; k = 1,2, 
. . . ,  8) and Aik is 1 or 0 according to whether queue k is at station i, and 

(loOl o) 
H =  1 0 1 " 

Thus again A and H simply record which queues are at which stations, and which 
queues are accessed by which arrival streams. 

As in sections 3 and 4 we can reformulate our Brownian network control pro- 
blem in terms of workloads. Again (AR -1)ik gives the expected amount of time that 
server i must devote to a customer in queue k before the customer leaves the sys- 
tem. But now let 

( 0010) ( ) M =  1 1 A R - I _ _ # - I  1 1 1 1 0 0 1 1 
1 1 1 1 1 1 0 0 " 

Define the workload process W = ( W14, W23) by 



68 F.P. Kelly, C.N. Laws / Dynamic routing 

W(t) = MZ(t) .  (5.3) 

Then W14 (respectively W23) is the expected amount of (scaled) service time re- 
quired at stations 1 and 4 (stations 2 and 3) before all customers currently in the 
system leave. Multiplying (5.1) by M and using (5.2) gives the pair of equations 

W14(t) = Bl(t) + Ul(t) + U4(t), 

W23(t) = B2(t) + U2(t) + U3(t), (5.4) 

where B(t) = MX(t). The original formulation of the Brownian model is in terms 
of the control policy (Y, V), while the workload formulation requires choosing a 
pair (U, Z), with U non-decreasing and Z non-negative, subject to (5.3) and (5.4). 
These two formulations are equivalent (see Laws and Louth [34] for a proof) and 
we now concentrate on that based on workloads. 

To minimize both WI4 (l) and W23 (t) for all t i> 0 choose U such that 

Ul(t) + U4(t) = - inf Bx(s), 
O<~s<~t 

UE(t) + Ua(t) = - inf Bz(s). (5.5) 
O<~s<~t 

Now 

and hence 

where 

8 

ZZk(I )>~U(W14( t )  V W23(l)) , 
k=l 

8 

Zk(t) i> bl (t) V bE(t), (5.6) 
k=l 

br(t) --- #(Br(t) - o<<.~<<.tinf Br(s)~ . ]  

In fact we can attain the bound (5.6) at all times t >I 0 by choosing Z such that 

4 

Z Zk(t) = bl(t) A b2(t), 
k=l 

Zs(t) + Z6(t) - [b2(t) - bl (t)l + , 

Z7(t )  q- Zs ( l )  = [b l ( t ) -  b2(t)] + �9 (5.7) 

So as in previous sections we can minimize Y]k Zk(t) for all t t> 0 simultaneously, 
by setting (U, Z) as given by (5.5) and (5.7). 
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The behaviour of the network under this pathwise solution can be interpreted 
in terms of the reduced fork-join queueing system illustrated in fig. 5. Consider two 
stations each with a single first come first served (FCFS) queue and a single server 
of rate 2#. The first server represents the combination of servers 1 and 4, and the 
second the combination of servers 2 and 3. Customers arrive as for the original sys- 
tem, at a total rate of AH + Av. Each arriving customer sends a token to both 
queues simultaneously and these progress independently until service completion 
when they return to the customer. A customer leaves the system once both tokens 
have returned. Let the number of tokens waiting for the (1, 4)-queue and the (2, 3)- 
queue be w14 and w23 respectively. Since both queues are FCFS, the number of cus- 
tomers in the reduced system is w14 V w23. 

Under the pathwise solution, servers 1 and 4 (respectively 2 and 3) are only idle 
when W14 = 0 ( W23 = 0),  the workload for servers 1 and 4 (2 and 3) is bl (b2) and 
the system population is bl V b2. Hence, after suitable scaling, the behaviour of the 
fork-join system and the original network under the pathwise solution are identi- 
cal. So, in heavy traffic and under the optimal routing and sequencing policies, it is 
as though servers 1 and 4, and servers 2 and 3, are combined to form two pooled 
resources. Also, the network behaves as if customers queue for their two services in 
parallel rather than in series. 

The results above do not require symmetric service rates: they hold for arrival 
rates A~, Av and service rates #i, i = 1,2, 3, 4 provided that 

)~H -Jr- ~V ~ ]Zl +/1'4 ~ I-Z2 "]- P'3, (5.8) 

~H < ("1 -[-/Z3) A (]Z 2 + ~4), (5.9) 

/~V < (]Z 1 Jr-]Z2) A (]Z 3 q-/14). (5.10) 

More formally, we would consider a sequence of systems, indexed by n, whose limit- 
ing rates satisfied (5.8) with exact equality, (5.9) and (5.10). Further, as in all of 
our examples, the processes generating arrival and service events need not be inde- 
pendent renewal processes. It is sufficient that arrival and service processes jointly 
satisfy a functional central limit theorem: that is, in the limit n--* c~, the arrival 
and service processes, suitably centred and scaled, converge to a multidimensional 
Brownian motion. Subject to this requirement arrivals and services can be arbi- 
trary and, in particular, they need not be independent. In this four station example, 
the Brownian model would only be affected via the covariance matrix of the Brow- 
nian motion B: the pathwise solution and its fork-join queueing interpretation 
would still hold. 

