CHAPTER 8
Clustering Processes

Processes in which individuals or units form themselves into clusters have
applications in a variety of fields. In Section 8.1 we shall commence
investigation of these clustering processes with an example arising from the
study of social behaviour. Later, in Section 8.4, we shall consider in some
detail a more complex example taken from the field of polymer chemistry.

8.1 INTRODUCTION

In Section 6.2 we considered a model for social grouping behaviour based
on the reversible migration processes of that chapter. A possible drawback
of the model was its assumption that groups form at specific locations; this
assumption might be appropriate for troops of monkeys sleeping in trees,
but is less likely to apply to clusters of people at a cocktail party. An
alternative model for the latter context might be as follows. Suppose there
are M individuals formed into distinct groups, with m; being the number of
groups consisting of i individuals. Thus

M
Y im=M (8.1)
i=1
and m, is the number of isolated individuals, or isolates. Suppose that a
given isolate moves to join a given group of size i(i=1,2,...) at rate a and
that a given individual within a group of size i(i =2, 3,...) leaves that group
to become an isolate at rate B. Put more precisely this is equivalent to the
assumption that m =(m,, m,,...) is a Markov process in which the transi-
tion rate from (my,m,,...,m,m,,...) to (m—1,my...,m-1,
mi+1,..) is amym, for i=2; from (m,, my, m,,...) to (m;—2, my+
1,ms,...) is am;(m;—1); from (my,m,...,m_,m,..) to (m+
Lmy,...,m_y+1,m~1,...) is iBm, i>2; and from (m,, m,, ms,...) to
(my+2,m,—1, ms,...) is 2Bm,. Note that two isolates may form a group of
size 2; the rate at which a group of size 2 is formed in this way while there
are m, isolates is am,(m, —1), there being m,(m, — 1) distinct ordered pairs
of isolates.

The equilibrium distribution is

m(m)=B f[1 ()" | (8.2)
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162  Clustering Processes

for m satisfying restriction (8.1), where B is a normalizing constant. This can
be verified by checking the detailed balance conditions, and is a special case
of a more general result to be discussed in the next section. We have
considered this special case separately in order to motivate the next two
sections. We shall see later (Exercise 8.2.1) that from the equilibrium
distribution it is possible to calculate quantities of interest such as the
expected number of groups of size i or the expected proportion of individu-
als in groups of size i.

The process m has some similarities with the infinite alleles model M
considered in the previous chapter. In each case the ith component gives the
number of groups of i individuals. Like the infinite alleles model the simple
clustering model described in this section can be considered as a limiting
case of a reversible migration process (Exercise 8.1.1).

Exercises 8.1

1. The process described in this section is a limiting form of a reversible
migration process. To see this consider a reversible migration process
(ny, ny, . . ., ny) with J sites and Y/-1 n;=M, and suppose the probability
intensity an individual moves from site j to site k is ¢ (n;) where ¢(1) =«
and ¢(n)=pn/J, n=2. Now let m=(m,, m,,...) describe the system
with m, being the number of sites inhabited by i individuals. Show that as
J — o the transition rates and the equilibrium distribution for the process
m approach those of the model described in this section.

2. If m is distributed according to (8.2) with a/B an unknown parameter
show that the number of groups, Y. m;, is a sufficient statistic for a/p.

8.2 THE BASIC MODEL

In this section we shall discuss a fairly general clustering process. It will
come as no surprise that when the process is reversible equilibrium results
can be readily obtained.

Suppose there exist a countable number of possible cluster types, labelled
r=1,2,.... Two clusters may join together to form a single cluster or a
cluster may break up into two clusters. Let m, be the number of r-clusters,
i.e. clusters of type r, and let m=(m,, m,, .. .). Define the operators R;} and
R} by

R{fm=(m1,m2,...,m,—l,...,m,—l,...,mu+1,...)
and
R',‘sm=(m1,m2,...,m,+1,...,m,+1,...,mu—1,...)

so that they correspond respectively to the union of an r-cluster and an
s-cluster to form a u-cluster and the break up of a u-cluster into an r-cluster
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and an s-cluster. Similarly define
Rim=(my,my,...,.m-=2,...,m,+1,...)
and
Rim=(m,m,, ..., m+2,...,m,—1,...)
We shall suppose that the process m is Markov with transition rates
q(m, R?m) = A, m,m, ris
q(m, Rym)= A, m.(m,~1) (8.3)
q(m, Rim) = p,,,m,

where A, =A,, and u,, = W, The parameter u,,, can be regarded as the
probability intensity a given u-cluster breaks up into an r-cluster and an
s-cluster; similarly, A, for r=<s can be regarded as the probability intensity
a given r-cluster attaches itself to a given s-cluster to form a u-cluster. Let &
be the state space of the process m. For the moment we shall assume & is
finite and irreducible. In this case call m a closed clustering process.

Theorem 8.1. If there exist positive numbers c¢,, c,, ... satisfying
CVCSATSM = Cu“’rsu (8'4)

¥
then in equilibrium the closed clustering process m is reversible with equilib-
rium distribution

™
w(m)_Bl:[;lj (8.5)
where B is a normalizing constant.

Proof. The detailed balance conditions
m(m)q(m, Rim) = w(Rm)q(Rim, m) (8.6)

are readily verified; the theorem follows from these.

