CHAPTER 5
Electrical Analogues

In Section 1.4 we discussed the relationship between the approach to
equilibrium of a random walk satisfying the detailed balance conditions and
the diffusion of charge through an electrical network. We shall begin this
chapter by discussing a different aspect of this connection between reversible
random walks and electrical networks. Then, in Section 5.2, we shall use the
connection to analyse a model representing flow through a network. This
flow model is fairly limited in scope but its main interest lies in the fact that
it permits blocking, the phenomenon whereby whether an individual leaves
a colony is affected by the number of individuals in the colonies to which he
may move. The structure of the migration processes and queueing
networks discussed in earlier chapters ruled out blocking (although in a very
limited way it could be imitated—see Exercise 4.3.4). In general the
phenomenon of blocking makes analytical progress difficult; the flow model
of this chapter and the reversible migration processes of the next, although
highly specialized systems, at least permit blocking and yet remain tractable.
The method we shall use to analyse the flow model can also be applied to
an interesting invasion model, and this will be the subject of Section 5.3.

5.1 RANDOM WALKS

Let A, be the transition rate from state j to state k of a Markov process
with a finite state space G. Let «;, je G, be a positive solution of the
equations

Q; ; Ap = g Ay jeG 5.1)

Assume as usual that the transition rates Ay, j, k € G, define an irreducible
Markov process, and hence that the solution to equations (5.1) is unique up
to a multiplying factor. We shall regard the Markov process as defining the
position of a particle performing a random walk on the graph with vertex set
G and with an edge joining j, k € G if either A, or A, is positive. If

aiA,k = akAki j, keG (5.2)

then we will call the random walk reversible. Thus in this chapter we view
reversibility as a property of the transition rates of the Markov process
rather than, as in earlier chapters, a property of the equilibrium behaviour
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of the Markov process. If
A,'k = Ak,- j, keG

then we will call the random walk symmetric. A symmetric random walk
allows a; =1, je G, as a solution to equations (5.1) and (5.2), and hence is
reversible.

Suppose that observation of the random walk is stopped when the particle
first reaches a set V< G and that a payment of v; is received if observation
is stopped when the particle arrives at vertex i€ V. Let p; be the expected
final payment if the particle starts from vertex j. Considering where the next
step of the random walk will take the particle leads to the equation

Aji .
= eG-V
pi %:Zl As Pk ]
Thus
0=ZAik(pk_pl) jeG-V (5.3)
k
and
pi=v; jeV (5.4)

Equations (5.3) and (5.4) have a unique solution for p;, j € G. Now suppose
that the random walk is reversible and define the (possibly infinite) quantity

Tie = (af)\jk)_l

Thus ry = r,. In this case equations (5.3) and (5.4) can be rewritten as
0=YETP jeg-v (5.5)
kT

and
pi=Yy JEV (5.6)

But equations (5.5) and (5.6) are precisely Kirchhoff’s equations for an
electrical network with node set G in which we interpret p; as the electrical
potential of node j, and where nodes j and k are connected by a wire of
resistance ry, and node j is held at potential v;, j € V. Equation (5.5) expresses
the fact that the total current flowing into node j is zero.

The last paragraph dealt with the infinite horizon case in the sense that
the particle was allowed as long as necessary to reach the set V. In this
paragraph we will suppose there is a finite horizon at time T and that no
payment is received if the particle has not reached the set V by time T. Let
p;(t) be the expected final payment if the particle is at vertex j at time T-1t,
with a time ¢ to go before the horizon. Considering the possible events in an
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interval of time 8¢ leads to the equation

pi(t+8) =) Ay Stp () + (1—2 A 8t)p,(t)+o(6t) jeG-VvV
k k

Hence
dp(t '
BO_ Y r@O-p)  jeG-V 57
k
and
p,(t)=v, je V (5.8)
with the initial condition
pi(0)=0 jeG—-V 5.9

Equations (5.7) are called the backward equations, in contrast to the
forward equations (1.16). Equations (5.7), (5.8), and (5.9) have a unique
solution for p;(t), je G, and

lim p;(t)=p,

where p;, j€ G, is the solution to equations (5.3) and (5.4). If the random
walk is reversible, equations (5.7), (5.8), and (5.9) become

o dp.-(t)zzpk(t)—p;(t) ieG-v (5.10)
dt k r,k
and
pi()=v, jev (5.11)

with the initial condition
p;(0)=0 jeG-V (5.12)

Equations (5.10), (5.11), and (5.12) have an electrical interpretation: if we
amend the electrical network described in the last paragraph by connecting
each node je G-V to earth through a capacitor with capacitance a; and if
the potential of each node je G-V is zero at time t =0, then p;(t) will be
the potential of node j at time t. Observe that as far as the resistors and
capacitors are concerned the electrical network is the same as the one
described in Section 1.4, Note, however, that in Section 1.4 the analogy was
based on the forward equations (1.16) and the correspondence was between
charge and probability, both represented by the variable u;(t). Here the
analogy is based on the backward equations (5.7) and the correspondence is
between potential and expected final payment, both represented by the
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variable p,;(t). Of course the expected final payment p;(t) can itself be used
to represent a probability. For example if V ={0, 1}, v,=0, v, =1, then p;(t)
will be the probability that a random walk starting at vertex j reaches vertex
1 before it reaches vertex 0 and does so before a time ¢ has elapsed.