In Laws and Louth [34] a simple control policy is discussed, which attempts to 
achieve the heavy traffic performance of the pathwise solution and to perform well 
in moderate traffic. One feature of the policy is a threshold at station 4, which indi- 
cates when this station is threatened with idleness. Stations 2 and 3 give priority to 
the exiting customers in queues 5 and 6, except when the total number of customers 
in queues 7 and 8 drops below threshold. By this means the policy attempts to 
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keep ei ther  queues 5 and 6 near empty or queues 7 and 8 near empty, as in the path- 
wise solution (5.7). Customers are routed so as to equalize the workloads for sta- 
tions 1 and 4, and to equalize the workloads for stations 2 and 3. By this means the 
policy attempts to keep stations 1 and 4 busy together, and stations 2 and 3 busy 
together. Simulation results (Laws and Louth [34]) show the benefits of dynamic 
rather than static control policies, and of dynamic routing in particular, to be sub- 
stantial. 

6. Further examples 

In this section we show that the analysis of the four station network extends 
straightforwardly to certain other forms of network. However, we also find that 
the existence of a pathwise solution is not guaranteed, and that it is necessary to 
generalize our definition of a pooled resource. Our examples are taken from Laws 
[321. 

T H E  2 x 2 • 2 C U B E  

We consider the extension of the four station, 2 x 2 square of section 5 to the 
2 x 2 x 2 cube shown in fig. 9. The eight stations, situated at the vertices of the 
cube, are labelled as shown and there are three arrival streams. Customers arrive at 
the top, front and left hand faces of the cube and they leave the system at the oppo- 
site face. The four possible routes for a given customer type correspond to the 
four edges connecting the face at which these customers arrive and the opposite 

Type 2 
Customers 

1 

Type 1 
Customers 

Fig. 9. The  2 x 2 x 2 cube. 

Type 3 
Customers 
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face. Customers of type 1 use one of routes (1, 2), (3, 4), (5, 6) and (7, 8); type 2 
use one of routes (1, 3), (2, 4), (5, 7) and (6, 8); and type 3 use one of routes (1, 5), (2, 
6), (3, 7) and (4, 8). (In general, a customer using route r = (il, i2 , . . . ,  i,) queues 
for service at each of stations i1,/2, . . . ,  in in turn before leaving the system.) 

Suppose that the three arrival rates are A, that all eight service rates are #, and 
that 3A ,.~ 4# so that the system is close to heavy traffic. Define the sets of servers 

$1 = { 1,4,6,7}, 8 2 = { 2 , 3 , 5 , 8 } .  

Observe that every arrival requires exactly one service from each set of servers $1 
and 82. Approximating the system behaviour by a Brownian network model, and 
proceeding as in the previous sections, we can obtain the workload formulation of 
the Brownian model. The important workload process is two-dimensional, the 
two components corresponding to the system workload for the sets of servers 81 
and 82 respectively. Thus the reduced system model of the 2 x 2 x 2 cube is similar 
to that of the four station network, except that the sets of servers 81 and 82 replace 
{1,4} and {2, 3}. As before, under the Brownian network model we can find a 
control policy which minimizes the total system population at all times t i> 0 simul- 
taneously, a pathwise solution. The interpretation of this solution in terms of a 
fork-join queueing system is the same as that in section 5, except that the two 
pooled resources are now the combinations of the sets of stations 81 and 82. In fact, 
the results described here extend to an N-dimensional hypercube of 2 N stations 
and N arrival streams with 2 N-1 routes for each arrival stream. The two pooled 
resources are the set of odd stations and the set of even stations, a station being odd 
or even according to whether the number of steps (via edges of the cube) to reach 
it from station 1 is odd or even. 

A SIX STATION NETWORK 

Consider the six station network with three arrival streams shown in fig. 10. Cus- 
tomers of type 1 use either of routes (1, 6, 5) and (2, 3, 4); type 2 use either of routes 
(2, 1, 6) and (3, 4, 5); and type 3 use either of routes (3, 2, 1) and (4, 5, 6). 