Often the clusters are made up of basic units which cannot be created or
destroyed. In this case if k(r) is the number of units in an r-cluster then
0%, r=1,2,..., will also satisfy equation (8.4). The distribution (8.5) is,
however, unaltered—a factor 8™ is incorporated into the constant B, where
M is the total number of units in the system. In the example described in the
last section k(r)=r and so the number of units, or individuals, in a cluster
defines it completely. This will often be the case but a process for which it is
not true will be discussed in Section 8.4. The normalizing constant B is, as in
closed queueing systems, straightforward but tedious to calculate (Exercise
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8.2.1). As might be expected we can avoid difficulties with B by making the
system open. One way to do this is as follows. Define the operators

R.l'm =(m1 +1, My, My, .. .)
R'm=(m,—1,my, ms,...)

and suppose that one-clusters may enter or leave the system with corres-
ponding transition rates
q(m, Rym)=v

q(m, R,'.m) = um, 8.7)

Assume that every state (m,, m,,...) with Y’ m, finite can be reached from
every other such state.

Theorem 8.2, If there exist positive numbers cy, ¢, . . . satisfying
=c
vk (8.8)
lrsu CVCS = Cu,ursu
and
Y ¢, < (8.9
r=1

then the open clustering process m with transition rates (8.3) and (8.7) has
equilibrium distribution -’

Cr ' (8.10)

m,!

mw(m) = ﬁ e
r=1

In equilibrium m is reversible and m,, m,,... are independent random
variables; m, has a Poisson distribution with mean c,.

Proof. For the open process there is in addition to conditions (8.6) the
extra detailed balance condition

m(m)v = w(Rim)u(m, +1)

and it is readily checked that the form (8.10) satisfies all of these equations.
The additional assumption (8.9) is necessary to ensure that the form (8.10)
assigns probability one to the countable set & consisting of states m with
Y. m, finite.

It is often not apparent from the transition rates (8.3) whether equations
(8.4) have a non-zero solution; the following lemma, a partial converse to
Theorem 8.1, can sometimes be used to establish this.
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Lemma 8.3. Let m be a closed clustering process with transition rates
(8.3), and suppose the parameters p,,, permit a sequence of dissociations by
which an r-cluster can break up into one-clusters. If m is reversible then there
exists a solution to equations (8.4) with the property that ¢, >0 if in equilib-
rium there is a positive probability that an r-cluster is present.

Proof. Let m' be a state in which m, >0, and let m',m?,...,m*” be a
sequence of states produced by the dissociation of an r-cluster into one-
clusters. Thus m“® is the state obtained from m' by removing an r-cluster
and replacing it with k(r) one-clusters. The condition on the parameters u,,,
ensures that there exists such a sequence with q(m‘,m*')>0 for i=
1,2,...,k(r)—1. Define

k(r)—t i+1

o =t qm*', m')
To(my k(M) L qm',m'tY)

Observe that the first factor has been chosen so that terms involving
m,, m,, ... cancel, leaving c, as the product of ratios A, /u,,.. Further, since
m is reversible Kolmogorov’s criteria establishes that ¢, does not depend on
the sequence of states m', m?, . .., m*“® used to define it. Note that c, will be
positive unless the numerator is zero, in which case an r-cluster could not
exist in equilibrium. It now remains to check that ¢, r=1,2,..., satisfy
equations (8.4). This can be most readily verified by defining c, using the
sequence m',m?, ... in which after the u-cluster has separated into an
r-cluster and an s-gluster the r-cluster completely breaks up into one-
clusters before the s-cluster begins to dissociate.

Exercises 8.2

1. Consider a closed clustering process in which the total number of units
present in the system is fixed at M, with r units present in each r-cluster.
Let B, be the normalizing constant appearing in expression (8.5). Thus

By =111

r m"

.

m
C,’
!

where the summation runs over all m satisfying 3. rm, = M. Show that the
expected number of clusters of size r is ¢,By/By_, and that the probabil-
ity a randomly chosen unit lies in a cluster of size r is rc,By,/MB,,_,.
Deduce the recursive formula for B,, B,, ...,

M
MBil =Y reByl, (8.11)
r=1

where B,=1.
2. For the process considered in the previous exercise show that B3/ is the
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coefficient of 6™ in the power series expansion of

G(@)=ef®= exp(Z c,O')
Deduce the recursion (8.11) from the identity
0G'(8) = G(6) ). rc,0’

3. There are many ways a closed clustering process can be amended to
produce an open clustering process. For example, suppose that r-clusters
may enter or leave the system at rates

q(m, R,m) =,
q(m, R"'m) = p,m, (8.12)

Show that if
V' = cl'“""
and
CCsA s = Cubhiesu

then the system with transition rates (8.3) and (8.12) is reversible with
equilibrium distribution (8.10), provided condition (8.9) holds and any
state with Y’ m, finite can be reached from any other such state.

4. Suppose that an r-cluster contains k(r) units. Show thatif ¢;, r=1,2,...,
is a solution to equations (8.4) then ¢,6*®, r=1,2,..., is a solution to
equations (8.8) where 6*V = v/uc;.