The analogy of this section can be extended further: we will give two
examples.

Example 1. Suppose the payment received is v;(t) if the particle reaches
a vertex i € V with a time t to go before the horizon. Equation (5.11) will
become

pi®=v(t) jeV

and in the electrical analogue we will require that node j€ V be maintained
at the time-varying potential v;(t).

Example 2. Suppose a payment of w; is received if the particle has not
reached the set V by the horizon and is at vertex je G~V at time T. Then
the initial condition (5.12) will become

pi(0)=w; jeG-V

and in the electrical analogue we will require that the potential of node
je G-V at time t =0 be w;

Exercises 5.1

1. Show that equations (5.10), (5.11), and (5.12) have an alternative electri-
cal interpretation, related to the one given, but with resistors replaced by
inductors and capacitors replaced by resistors.

2. Observe that the transition rates Ay, je V, ke G, do not affect the
expected final payment p;(t). Deduce that the electrical analogy of this
section can still be developed if conditions (5.1) and (5.2) are replaced by
the weaker condition

a,-)t,-k = ak)tk,- j, keG-V

5.2 FLOW MODELS

Consider the following flow model. There are J—1 sites (or colonies)
labelled 2, 3,..., J, and no site may contain more than one individual. If
site j is occupied and site k is empty then with probability intensity A; the
individual at site j moves to site k. If site j is occupied then with probability
intensity w,; the individual at site j leaves the system entirely. If site k is
empty then with probability intensity v, an individual arrives at site k from
outside the system.
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In this section we shall analyse this flow model under the assumption that

the A, are symmetric:
A = Ay (5.13)

(In Section 6.3 we shall consider the model with a different restriction.) We
shall suppose that at time t=0 the system is empty and we shall be
concerned to find p;(t), the probability that at time ¢ site j is occupied.

Now consider the following button model. There are J+1 sites, labelled
0,1,...,J and each site contains a button. The buttons are
distinguishable—we can imagine them to be of different colours. The buttons
occupying sites j and k interchange positions with probability intensity Ay
for ,k=0,1,...,J, where

Ao = Ao =
S Y W
A=Ay =y
and
Ao1=A10=0

We see that any particular button performs a symmetric (and hence reversi-
ble) random_walk around the sites of the system. Now imagine that from
time t=0 onv\x?aﬁ'ds—a.;bltton leaving site 1 is painted black and a button
entering site 0 is painted White.\IQ(t) is the set of sites which contain a
black button at time ¢ then A (t) behaves stochastically just as does the set of
occupied sites in the flow model. Thus to find p;(t) we need only look
backwards through time at the movements of the button which occupies site
j at time t. These movements form a symmetric random walk starting from
site j with transition intensities A for j, k=0,1,...,7J; p,(t) is equal to the
probability that this random walk reaches site 1 within a time ¢ and does so
without passing through site 0. Thus p;(t) is equal to the potential at time ¢
of node j in an electrical network constructed as follows: join nodes j and k,
where j,k=0,1,...,J, by a wire of resistance A whenever Ay >0, and
connect nodes 2, 3, ..., J to earth through a unit capacitor; let the potentials
of every node at time ¢t =0 be zero and from time t =0 onwards hold nodes
0 and 1 at potentials 0 and 1 respectively. If at time ¢t =0 site j in the flow
model is occupied then the electrical analogy will still hold but we will
require that at time t =0 the potential of node j be 1. As t— o, pi(t) > p;
where p; is the equilibrium potential of node j in the network; of course, in
equilibrium the potentials will be unchanged if all the capacitors are re-
moved.
The average net flow of individuals from site j to site k at time ¢ is

Ay Probfsite j occupied and site k empty at time f}
— A; Probfsite j empty and site k occupied at time ¢}
= A (0 () — pi (1))
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which is precisely the current flowing from node j to node k at time ¢ in the
electrical network. The average flow of individuals into, and out of, the
system at time ¢ are respectively

2 y(1—p()

)]

and

Z wip; (¢)
i

which correspond respectively to the current flowing into, and out of, the
electrical network at time t.