Consider the symmetric case where the three arrival rates are A and the six ser- 
vice rates are #, and suppose 3A ~ 2#, so that the system is close to heavy traffic. 
The system performance under the Brownian model is constrained by the total 
workload for the pairs of servers {1,4}, {2,5} and {3, 6}. For r = 1,2,3 let I~r(t) be 
the total (scaled) number of customers in the system at time t requiring service 
from either of stations r and r + 3, let Wr(t) = #-1 l~(t) ,  and let Ui(t) denote the 
cumulative (scaled) idleness of server i over [0, t]. Then the constraints on the work- 
loads Wr are 

W~(t) = Br(t) + U~(t) + Ur+3(t) r --- 112,3, 

where B = (B1, B2, B3) is a Brownian motion with a certain drift vector and covar- 
iance matrix. 
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Fig. 10. The six station network. 

Choosing server idleness processes such that 

Ur(t) + Ur+3(t) = - inf Br(s) 
O<s<~t 

r =  1,2,3 

minimizes Wr(t) at all times t>~0 simultaneously. Further, there is a choice of 
queue lengths under which the total system population, )--~k Zk(t), satisfies 

where 

E Zk(t) = bl(t) V b2(t) V b3(t), 
k 

br(t):l~(Br(t ) -  inf Br(s)~. 
O<s<t ] 

This choice of queue lengths is a pathwise solution in that it minimizes the system 
population at all times t~>0. Under this solution the network behaves like the 
reduced fork-join queueing system of fig. 11, which operates in a similar manner to 
that of fig. 5. Servers r and r + 3 serve a single queue according to a FCFS disci- 
pline, and each arriving customer sends a token to all three queues and leaves once 
all of its tokens have returned. Again there is a pooling of resources, the three 
pooled resources being {1,4}, {2, 5} and {3, 6}, and in the reduced system customers 
queue at these resources in parallel rather than in series. As in the previous exam- 
ples of this section and of section 5, the pooled resources are identified by the fact 
that they represent cut sets of servers, from which each arrival requires exactly one 
service. 
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Fig. 11. The reduced fork-join system. 

We can extend the example of this section to a network with eight stations in a 
ring and four arrival streams, where each customer uses either the four stations to 
the left or the four stations to the right of its arrival point. The workload formula- 
tion of the Brownian network model is of the same form as that above, there being 
constraints on the workloads, Wr, for the pairs of servers {r, r + 4}, r = 1 , . . . ,  4. 
However there is no control policy which minimizes the system population at all 
times t/> 0 (see Laws [32]). In contrast with our previous examples, we cannot mini- 
mize both the short term system population and long term server idleness simulta- 
neously: the trade-off between these two objectives has an important effect. 
Although we can minimize server idleness over [0, t] for all t~>0, and hence mini- 
mize Wr (t) for all t i> 0, this minimization requires a higher system population than 
necessary on some time intervals. For work on necessary and sufficient conditions 
for pathwise minimization of the objective function )-~k hkZk, for constant holding 
costs he >i O, see Yang [53] for networks with sequencing controls and Laws [32] 
for networks with routing and sequencing controls. 

THE 2 x 3 NETWORK 

We now consider extending the network of section 5 to the 2 x 3 network of fig. 
6. Consideration of the symmetric version of this network leads on to the general 
case discussed in the following section. 

Type 1 customers use either route (1, 2, 3) or route (4, 5, 6); type 2 customers 
use one of routes (1, 4), (2, 5) and (3, 6). Suppose both arrival streams have rate A, 
all six servers have rate # and that 5A ~ 6#. Then the network is close to heavy traf- 
fic and, as before, we use a Brownian network model to approximate the system's 
behaviour. Previously the important workloads could be identified by finding cut 
sets: that is, sets of servers such that every arriving customer required exactly one 
service from each set. This is not possible here, but we can find sets of servers with 
similar properties provided we attach different weights to the servers. Let 
A = (Aik) where Aik is 1 or 0 according to whether queue k is at station i, let 
P = (Pkt, k, l --- 1 ,2 , . . . ,  12) where Pkt is 1 or 0 according to whether a customer 
leaving queue k joins queue l, and let 



74 F P. Kelly, C N. Laws / Dynamic routing 

R =  (I12 - p T ) ,  

where I12 is the 12 x 12 identity matrix. Then define 

i 3 2 2 2  1 3 0 2  1 1 1'~ 
M = D A R - I = / z  -1 3 2 2 2  1 3 0  1 2 0 2 )  , 

3 2 2 2 3 1 2 0 1 1 1  

where 

D = 

( 0102 ) 
1 0 0 : 1  

2 1 2 0 

Also define the workload process W = (Wr, r = 1,2, 3) in terms of the queue 
length process Z = (Zk, k = 1 ,2 , . . . ,  12) by 

W(t) = MZ(t) .  (6.1) 

The Brownian model relates this workload process to the system idleness process 
U = (Ui, i =  1,2 , . . . ,6 )v ia  

W(t) = B(t) + DU( t ) ,  (6.2) 

where B is a three-dimensional Brownian motion with a certain drift vector and 
covariance matrix. 