5. Even when clusters are made up of units the condition imposed on the
dissociation rates in Lemma 8.3 may not be satisfied. For example if an
r-cluster contains r units and if A, = M Az = Az2s = Aose =Azas =1
with all other A, =0 then a three-cluster can only be formed by the
breakup of a six-cluster. In fact the condition imposed in Lemma 8.3 is
unnecessary. Show that if a process m with transition rates (8.3) is
reversible then there exists a non-zero solution ¢, ¢,, ... to equations
(8.4).

6. Suppose that the function F(8) defined in Exercise 8.2.2 has radius of
convergence 6, Deduce that G(8) has the same radius of convergence,
and that if B,/By—, tends to a limit as M — o« the limiting value is 6.
Consider now the effect of letting M —  on the equilibrium distribution
of the clustering process. Deduce from Exercise 8.2.1 that if By/By_,
converges then the expected number of r-clusters tends to c,65.

7. Generalize the results contained in Exercises 8.2.1, 8.2.2, and 8.2.6 to
allow an r-cluster to contain k(r) units,
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8.3 EXAMPLES

In general the rates A,,, and p,, will not allow a solution to equations (8.4):
in this section we shall give some examples where they do. In most of these
examples the number of units in a cluster will define it completely, with
k(r) =r. Initially we shall consider clustering processes in which only a single
unit can join on to or break off from a cluster, and we shall write A, and g,
for A,,,+; and p;,_;, respectively. For such processes equations (8.4)
always have a solution: it can be built up from the recursion

Crlhr =cr—lClAr—l (813)

with ¢, chosen arbitrarily. The solution to equations (8.8) is given by the
same recursion, with ¢, set equal to v/p.

Example 1. The simplest case occurs when
A=a pm =8

so that size does not affect the propensity of clusters to associate or
dissociate. From the recursion (8.13) we find that a solution to equations
(8.4) is
. -B
a
Thus for a closed clustering process in which the total number of units is
fixed at M the equilibrium distribution is
>m, 1
(m) = BM(E) e (8.14)
o m, !
where By, can be calculated from the recursion (8.11). Observe that if 8 is
much smaller than « then we can expect Y m, to be small and hence we can
expect the M units to be concentrated in a few large clusters. Suppose now
the process is made open using transition rates (8.7). The solution to
equations (8.8) is ¢, =(B/a)8" where
av

0=__.
Bu

(Exercise 8.2.4). Define formally the function
F(0)= ) ¢
r=1
so that for this example

F(8) = }:ge'
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To satisfy (8.9) we require F(8)< and thus § <1, Provided 6<1,

B 6
F(@)=———
) al-0
is the expected number of clusters. As  approaches unity the expected
number of clusters approaches infinity.

‘

Example 2. The case
A=a M, = Br

was considered in Section 8.1; the closed process has equilibrium
distribution (8.2). Figure 8.1 plots the expected number of units in clusters
of size r against r, for certain values of the parameters. The open process has

L
arl
and thus
FO=L e -1)
a

The radius of convergence of the function F(8) is infinite: no matter how
large 6 becomes the open process has an equilibrium distribution.

5.0~ M =50
a/p =10

40 g

301

2:01-

1-Of-

L . 1 | I 1
10 20 30 40 r 50

Fig. 8.1 The expected number of units in clusters of various sizes

Example 3. Consider the case

Ar=ar =8
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The association rate ar will arise if a given isolate is attracted to each
individual of a group at a constant rate a. The closed process has c, = (8/a)
(r—1)!. The open process does not have an equilibrium distribution for any
positive value of @ since 8"(r—1)! diverges as r tends to infinity.

Example 4. If

A=ar @ =pr

then the closed process has c, = B/ar. For this case the normalizing constant
can be written in a closed form and the equilibrium distribution is

_((Bla)+ M- 1)-1 1 (B )m.
(m) = ( M I:I m ! \ar 8.15)
the same as for the infinite alleles model of Chapter 7. For the open process
_Bo
" ar

and so
__B
F(8)= ~ log(1-6)
provided 8 <1.

Example 5. Let
r=ar  u,=p(r+1)

The dissociationsrate in this and the next example are a little artificial; the
purpose of the examples is to introduce a phenomenon which will arise
naturally in Section 8.4. For the open process

260
" ar(r+1)

and so an equilibrium distribution exists provided §=<1. As @ approaches
unity the expected number of clusters does not diverge; in fact the expected
number of clusters approaches F(1)=2p8/a (Exercise 8.3.1). However, the
expected number of units in the system is ) rc,, and thus as 8 approaches
unity the expected number of units does diverge. When 6 = 1 an equilibrium
distribution exists, and it has the property that the mean cluster size is
infinite (Exercise 8.3.1).

Example 6. Let
Ar =ar Wy = B(r + 2) B
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For the open process

_ 6po
&= ar(r+1)(r+2)

and so an equilibrium distribution exists provided 8§ <1. When 6 =1 the
expected number of clusters, Y. ¢,, and the expected number of units, Y rc,,
are both finite. However, Y. r’c, is infinite, a fact which can be interpreted in
various ways (Exercise 8.3.2). It shows that the size of a randomly chosen
cluster has infinite variance. Suppose there exists a link between two units if
they are in the same cluster; thus an r-cluster contains 3r(r — 1) links. When
6 =1 the expected number of links is infinite.