For the flow model we have shown that p,(t), j=2,3,...,J, satisfy a set
of linear differential equations of the form (5.10), (5.11), and (5.12). Now
the set of occupied sites in the flow model is a Markov process and hence
forward equations could be deduced which would also form a set of linear
differential equations. What have we achieved? Well, first there are only
J—1 equations in the set we have obtained while there would be 2™
forward equations. Second, the electrical analogy gives considerable insight
into the behaviour of flow models. Of course, a solution to the forward
equations would give much more than just a solution for p(f), j=
2.3,...,J; for example it would give the probability that at time ¢ sites j
and k are both occupied. In fact a solution to the forward equations can be
built up inductively starting from a solution for p;(¢), j=2,3,...,J (see
Exercise 5.2.1). If we are interested in the equilibrium behaviour of the flow
model then the solution to equations (5.5) and (5.6) will give p;, the
equilibrium probability that site j is occupied. An important feature of the
flow model which puts it in sharp contrast with the open network models
considered in earlier chapters is that the states of different sites are not in
general independent. The solution p;, j=2,3,...,J, does not therefore
completely determine the equilibrium distribution for the system. It does
nevertheless give the most important features of the equilibrium distribution
and once again joint probabilities can be built up inductively (Exercise
5.2.2).

The flow model can be extended to allow a site to contain more than one
individual. Specifically, suppose that site j(j =2, 3, ..., J) may contain up to
N; individuals and let n;(t), 0=n; <N, be the number of individuals at site j
at time ¢. Further suppose that an individual moves from site j to site k with
probability intensity

n; Nk (¥

""l—\l: N, (5.14)

A
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an individual leaves the system from site j with probability intensity
h
i 5.15

and an individual arrives at site k from outside the system with probability
intensity

N, —n,
N,
This extended model can be obtained as a limiting case of the original flow
model; we simply replace site j by N; fictitious subsites (each of which can

contain at most one individual) with infinite intensitiecs of movement be-
tween the subsites replacing site j. In this way it is easy to see that if

E(n(1))
N;

(5.16)

Vi

pi()=

then p;(t) is the potential at time ¢ in an electrical network constructed as
follows: for j,k=2,3,...,J join nodes j and k by a wire of resistance AR
whenever A, >0, join node j to nodes held at potentials 0 and 1 through
wires of resistance u; ' and »;' respectively, and connect node j to earth
through a capacitor with capacitance N, The initial conditions for the
electrical network will, as usual, be obtained from the initial conditions for
the flow model. It is interesting to note that in the button model correspond-
ing to this extended flow model a button performs a reversible, but not
necessarily symmetric, random walk.

Unlike the network models considered in earlier chapters the flow model
has few applications. The difficulty is that the symmetry condition (5.13) is
too restrictive. It implies that the individuals have no innate tendency to
move in any given direction and that flow of individuals through the system
is the result of them being forced in at some sites and removed from other
sites. This is unlikely to be the case in any of the applications discussed in
Chapter 4; in a communication network, for example, we would expect a
message to have a preferred direction of travel. We can of course regard the
flow model as a naive description of the mechanism governing the move-
ment of electrons in a conductor, and it then provides a physical explanation
of the mathematical relationships between random walks and electrical
networks obtained in Section 1.4 and the previous section.

Exercises 5.2

1. Suppose we have the solution for p;(t), j=2,3,...,J, and that we are
interested in finding the joint probabilities that given pairs of sites are
occupied at time . Show that these probabilities correspond to potentials
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Fig. 5.1 A one-dimensional flow model

in an electrical network with 3J(J—1) nodes, J—1 of which are held at
the time-varying potentials p;(¢t), j=2,3,...,J.

2. In the one-dimensional flow model illustrated in Fig. 5.1 jumps take
place between adjacent sites at rate A, particles arrive at site 1 at rate v,
and leave from site K at rate u. Deduce from the electrical analogue that
in equilibrium the mean rate of flow of particles through the system is

[(K-DA 4y +pu ]!

If v=p=A show that sites j and k(j<k) are both occupied with
probability

(K-j)}K+1-k)
K(K+1)

and both empty with probability

j(k—1)
K(K+1)

3. Let A(t) be the set of occupied sites in a flow model. In general the
reversed process A (—t) is a complicated Markov process quite unlike the
original process A(t). Show that in the reversed process obtained from
the one-dimensional flow model illustrated in Fig. 5.1 the probability
intensity that a particle leaves the system from site 1 depends not only on
whether or not a particle is present at site 1 but also upon which of sites
2,3,...,K are occupied.

5.3 INVASION MODELS

Consider the following invasion model. There are J—1 sites (labelled
2,3,...,J) and each site is coloured either black or white. If sites j and k
are different colours then with probability intensity A; site k invades site
j—when this happens site j takes on the color of site k while site k remains
the same colour. If site j is white (respectively black) then with probability
intensity v, (respectively w;) it is invaded from outside the system and
becomes black (respectively white). Viewed as a representation of competi-
tion between two opposing species or armies the important characteristic of
the model is that the chance site | is overrun by site k depends only upon Ay
and not upon the colours involved. At least initially we shall not require that
the A, be symmetric. We shall suppose that at time t=0 all sites in the
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system are white and we shall be interested in finding p,(t), the probability
that at time ¢ site j is black.