Observe that, in contrast with our previous examples, different queue lengths 
Zk no longer contribute equally to the workloads Wr. Indeed the process W1 can 
only be interpreted as the workload for stations 1, 3, 5 and 6 if we regard a service at 
stations 1 or 5 as being 2 units of work, and a service at stations 3 or 6 as being 1 
unit of work. Both W2 and W3 have similar interpretations, the corresponding 
number of units of work being given by the second and third rows of D. So the com- 
ponents of W can be interpreted as workloads for the combined resources 
{ 1,3, 5, 6}, {1,2, 5, 6} and {2, 3,4, 6}. In fact, by symmetry, we can find three further 
workloads with similar properties to the Wr. However, the constraints on these ad-  
ditional workloads are linearly dependent on those given by equation (6.2) and 
hence we can ignore them. 

Another important difference from our previous examples is that the process 
W can no longer lie anywhere in the positive orthant: it is constrained to lie in the 
cone W given by 

M7 = {Weir  3 : W = MZ, Z~IR12}, 

= {w: cw >o} 

where 
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C = 
1 - 2  

-1  2 

0 1 

Suppose that W(t) lies on the interior of the boundary face WE = 0 of W. From 
the second row of D, we will need to incur idleness at one (or more) of stations 1, 2, 
5 or 6 just after time t to prevent W leaving W via the face WE = 0. However, in- 
creasing only U2 minimizes the increase of (DU)l  and W1, whereas increasing only 
U1 or U5 (or both) minimizes the increase of (DU)3 and W3. After leaving the 
face WE = 0 there is positive probability of moving to a region where it would be 
optimal to increase (DU) 1 at time t, and there is also positive probability of moving 
to a region where it would be optimal to increase (DU)3 at time t. With a non-an- 
ticipating control policy, there is positive probability of choosing to increase the 
wrong component of DUjus t  after time t. So, in contrast with earlier results of this 
and previous sections, there is no choice of idleness which minimizes all compo- 
nents of W(t) for all t/>0 and, moreover, this implies (see Laws [32]) that it is not 
possible to minimize ~ k  Zk(t) for all t ~> 0 simultaneously. 

7. General  n e t w o r k s  

In this section we consider dynamic routing and sequencing in general networks 
with asymmetric arrival and service rates, as in Laws [33]. Rather than starting 
with the most general case immediately, we consider an illustrative example. 

THE 2 x 3 N E T W O R K  

Consider the network of fig. 6. Suppose the arrival and service rate vectors of 
the (mutually independent) renewal arrival and goneral service processes are 
2 = (Aj,j = 1, 2) and / t  = (#i, i =  1 ,2 , . . . ,  6). Suppose also that the variances of 
typej  interarrival times and station i service times are aj and si respectively. Before 
using the Brownian approximation, consider the heavy traffic conditions under 
which we expect it to be accurate. There are a set of constraints, arising from deter- 
ministic network flow theory (Gondran and Minoux [12]), which determine the ca- 
pacity region within which the system can cope with the arriving demands. The 29 
constraints for this example include the following six constraints: 

�9 ~1 ~ # 1  "{- ~ 4 ,  

A1 ~<#1 + #5, 

f12 ~ ]s q-/Z2 -[-/~3, 

(7.1) 
(7.2) 
(7.3) 
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)~1 q-/~2 ~</~1 q-/z2 +/z6, 

2/~1 + )~2 ~</Zl + ~2 + 2/z6, 

3/~1 + 2~2 ~<2#1 + 2#5 + #3 + ~6. 

(7.4) 

(7.5) 

(7.6) 

The remaining 23 constraints can be obtained from those above by symmetry. 
The system is close to heavy traffic when all of the constraints are satisfied with 
strict inequality and one (or more) of them is close to equality. 