The next examples allow clusters of any size to associate. Write A, and u,,
for A, 45 and p, ..., respectively. If equations (8.4) have a solution then it
can be built up from the recursion

crl"'l,r-—l = r—lclhl.r—l

with ¢, chosen arbitrarily provided A,, >0 for r=1. The solution to equa-
tions (8.8) is given by the same recursion with ¢, set equal to v/u.

Example 1. The obvious generalization of Example 1 is given by the
choice of parameters

A’I’S—_—a ‘Lr8=ﬁ

Once again a solution to equations (8.4) is ¢, = B/a, and the equilibrium
distribution for the closed system is given by expression (8.14). The open
system also has the same equilibrium distribution as for Example 1.

Example 8. One possible generalization of Example 2 which allows a
solution to equations (8.4) is obtained by letting

+
home =87

r

This dissociation rate arises if the rate at which an (r + s)-cluster breaks up to
leave a given r units in one cluster and the other s units in another cluster is 3,

. . s . . . rts o . .
since with the units identified in this way there are ( , ) distinct ways in

which an (r +s)-cluster can break up to form an r-cluster and an s-cluster.
The closed and open equilibrium distributions are the same as for Example
2,

Following the definition of the transition rates (8.3) the parameter A,
r=s, was interpreted as the probability intensity a given r-cluster attaches
itself to a given s-cluster. This interpretation occasionally requires a minor
modification when r=s. For r=s the number of distinct ordered pairs of
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clusters in which the first cluster is an r-cluster and the second cluster is an
s-cluster is n.n, (for r<s) or n,(n, —1) (for r =s). However, the number of
distinct unordered pairs is n,n, (for r<s) or in,(n,—1) (for r=s). In the
model considered in Section 8.1 (and again as Example 2) it was reasonable
to count ordered pairs of clusters with r=<s, and it was therefore reasonable
to set Ay;, = a. When it is more suitable to count unordered pairs a factor of
1 must be incorporated in the definition of A,,,. To illustrate this consider the
following example.

Example 9. Suppose that an r-cluster represents a molecule made up of
a string of r atoms arranged along a line with a bond between adjacent
atoms. Imagine that the molecules are milling around in a confined space.
Molecules combine when they come into close proximity and a molecule
breaks into two when a bond breaks. Ignoring spatial considerations it may
be reasonable to assume that any given unordered pair of molecules comes
into close proximity at rate a and hence to set

)"sz{a r# s

loa r=s

If we suppose that each bond breaks at rate 38 then

_{ﬁ r#s
Mrs %B r=s

since if r# s there are two bonds in an (r + s)-cluster whose severance would
produce an r-cluster and an s-cluster. The solution to equations (8.4) is
¢, = B/a, and the equilibrium distribution in the open and closed cases are as
for Examples 7 and 1.

Occasionally clusters may be constructed from more than one type of
basic unit. As an example consider the following elaboration of Example 9.

Example 10. Suppose there are two types of atom, A-atoms and B-
atoms. Molecules consist of a chain of atoms with a bond between adjacent
atoms. A-atoms can be bonded to up to two other atoms, but B-atoms can
only occur at the ends of a chain. Call a chain consisting of just » A-atoms an
rO-cluster, r A-atoms and one B-atom an rl-cluster, and r A-atoms and
two B-atoms an r2-cluster. Suppose the probability intensity a given (unor-
dered) pair of clusters combine is & if neither of them contain any B-atoms,
1a if between them they contain one B-atom, and i« if they both contain
one B-atom. Suppose the rate at which a given bond breaks is 18, if it links
two A-atorhs, 38, if it links an A-atom and a B-atom, and 18, if it links two
B-atoms. It is readily checked that the resulting association and dissociation
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rates allow the solution

Bo Bo Bo
Con=— C,.4=— Copp =— er
r0 a ri o r2 4(1
e Bl _ BT
01 P 02 4032

to equations (8.4).

Exercises 8.3

1. Check that for Example 5,

F(o)=3‘—’[1 L1-6 log(l—O)]

@ (/]
and that F(1)=2p/a. Show that conditional on the event ¥ m, =N the
expected size of a randomly chosen cluster is F'(6)/F(9), for all N=1,
Show that when 0 =1 the expected size of a cluster chosen at random is
infinite. (If ), m, =0 regard the size of the chosen cluster as zero.)

2. Check that for Example 6,

F(0)=5-0(36~26 ~2(1 - 6)log(1— )]

2

and that the radius of convergence of F(8) is unity. When 6 =1 show
that the expected number of clusters is 38/2a, and that, conditional on
Y m, >0, the expected size of a randomly chosen cluster is 2. Show that
the expected number of links is 362F"(9), and observe that this diverges as
0 — 1. Check that when 6 =1 the size of a randomly chosen cluster has
infinite variance.

3. The phenomenon observed in Examples 5 and 6 can also arise in quite
simple queueing systems. Consider a queue at which arrivals occur at rate
v(n+1)/(n+2) and customers depart at rate (n+1)/n, where n is the
number in the queue. Show that an equilibrium distribution exists when
v =1 but the mean number in the queue is infinite.