We can replace invasions from outside the system by adding two sites
(labelled 0 and 1) which at time ¢ = 0 are white and black respectively, with

A= Ao =0
o= Hy o i=2,3,...,7
A“:Vi A”=0
and
Ao1=A30=0

The formulation of the model allowed site k to invade site j only when sites
j and k were different colours. Now amend the model to allow site k to
invade site j at rate A; even when sites j and k are the same colour—these
additional invasions will of course result in no change of any site colour.
Thus as far as the colouring of the sites of the system is concerned the
amendment will not affect the stochastic behaviour of the system. It will,
however, mean that invasions of site j from site k form a Poisson process of
rate A, and that as j and k vary they index independent Poisson processes.

Suppose now that we know the exact moments within the interval (0, ) at
which site j is invaded from site k for j, k=0,1,...,J. From this informa-
tion can we discover the colour of site j at time ¢? Consider the following
method. Starting from time t look backwards through time to discover when
site j was last invaded and from whence. If it was last invaded after time
t =0 from another site of the set {2, 3, ..., J}, then look further back in time
to discover when and from whence this site was last invaded, and so on.
Remembering that the moments of invasion form realizations from indepen-
dent Poisson processes it becomes clear that as we trace the origin of site j’s
colour backwards through time we will be following a random walk with
transition intensities A,, for j, k=0,1,...,J. If this random walk reaches
site 1 within a time ¢ then site j at time ¢ is black; otherwise it is white. Thus
p;(t) is simply the probability that a random walk starting at site j and with
transition rates Ay, for j, k=0,1,...,J, reaches site 1 before a time ¢ has
elapsed. If the random walk on the set {2, 3, . .., J} defined by the transition
intensities A, for j,k=2,3,...,J, is reversible then we can as outlined in
Section 5.1 obtain an electrical analogy. The random walk will be reversible
if the Ay are symmetric. It will also be reversible if the graph defined on the
set {2,3,...,J} by the A, (with an edge joining nodes j and k if either A
or A is positive) is a tree (Lemma 1.5). Even when an electrical analogy
exists it is not as useful as in the last section—there is nothing in the model
which can be readily related to a flow of current.

It is worth emphasizing that the analysis of the invasion model does not
rely upon the random walk defined by the transition intensities A, being
reversible. The origin of a site’s colour can be traced backwards through
time whatever the transition intensities. There is thus a contrast with the
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flow model of the previous section where the analysis breaks down unless
the A, are symmetric.

Exercises 5.3

1.

w D

In the analysis of the basic invasion model it was assumed that invasions

of site j from site k form a Poisson process and that for distinct pairs

(j, k) the Poisson processes are independent. Show that the analysis does

not depend upon the independence assumption by considering the fol-

lowing cases:

(i) Whenever site j invades, it simultaneously invades every site it is
adjacent to.

(ii) When site j invades site i, site [ invades site k.

In case (i) show that an electrical analogue exists in which all the resistors

joining sites have the same resistance.

Generalize the invasion model to allow more than two colours.

. Consider the following stochastic model of group decision making. A

group consists of n individuals, and initially individual j holds opinion (or
view) v, j=1,2,...,n. If at time ¢ individuals j and k hold differing
opinions then the probability that individual j is convinced by individual
k and changes his opinion to that of individual k in the interval (¢, t+8t)
is A 8t +0(8¢t). Assume that between any two individuals there exists the
possibility of communication, either directly or indirectly via a chain of
other individuals. Show that the group will ultimately agree on view v;
with probability a; where a; is the solution to the equations

; ; Aik = %: akkk,—

Zak=1
k

. In the preceding exercise suppose the probability that individual j

concedes to individual k in the interval (¢, ¢ +8¢) is A, f(t) 8t +0(t); for
example if f(t) is a decreasing function then individuals become more
stubborn as time progresses. Show that the conclusion remains the same
provided f5 f(¢) dt is infinite.

. In Exercise 5.3.3 suppose the probability that individual j concedes to

individual k in the interval (t, ¢ +8¢) is Auf; (t) 8t+o0(8t) where
fw () = fii (D) for t>0, jk=1,2,...,n

These rates might arise if the degree of contact between individuals
varies with time. Show that the conclusion remains the same provided
fi(t) is a bounded function of ¢ (g fi () dt is infinite, and a;d; = Ay
for j,k=1,2,...,n Deduce the corresponding result when (fi (83 )
k=1,2,...,n)is itself a stochastic process.
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