Constraints (7.1)-(7.4) are cut constraints. Consider constraint (7.4), for exam- 
ple. Stations 1, 2 and 6 form a cut for type 1 and type 2 traffic: their removal from 
the system prevents the flow of customers o f  types 1 and 2. Hence the minimum 
arrival rate at this cut, /~1 q-/~2, must not exceed the service rate of the cut, 
#1 + #2 +/~6, if the system is to be stable. Constraint (7.6) can be interpreted as 
follows. Customers are charged 2, 2, 1 and 1 units at stations 1, 5, 3 and 6 respec- 
tively; stations 2 and 4 have zero cost. To pay to get through the network, type 1 
and 2 customers enter the system with 3 and 2 units respectively. If there is a feasi- 
ble flow then the total arrival rate of revenue, 3)q + 2/~2, cannot exceed the maxi- 
mal charging rate, 2/Zl +2#5-F/~3 +/z6. Constraint (7.5) has a similar 
interpretation with costs of 1, 1 and 2 units at stations 1, 2 and 6, and where type 1 
and 2 customers arrive with 2 and 1 units respectively (route (3, 6) is available to 
type 2 customers, but is too expensive). We call the constraints (7.5) and (7.6), and 
the others obtained from them by symmetry, generalized cut constraints. 

In the symmetric version of this example considered in section 6, all six con- 
straints on 3/~1 + 2/~2 are close to being tight. However, in many respects, this is not 
the typical situation. Consider a regime in which 2 is scaled by a factor p, where p 
is increased from zero until one or more of the constraints first hit equality, at 
p -- p* say. In many contexts it will be natural for exactly one of the constraints to 
become tight in heavy traffic, that is at p = p*. If2 and/t are chosen from some con- 
tinuous probability distribution over I~8+, for example, then there will be a single 
tight constraint with probability 1. In a communication network where arrival 
rates vary over time we might expect to find at most a single constraint close to 
equality. However, if arrival and service rates are carefully matched (perhaps arri- 
val rates themselves can be controlled) as may be the case if the network repre- 
sented a manufacturing system, for example, then it is possible that several 
constraints will be close to equality (cf. Wein [44,45]). 

Consider using a Brownian network model to approximate the system beha- 
viour when only the generalized cut constraint (7.6) is close to equality. Suppose 
that 3~1 + 2~2 - (2/Zl + 2#5 + #3 +/z6) is of order n-1/2: for example, 2 = (2p, 4p), 
/~ = (2, 6, 3, 6, 2, 3) where (1 - p) is of order n -1/2. Define the scaled queue length 
and idleness processes Z and U as before. Since (7.6) is the constraint determining 
heavy traffic, it is impossible for stations 2 and 4 to be heavily loaded (this is clear 
for the 2 and/~ given above; in general see Laws [33]). Only heavily loaded stations 
appear in the Brownian model: in comparison with those at heavily loaded sta- 



F.P. Kelly, C N. Laws / Dynamic routing 77 

tions, queue lengths and delays at lightly loaded stations are small (cf. Harrison 
[16], Harrison and Williams [23]), and we take Zk = 0 for k = 2, 4, 6, 8. 

Let 

and let 

3 k = 1 , 7 ,  

2 k =  3,5,9, 
Mk= 1 k =  10, 11,12, 

0 k = 2, 4, 6, 8, 

W(t) = y~ MkZk(t). 
k 

The interpretation of W as the system workload process is similar to that in section 
6: we regard a service at stations 1 or 5 as being 2 units of work, and a service at sta- 
tions 3 or 6 as 1 unit of work. (A minor difference is the factor #-1 implicit, through 
M, in the definition (6.1) of section 6. Now, in the asymmetric case, it is important 
for W to represent a weighted count of customers, rather than a weighted count 
of their expected service times.) Under the workload formulation of the Brownian 
network model, the choice of dynamic routing and sequencing policies for the sys- 
tem is equivalent to choosing the pair (U, Z) subject to the constraint 

W(t) = B(t) + V(t), (7.7) 

where the scalar function U is the weighted idleness process 

U(t) = 2/z 1Ul(t) + 2#5 Us(t) +/z3 U3(t) +/z6 U6(t) 

and B is the Brownian motion with drift 

and variance 

nl/213A1 q- 2A2 - (2/zx + 2#5 + #3 + #6)] 

+ 44a  + + + + 4,6.  

Notice the dependence of the Brownian model on the heavily loaded generalized 
cut constraint (7.6): the workload W, eq. (7.7) and the parameters of B are all ob- 
tained from the coefficients of the Aj and #i in constraint (7.6). In this asymmetric 
case, the service rates #i are no longer used to define the workload W: instead they 
appear in eq. (7.7) via the weighted idleness process U. The reader will observe the 
very simple interpretation of W(t) and U(t) in terms of the charging argument be- 
hind constraint (7.6): the workload W(t) is just the number of units held by custo- 
mers in the system at time t, and U(t) is just the cumulative revenue lost, through 
server idleness, over the period [0, t]. 