4. Observe that the equilibrium distribution for Example 8 is unaltered if A,,

. 2r . . . L.
is set to & and u,, to %B( , ) . Show that the resulting dissociation rates

arise if u-clusters receive shocks at rate 2* '8 and if after a cluster has
received a shock each of its units assigns itself independently and at
random to one of two new clusters. Show that if shocks are received by a
u-cluster at rate f(u) then equations (8.4) have a solution only when f(u)
takes the form 2“7'g.
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8.4 POLYMERIZATION PROCESSES

In this section we shall consider a model of the way in which organic
molecules form themselves into polymers. We shall assume that a cluster is
constructed from single units linked together by bonds in such a way that the
graph formed by regarding units as vertices and bonds as edges is a tree. A
cluster breaks up into two clusters by the severance of a single bond, and
two clusters join together to form one cluster by the establishment of a
single additional bond between two units, one from each cluster. Two
clusters are to be regarded as of the same type if the graphs associated with
them are isomorphic. Thus when we refer to an r-cluster r identifies the
graph associated with the cluster.

Typical clusters are illustrated in Fig. 8.2. There are two simplifications
implicit in this model of polymer chains which are worth noting. First, the
assumption that clusters correspond to trees rules out cycles, which can of
course occur in organic molecules. Second, the assumption that the tree
associated with a cluster defines it completely ignores the fact that the angles
between bonds are sometimes important.

Suppose that any existing bond breaks at rate . This implies that the
parameter w,,, is equal to k times the number of bonds in a u-cluster whose
severance would result in an r-cluster and an s-cluster. The association rate
is more difficult to define and arises in the following way. Each unit has f
sites (or functionalities, to use the polymer science term) at which a bond
can be based. A bond appears at unit rate between any two given vacant
sites provided they are on units in different clusters. With this in mind set
A {Or 2A,, in the case r=s) equal to

2 hh,

where x and y mark units in an r-cluster and an s-cluster respectively, and
the summation runs over all units x and y such that the introduction of a
bond between x and y would cause the r-cluster and the s-cluster to form a
u-cluster. Let
hx =f—j

where j is the number of other units to which x is bonded in the r-cluster
and f is a fixed positive integer. Note that the case f=2 corresponds to
Example 9 of the previous section, with @ =1 and B =2«.

> e
o—o—o—o—al

Fig. 8.2 Typical clusters when f=3
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For given r, s, and u the parameters A,, and u,, can be explicitly
calculated. For example if f=3 and r, s, and u are as in Fig. 8.2, then
A =12 and p,,, = 2k. The precise form of the parameters A, and u,, for
general r, s, and u involve rather complicated combinational coefficients
depending on the shape of r-, s-, and u-clusters. Our first objective will be
to show that these parameters allow a non-zero solution to equations (8.4);
we shall achieve this by an appeal to Lemma 8.3, after we have shown that
the process m=(m,, m,,...), where m, is the number of r-clusters, is
reversible.

Suppose there are in total M units and that these units are distinguishable.
Suppose further that each of the f sites on each unit is distinguishable.
Redefine the possible cluster types so that the type of a cluster gives not
only the graph associated with the cluster but also which unit is at each
vertex of the graph, and which sites are used on units for each bond. Use r/,
s', and u' and primes generally when dealing with clusters described at this
level of detail; note that there can exist at most one r'-cluster. Usually it will
not be possible for a u’-cluster to be formed from an r'-cluster and an
s'-cluster since even if the graphs are compatible the particular units and
sites used may not be. In this case A/, and w!,., are both zero. If a
u'-cluster can be formed from an r'-cluster and an s’-cluster there will be
just one way of doing it; in this case A/.y,.=1 and w!. = . There are no
combinatorial coefficients involved in the definition of A’..,. and u/,., and
it is clear that a solution to the equations

CHClM g = Clolblrgi
is given by
cl=k

Hence by Theorem 8.1 the process m’'=(m4, m4,...), where m/. is the
number (zero or one) of r'-clusters, is reversible.

Now m is a function of m’; m, is obtained by summing m! over all r'
whose graph is compatible with r. Hence m is reversible (Exercise 1.2.9).
Further, m is a Markov process with transition rates of the form (8.3) where
A, and u,, have been defined earlier. Thus Lemma 8.3 shows that the
rates A, and u,, allow a non-zero solution c;, ¢,,... to the equations

crcsArsu = Cullrsu (8.16)

and we have achieved our first objective.

We shall not obtain a solution ¢,, ¢, . .. to equations (8.16); the expres-
sion for ¢, would be complicated, involving the combinatorial coefficients
appearing through A, and w,.,.. Instead we shall determine ¢} where

ck= )Y ¢
r:k(r)=r*
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We shall see that the mere fact that equations (8.16) have a solution allows

us to deduce a recursion for c* and that from this we can calculate

quantities such as the expected number of clusters containing r* units.
A u-cluster contains k(u) units and hence has k(u)— 1 bonds. The rate at
which a u-cluster breaks up is thus

Y M = K(k(u)—1) (8.17)

where the summation runs over all unordered pairs (r,s). An r-cluster
contains k(r) units, has k(r)—1 bonds, and hence has (f —2)k(r)+2 vacant
sites. The rate at which a given r-cluster and a given s-cluster associate is
thus

> A =[(F =2k +2][(f~2Dk(s)+2]  r#s
or (8.18)
2 ) A =[(f—2)k(r)+2F r=s

From equation (8.16)
crok(r)csok(S)Arsu = cuok(u)“'rsu

Summing this over u and unordered pairs (r,s) and substituting from
equations (8.17) and (8.18) gives

% 2 L 8%7Uf = 2)k(r) +2]6,0°[(f - 2)k(s) +2]

=k ), c,0(k(u)—-1) (8.19)

Notice that the double summation over r and s and the introduction of the

factor 4 in equation (8.19) deal adequately with both of the forms appearing
in equation (8.18). In terms of the quantities ¢} equation (8.19) becomes

% Y Y k0T [(f—2)r* + 21k 0T [(f - 2)s* + 2] =« Y ke (u*-1)

Equating coefficients of 8*" produces the recursion

u*—1

chf*(u*—l)=% Z cK(f-2)r* +2]ck_[(f—2)(u*—r*)+2] (8.20)

r*=1

from which ¢X, r*=1,2,..., can be built up. Setting ¢* =k the recursion
can be shown to produce

_ -
=K =2 T 2] ®:21)
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What is the statistical interpretation of c%? Well we know that m has the
equilibrium distribution w(m) given by expression (8.5). Let m*=
(m¥, m¥,...) where

m:'i = z m,
r:k(r)=r*
the number of clusters of size r*. The description r* of a cluster tells us how
many units are in the cluster, but no more. If f>2 the process m* is not
Markov; the number of units in a cluster does not give enough information
about the various ways the cluster can associate or dissociate. Nevertheless,
the equilibrium distribution for m* can be calculated from 7 (m) (Exercise
8.4.1) and is given by
km?,

Cox "

*m*)= B[] -y (8.22)

for m* such that Y, im¥=M. This expression gives the distribution of
clusters of various sizes, but does not give more detailed information about
the shapes of clusters of a given size. The expected number of clusters of
size r* and the expected number of units in clusters of size r* can be
calculated using Exercise 8.2.1 (see Fig. 8.3).

Y + + 3 —
t T -

10 20 30 40 « 50
r

Fig. 8.3 The expected number of units in clusters of various sizes
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An important physical phenomenon exhibited by polymers is gelation:
when the density is increased above a critical value an observable change
takes place in the physical properties of the system. We shall now discuss an
elaboration of the above polymerization process which casts some light on
this phenomenon. Suppose that a large volume of space consists of J unit sized
boxes, and let m describe the clusters present in a typical box. Suppose that
the clusters present in a box associate and dissociate in accordance with
rates (8.3) and that in addition each cluster moves from its present box to an
adjacent box at rate v. Suppose, further, that one of the boxes is open to the
outside environment with one-clusters emigrating from it and immigrating to
it at rates (8.7). The detailed balance conditions allow it to be readily
checked that in equilibrium the contents of the J boxes are independent and
for each box

(m) = He '—

provided conditions (8.8) and (8.9) are satisfied. Thus m,, m,,... are
independent random variables and m, has a Poisson distribution with mean
¢,. In the polymerization context we can deduce that the number of clusters
of size r* in a typical box has a Poisson distribution with mean

x —  SOIE=Dr]!
"R -2 v 2]t

where 0 =v/uk, provided F(6)=Y c% <. The radius of convergence of
F(9) is

(f-2y—
f(f-

for f>2 (Exercise 8.4.2). The number of units is independent from box to
box with expectation Y ic¥. Define the density p to be the total number of
units divided by the total volume J. For finite J the density is a random
variable but from now on we shall consider the limiting case of J infinitely
large when the density becomes a constant, p =Y ic¥. As 0 increases towards
0, the density increases monotonically to the limiting value

_k(f-1)
P (F—2)

and tlie sum Y i*c}¥ increases monotonically to infinity (Exercise 8.4.6).
Consider now how the equilibrium distribution alters as the density is
varied. As the density p approaches p, the parameter @ approaches 6, and
so the expression ) i%c¥* approaches infinity. The divergence of ¥ i2c* corres-
ponds to the physical phenomenon of gelation, whereby as the density
passes through a critical value the system moves from the sol to the gel state.

0o= (8.23)
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The phenomenon can only occur where f>2; when f=2 the expressions
Y ic¥ and Y i%c¥ both increase to infinity as @ approaches 6.

Exercises 8.4

1.

2.

By summing w(m), given by expression (8.5), over all states m consistent
with the reduced description m* obtain the distribution (8.22).
Use Stirling’s formula

n!~V2mn"*t2e™

(where ~ indicates that the ratio of the two sides tends to unity as n — )
to show that the radius of convergence of F(8)=Y c¥ is given by
expression (8.23) for f>2. Show that when 8 = @,,

o KE=DY 1
\/ﬂ( f- 2)5/2 512

. Show that in the limit of large J the cluster a randomly chosen unit

belongs to has mean size Y. i2c/Y. ic¥. It is possible to relate this quantity

to the physically observable characteristic, viscosity. The model then
predicts that as the density approaches p, the viscosity becomes infinite.
Show that in the limit of large J the probability a randomly chosen site is
occupied is

2(1 __f_@_)
f\" 6F'(e)

To obtain F(@) and its derivatives in a closed form it is heipful to change
variable from 6 to a, where « is the smallest positive root of the equation

fo=a(l-a)?