In order to minimize both the weighted idleness and the system workload for 
all t ~> 0, choose U such that 
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U ( t ) = -  inf B(s). 
O<~s<<.t 

Further, we then minimize Y~'~k Zk (t) for all t/> 0 by choosing Z such that 

Zl ( t )  + Z7(t)  = l b ( t ) ,  

Zk(t) = 0 k r 1,7, 

where 

(7.8) 

(7.9) 

b(t) = B(t) - inf B(s). 
O<~s<~t 

The interpretation of the pathwise solution, given by (7.8) and (7.9), is as fol- 
lows. Since the workload for the system, W, is constrained by (7.7) we minimize the 
number of customers in the system by maximizing the workload per customer: 
that is, Zk>O only i l k  = 1, 7. Also, the solution shows that Ui, i = 1, 3, 5, 6, only 
increase when the system workload is zero. So, whenever one of the heavily loaded 
servers is working, all of them are working, and they are all idle only when there 
are no customers anywhere in the system. If the network is operated without dy- 
namic routing then the Brownian model would have a separate constraint on the 
workload of each of servers 1, 3, 5 and 6 (Harrison [16]). So we again observe the 
important resource pooling effect of dynamic routing, which merges the individual 
workloads for servers 1, 3, 5 and 6 to form a single system workload process. While 
servers 2 and 4 have no effect and can be regarded as having infinite capacity, ser- 
vers 1, 3, 5 and 6 behave as if they form a single pooled resource. 

The benefit of this resource pooling can be calculated by considering the equili- 
brium behaviour of the system. Suppose arrival processes are Poisson and service 

2 2 times are independent and exponential so that aj = Af ,si = #i- �9 Consider a 
sequence of networks, indexed by n, in which 2 = (2p(n), 4p(n)),/~ = (2, 6, 3, 6, 2, 3) 
where 

nl/211 --p(n)l-+O<O as n--~ec. (7.10) 

Then in the heavy traffic limit under the pathwise solution, the normalized number 
of customers in the system is a reflected Brownian motion with drift (14/3)0 and 
variance 56/9. From the stationary distribution of this reflected Brownian motion, 
the mean number in the system is m* = (2/3)101-1. 

We compare the system population m* with that for an optimal random routing 
policy. Since we are interested in heavy traffic we ignore stations 2 and 4, as in the 
Brownian model. Suppose all sequencing is FCFS and that arrivals choose their 
route by rolling a (biased) die. Then, subject to stability, the network has a product- 
form stationary distribution and under the optimal bias, which can be found by a 
Lagrangian analysis, the mean system population is 

14 + 8v"3 
4. 

7(1 - p(n)) 



F.. P. Kelly, C.N. Laws / Dynamic routing 79 

Using the same scaling as in the Brownian model, the mean system population in 
the heavy traffic limit is 

r h =  limn-1/2 1(7~ + 8 V ~  ) n~c~ - p(n)) 4 

= ~ (7 + 4x/3)10[ -1 . 

Hence the improvement of the pathwise solution over the optimal random routing 
policy is by a factor of a where 

rh 3 4V/-3) 5.97. a = ~ - ~ = ~ ( 7 +  

We now consider the behaviour of a particular dynamic routing policy. Let 
ni(t) be the total number of customers at station i at time t and suppose all sequen- 
cing is FCFS. Suppose a type 1 customer arriving at time t uses the route 
r ~ { ( 1,2, 3), (4, 5, 6) } which minimizes dr(t) where 

= a t ( t )  

Similarly suppose a type 2 customer arriving at time t uses the route r~{(1,4), 
(2, 5), (3, 6)} which minimizes dr(t). We regard this policy as a form of shortest 
expected delay routing (SDR) policy. Although, for a customer arriving at time t, 
the number of customers at station i may not be ni(t) when the customer reaches i, 
the snapshot relation (Foschini [8], Reiman [37,39]) suggests that dr(t) will be an 
accurate estimate in heavy traffic. The relation is in the form of a limit theorem for 
networks without dynamic routing and can be informally described as follows: 
when close to heavy traffic, the system queue length process is approximately 
unchanged during a customer's sojourn in the network. Hence it seems reasonable 
to estimate the delay on route rby dr(t) for a customer arriving at time t. 

In heavy traffic queue lengths at stations 2 and 4 will be small compared with 
those at other stations, since these stations are not heavily loaded, so make the 
approximation 

n2(t)  ---- n4( t )  = 0 .  (7.11) 

As a heavy traffic approximation, the SDR policy equalizes dr(t) over the routes 
available to type 1 customers, and over the routes available to type 2. That is, under 
SDR, station queue lengths satisfy 

nl(t) f n 3 ( t ) _ n s ( t )  ~_n6(t____)), 
]~1 ~3 ]-1"5 ~6 

n l ( t )  _ n5( t )  _ n3( t )  t n6(t___)) 

]~1 ~5 ~3 /Z6 
(7.12) 
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Notice that eqs. (7.11) and (7.12) are equivalent to 

(ni(t)) or (2#1,0,#3,0,2#5,#6). (7.13) 

So, from relation (7.13), under SDR and FCFS sequencing, servers 1, 3, 5 and 6 
are all busy whenever there is work anywhere in the system. Transferring these 
results to the Brownian model, eq. (7.8) is satisfied, 

W(t)  = b(t) , (7.14) 

and hence SDR minimizes W(t)  at all times t ~> 0. So SDR has the important prop- 
erty that it achieves the resource pooling effect of the pathwise solution. However, 
the policy does not succeed in minimizing the system population: relation (7.9) 
requires zero queue lengths at stations 3 and 6, and from eq. (7.13) this will not hold 
under SDR. 

Consider again the case of Poisson arrivals and exponential service times with 
2 = (2p(n),4p(n));l~ = (2, 6, 3, 6, 2, 3) where p(n) satisfies (7.10). Let Ni(t) be the 
(scaled) number of customers at station i in the Brownian model of SDR. Transfer- 
ring eq. (7.13) to the Brownian model, we obtain 

(Ui(t)) - ~ i  Ni(t) (4, 0, 3, 0, 4, 3). (7.15) 
14 

Heavy traffic analysis of systems without dynamic routing (Peterson [36], Reiman 
[40]) shows that, under FCFS sequencing, the length of queue k at station i is a 
fixed fraction of the total queue length at i, the fraction being the proportion of its 
busy time that server i devotes to queue k. Assume the same result holds for our net- 
work with dynamic routing. Then, in heavy traffic, 

Zl( t ) - - -  Z 3 ( t ) = l N l ( t ) ,  Z s ( t ) =  2 Z l l ( t ) = 2 N 3 ( t ) ,  

Z7(t) = Z9(t) = 1Ns(t),  Zlo(t)  -- 2Z12(t) = 2N6(t) . 

SDR and FCFS sequencing, using the relationships (7.14) and Hence under 
(7.15), 

Z Ni(t) = lb(t) . 
i 

So, pushing to a conclusion our various heavy traffic approximations, the scaled 
number in the system is a reflected Brownian motion with drift 70 and variance 14. 
Hence the mean system population is m ~ = [01-1 . Thus in heavy traffic, under 
SDR and FCFS sequencing, the anticipated improvement over the optimal ran- 
dom routing strategy is by a factor of 

rh 
a /=  - -  ~ 3.98. 

rn I 

While this improvement is smaller than that obtained under the pathwise solu- 
tion, it is still substantial and, moreover, it is attained by a simple routing policy. 
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The use of dynamic sequencing with SDR allows further improvement, to an over- 
all factor of 4.69: see Laws [33] for further discussion and numerical evidence. 

THE GENERAL CASE 

In general consider a network of I single-server stations. Customers of type j ,  
j = 1 ,2 , . . . ,  J, arrive according to a renewal process, interarrival times having 
mean/~21 and variance aj. Service times at station i, i = 1 ,2 , . . . ,  I, form an indepen- 
dent identically distributed sequence of random variables with mean #:-1 and var- 
iance si. All arrival and service processes are independent. A route r is an ordered 
series of stations (il, i2 , . . . ,  in) and a customer using route r queues for service at 
each of these stations in turn before leaving the system. Let J~j be the set of routes 
available to typej  customers and let air �9 Z+ be the number of times that route r vis- 
its station i; air is 0 or 1 in all of our previous examples. As well as there being custo- 
mers on different routes that queue at station i, there may also be customers 
queueing at i who are at different stages of the same route (since routes may visit i 
more than once). At station i distinguish between these different kinds of customers 
by having a different queue for each stage of each route that passes through i. The 
network is controlled via dynamic routing and sequencing. A routing policy speci- 
fies, at its arrival time, the route r �9 J~j along which a type j  customer is routed. A 
sequencing policy specifies which queue to serve at each station at each point in 
time. 

As in the 2 x 3 example there are a set of generalized cut constraints determining 
the capacity region of the network. Each constraint is of the form 

O~jAj ~ ~-~ /~i]Zi , (7.16) 
j i 

where a = (aj) and p = (/3/) are known vectors satisfying 

aj=min(~--~air /3 i ) .  