Using this transformation to define a as a function of @ show that

") = — %
PO =G oy
Deduce that
_ka(2—af)
FO= 30 =ay

. Show that the probability a randomly chosen site is occupied, calculated

in Exercise 8.4.4, is in fact equal to the variable o of Exercise 8.4.5.
Show that as @ approaches 8, the probability « approaches (f—1)7".
Deduce that as 8 increases towards 6, the sum Y ic¥ increases monotoni-
cally to the limiting value p, and the sum Y i*c¥ increases monotonically
to infinity.
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7. An alternative approach to the modelling of polymerization yields some
results more readily. Suppose that a large vessel contains 2M units each
with f sites for bonds. From the 2Mf sites available select at random
2Mfa sites and form these randomly into Mfa pairs of sites. Now
introduce a bond between the two sites in each pair. Observe that a
proportion « of the sites will be occupied. Suppose now that M is
arbitrarily large. Check that the probability a given unit is bonded to
itself is zero and that the f sites on a given unit are independently
occupied, each with probability «. Check further that the probability r
units are linked together by r or more bonds, given they are linked by
r—1 bonds, is zero. Now choose a unit at random and call the units to
which it is directly linked its descendants. Observe that the number of
descendants of the initial unit is binomial with parameters f and «, and
that each descendant has a further set of descendants, whose number is
binomial with parameters f—1 and «. Deduce that the expected number
of units in the cluster of a randomly chosen unit is

1+a
1-(f-1a

Observe that as « increases to (f—1)7" this diverges.

The above model is consistent with that developed in the preceding
section. Note that its starting point is «, the proportion of occupied sites,
while « is a derived quantity for the model of the preceding section,

8. Suppose that a closed vessel is divided up into J compartments, that in
each compartment the clusters present associate and dissociate with rates

q(m, Rm) = JA,, ,m,m, r#s
=JAm(m,—1)
= “’rsumu

and that each cluster moves from its present box to an adjacent box at
rate y(J). Let m* =(m7, m3,...), where m; is the total number of r-
clusters in the vessel. Note that m* is not a Markov process. Show that if
€1, Cy, ... are positive numbers satisfying equations (8.4) then m* has
equilibrium distribution given by expression (8.5). Observe that for large
J we obtain a model in which clusters perform random walks, possibly
merging when they collide.

9. We have used the equilibrium distribution for an open clustering process
to investigate the behaviour of a polymerization process as the density
approaches the critical value. The open equilibrium distribution is not
available when the density exceeds the critical value, but we can use the
closed equilibrium distribution. Consider the equilibrium distribution
when M units are confined within a fixed finite volume. Exercise 8.2.6
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suggests that as M— o the expected number of clusters of size r* tends
to the value ¢} obtained with 8 =8, In the limit (m¥, m¥,..., m¥*) are
independent Poisson random variables for all finite i. Physically this can
be interpreted in the following way. As more units are added to the
system they increase the gel component but leave unaffected the sol
component, which does not depend on density provided this exceeds the
critical value. Above the critical point the predictions obtained from the
clustering process model and the branching process model of Exercise
8.4.7 differ. When a > (f—1)"" the branching process model relates the
expected number of r-clusters to the probability that a unit finds itself in
a cluster of size r conditional on the cluster it belongs to being finite, and
thus predicts that the sol component depends on a even when this
exceeds the critical value. Above the critical density both models are
suspect, since the assumption that clusters must correspond to trees
becomes untenable.

8.5 GENERALIZATIONS

In this section we shall briefly indicate the results that can be obtained for
processes with more general transition rates than those allowed in Section

8.2.
Define the operator R%m to correspond to the transformation of a cluster

of type u into a cluster of type v, so that
Rim=(my,m,,...,m,—1,...,m,+1,...)

Occasionally it may be useful to allow clusters to spontaneously transmute
from one form to another. Suppose

q(m, Rym)=1v,,m, (8.24)

It is clear that with an equilibrium distribution of the form (8.5) the detailed
balance conditions are satisfied provided cy, c,, . .. satisfy

CuYuu = chuu (8'25)

in addition to equations (8.4). To illustrate this consider the following
elaboration of Example 7 from Section 8.3, in which A, =a, w,=8.
Suppose that v,,,,=+yr and v,,_, =8(r—1), with y<8. The first of these
rates arises naturally if we suppose that a unit gives birth at rate y. The
second rate is a little contrived, since the obvious choice would be 8r. An
advantage of 8(r—1) is that it prevents one-clusters from disappearing, and
so allows a non-trivial equilibrium distribution in the absence of immigra-
tion. The solution to equations (8.4) and (8.25) is

=
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Any state m with }, m; <o is accessible from any other such state; hence in
equilibrium m,, m,, ... are independent, and m, has a Poisson distribution
with mean c,.