As above, consider the simplest heavy traffic scenario: that is, assume that all con- 
straints of the form (7.16) are satisfied and that exactly one is close to being a tight 
constraint. Suppose this constraint is given by the vectors a, p where aj > 0 for all 
j , /3/> 0 for all i and suppose further that, in heavy traffic, it is possible for all routes 
r �9 :Rj to be in use. (If these conditions on a, fl and J~y do not hold then we should 
reduce the original network to its bottleneck subnetwork, see Harrison [16], Laws 
[33], before proceeding with heavy traffic analysis.) With these assumptions 

aj = ~ air/3i for all r �9 :Rj. 
i 

We now describe the workload formulation of the Brownian model of this gener- 
al network. Assume that (~-~j ajAj - }-~i/3i#i) is of order n -1/2, and let Z = (Z~) 
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and U --- (Ui) be the scaled queue length and idleness processes, as before. Let Mik 
be the number of services (including the present one) that a customer currently in 
queue k requires from station i before leaving the network. Let 

Mk = E Mikfli 
i 

and define the process W by 

W(t) = E MkZk(t). 
k 

Since Mk is a weighted average of the remaining number of services of a customer 
in queue k, we can regard MkZk(t) as the total workload for the system in queue k at 
time t: a service at station i is regarded as being fli units of work. Then W(t) is the 
total work in the system at time t. Under the Brownian network model the choice of 
dynamic routing and sequencing policies is equivalent to choosing (U, Z) subject 
to 

W(t) = B(t) + Efli#iUi(t),  (7.17) 
i 

where B is a Brownian motion with drift 0 = nl/2(y~ 4 ajAj - Y'~i fli#i) and variance 
(~-4 a2 A3. aj + •i fl2lz~ si) As in the 2 x 3 example above, observe how the Brownian 

J Y 
model depends on the vectors a, p which define heavy traffic. Again the system 
workload and the total lost service effort are linked, by eq. (7.17), lost service effort 
at station i being weighted by a factor fit. 

Since the workload process is one-dimensional we can again find a pathwise solu- 
tion. Let 

= max Mk 
k 

and define the set of customer classes X = {k : Mk ---- -~/}. To minimize cumulative 
idleness over [0, t] and hence minimize W(t), for all t/> 0, choose U such that 

E f l i P t i U i ( t ) = -  i n f  B(s). 
O<~s<~t i 

Further, we minimize the system population, ~ k  Zk(t), for all t by choosing Z 
such that 

where 

1 b(t), Z zk(t) = 
k e X  

Zk(t)----O k ~ X ,  

b ( t ) - -B( t ) -  inf B(s). 
O<~s<~t 



F.P. Kelly, C N. Laws / Dynamic routing 83 

The interpretation of this pathwise solution is again in terms of a single pooled 
resource. Under the solution the servers of the network are only idle when there are 
no customers anywhere in the system, and even when there is work in the system, 
the system population is minimized by allowing only queues k ~ :K to have positive 
queue lengths. Hence the system behaves as if servers 1 ,2 , . . . ,  1 are combined to 
form a single pooled resource. 

Under the pathwise solution the system population is a reflected Brownian mo- 
tion and, assuming 0 < 0, the mean scaled number in the system is 

 y )aj + 3e es  101-1 �9 (7.18)  

To make a comparison with the optimal random routing strategy, suppose arrivals 
are Poisson and services are independent and exponential. Suppose all sequencing 
is FCFS and that arrivals are routed according to the roll of an optimally biased 
die, and let rh be the mean scaled system population. Then a Lagrangian analysis 
shows that in the heavy traffic limit the improvement of the pathwise solution over 
optimal random routing is by a factor of a where 

rh 2jlSlf (~-'~ i ~ ) 2  (7.19) 
a = m---~ >~ (E]  a}Aj + ~'~i32#i) " 

The bound (7.19) is certainly attained in the simple case considered in section 2: 
see expression (2.5). 

Finally we consider the behaviour of shortest expected delay routing (SDR). 
Suppose sequencing is FCFS and let ni(t)  be the total number of customers at sta- 
tion i at time t. Under SDR a customer of typej  arriving at time t is routed via the 
route r ~ 5~j which minimizes 

dr(t) = ~ air ni(t----~) , (7.20) 
i Izi 

where dr(t) is an estimate of the delay via route r (supported by the snapshot rela- 
tion as before). Now make the heavy traffic approximation that under SDR 

dr(t) = de( t )  for all r ,r '  ~5~j. (7.21) 

Equations (7.21) and (7.20) imply that 

hi(t) or 

and so, that under SDR, all servers are kept busy whenever there are customers any- 
where in the system. Hence the general network behaves as if all of its servers are 
combined to form a single pooled resource. 

In the above discussion we have made several approximations which, while 
they appear plausible in heavy traffic, are not supported by existing convergence 
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results. A major challenge remains the identification of a framework which will 
allow a rigorous treatment ofpathwise solutions for general networks. 
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