Another extension which springs naturally to mind in view of the migra-
tion processes considered in Chapter 2 is the substitution of ¢,(m,) for m, in
the transition rates. Consider then the rates

q(m, Rim) = A&, (m,)d,(m,) r¥s
Q(m, R::m) = '\rrud’r(mr)¢r(mr - 1)

(8.26)

q(m, Rim) =y, (m,)

q(m, Rim) = v,,¢,(m,)

and the possible equilibrium distribution
c
mm)=B| | ="—+ (8.27)
Uﬂm ¢.()

where it is assumed that B can be chosen to make the distribution sum to
unity. It is readily checked that if c;,c,, ... are a non-zero solution of

equations (8.4) and (8.25) then w(m) satisfies the detailed balance condi-
tions. Indeed 7(m) will be the equilibrium distribution under even weaker
conditions. If ¢, c,,... are a non-zero solution of

C,Cs Z Arsu = Z Cullrsy
u u

Z chsArsu + Z CoYou = cu(z Morse + Z 'Yuu)
r.s v [X] v

then #r(m) satisfies the equilibrium equations, even though in this case the
process may not be reversible (Exercise 8.5.2).

To illustrate these results consider the following simple example. Suppose
that a one-cluster and a two-cluster are single units of different types, and a
three-cluster contains one unit of each type. Write A and u for A ;5 and py,,
respectively. Then equations (8.4) have the solution ¢, =c, =1, ¢; = A/, and
so the equilibrium distribution is of the form (8.27) whatever the form of the
functions ¢,, r=1, 2, 3. A special case is

d1(n)=¢s(n)=n
$,(0)=0 (8.29)
¢,(n)=1 n>0

(8.28)

This might correspond to a reversible chemical reaction in which the rate of
association between molecules of types 1 and 2 is independent of the
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number of molecules of type 2, provided the number is positive. Alterna-
tively, the model might be appropriate for a social occasion, with three-
clusters regarded as dancing couples and the functions ¢, and ¢, reflecting
cultural conventions.

In the above example a cluster containing two units survives for an
exponentially distributed period before breaking up. Suppose now that such
a cluster passes through two stages: call it a three-cluster during the first
stage and a four-cluster during the second stage. Consider then a process in
which A=A, v3,=2u, i4=2p. Equations (8.28) have the solution
¢, =¢=1, ¢3=c4=A[2u, and so the equilibrium distribution again takes the
form (8.27). If ¢s(n) = ¢4(n)=n then it is readily shown that in equilibrium
(ny, n,, ns+n,) has the same distribution as had (ny, n,, n;) in the previous
process. Indeed the only difference between the two processes is that now
the overall lifetime of a cluster containing two units is not exponentially
distributed. The method of stages can be used, as in Chapter 3, to obtain
results when the overall lifetime of a cluster containing two units is arbitrar-
ily distributed (Exercise 8.5.4).

Exercises 8.5

1. Extend Example 4 of Section 8.3 to allow clusters of any size to
associate; show that if A, = ars and u,, = B(r+s) then expression (8.15)
remains the equilibrium distribution of the closed process. Suppose now
that individuals give birth at rate A and die at rate u, so that vy,,., = Ar,
Y.r—1 = ur, and single individuals immigrate at rate ». Show that in
equilibrium m,, m,, ... are independent Poisson random variables pro-
vided av = BA.

2. Check that expression (8.27) satisfies the equilibrium equations provided
C1, Ca, . . . satisfy equations (8.28). Observe that a form of partial balance
obtains.

3. Show that if A 4 = to3s = Apzs = Mi2s = 1 with all other A,,, and p,,, zero,
then equations (8.28) have a solution. Observe that association with a
two-cluster transforms a one-cluster into a three-cluster, and vice versa.
Show that the process is dynamically reversible.

4. Consider a clustering process with transition rates (8.26) for which
equations (8.28) are satisfied and for which the equilibrium distribution
has the form (8.27). Suppose that r'-clusters cannot associate with other
clusters, that is A,.,, =0 for all s, u, and that ¢,(m)= m. Thus r'-clusters
survive for an exponentially distributed period with mean u ™!, say. Show
that the equilibrium distribution 7r(m) will remain the same if the period
for which r'-clusters survive has a distribution with mean w™* which can
be expressed as a mixture of gamma distributions.

5. Check that the final example of this section which used the functions
(8.29) is equivalent to the finite population telephone exchange model of
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Exercise 1.3.5. Observe that allowing three-clusters to survive for an
arbitrarily distributed period is equivalent to allowing arbitrarily distri-
buted call lengths, an extension discussed in Section 4.4.

- In Chapter 6 we considered migration processes in which the rate of
migration into colony j was affected by the number of individuals already
there, through a function ¢;. Extend the transition rates (8.26) in an
analogous manner and find the equilibrium distribution when equations
(8.4) and (8.25) are satisfied.

. Produce a clustering process analogous to the basic model of Section 8.2,
but in which three or more clusters can associate to form, or can result
from the dissociation of, a single cluster. Produce the equations analog-
ous to equations (8.4). Develop a finite population telephone exchange
model similar to that mentioned in Exercise 8.5.5 but where the sub-
scribers call each other, so that when a call is successfully connected two
subscribers and one line become engaged. Show that the form of the
equilibrium distribution is unaltered.

. Consider the garage described in Section 4.6. Suppose the garage and an
infinite-server queue form a closed network of queues; interpret the time
a car spends in the infinite-server queue as the time between repairs.
Describe the resulting system as a clustering process, allowing possible
clusters to be a car, a mechanic, or a car plus a mechanic.
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