CHAPTER 4
Examples of Queueing Networks

In this chapter various examples of queueing networks will be described to
illustrate the uses of earlier results and to indicate their limitations.

4.1 COMMUNICATION NETWORKS

An example of a communication network is a telegraph system such as that
illustrated in Fig. 4.1(a), where a graph represents the system with vertices
and directed edges corresponding to cities and directed channels respec-
tively. Messages are generated in a city and require to be transmitted,
possibly via intermediate relay cities, to their destination city. The transmis-
sion of message from a city cannot begin until the entire message has been
received at that city. Each channel has a maximum capacity and hence the
various messages interact. We can model this situation as a network of
queues by regarding each message as a customer and each channel as a
queue (see Fig. 4.1b). We shall suppose that messages arrive from outside
the system (each with its route through the channels of the system) in
independent Poisson streams. It is not obvious how the progress of a
message through a channel can be represented by a customer passing
through a queue, and we shall discuss two possible models.

The time taken for a message to pass along a channel depends on various
factors, including the length of the message and random effects associated
with the channel. In our first model we shall suppose that the time a message
takes to pass along channel j is exponentially distributed with mean ¢;! and
independent of the time it takes to pass along other channels along its route.
We shall call ¢; the capacity of channel j. This model might be appropriate if
the random effects associated with a channel are predominant; for example
it will arise if the channels are noisy and a message has to be repeatedly
transmitted over a channel until it is received without error. With this first
model each channel behaves as a single-server queue with exponential
service times. The most likely queue discipline is first come first served, but
a possible alternative is service in random order. With either of these
disciplines the system will behave as a network of queues of the sort
discussed in Section 3.1. Thus if n; is the number of messages waiting at
channel j, including the message being transmitted, then in equilibrium
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Fig. 4.1 (a) A telegraph system and (b) its representation as
a network of queues

n, H,, ..., ny are independent and

P(n;=n)= (1—%)(%:)n (4.1)

where aq; is the average arrival rate at queue j.

In our second model we shall represent a message by a customer whose
service requirement is the same at every queue along his route, is arbitrarily
distributed with unit mean, and is independent from customer to cus-
tomer. This model might be appropriate if the length of a message is
important in determining the time taken to transmit it over a channel. If
each channel can be modelled l'y a symmetric queue then the system will
behave as an open network of quasi-reversible queues, with the type of a
customer indicating his service requirement as well as his route through the
network. The condition that a channel be modelled by a symmetric queue is
a severe limitation but allows two queue disciplines which might be approp-
riate in the context. In the first the channel capacity is divided equally
between all the messages waiting for transmission at the channel, corres-
ponding to the server-sharing queue discussed in Section 3.3; this discipline
might occur in computer networks and results in short messages being
transmitted fairly quickly, even through a congested channel. In the second
the channel capacity is devoted entirely to the last arriving message, corres-
ponding to the stack discussed in Section 3.3; this discipline might be a
reasonable approximation in a communication network in which the last
message sent takes priority over earlier messages. If channel j can supply
service effort at rate ¢, then in equilibrium n,, n,, ..., n, are independent
and n; again has the distribution (4.1).

In practice neither of the models described above might precisely repres-
ent the system under scrutiny, but the fact that the same distribution (4.1)
emerges under a variety of different assumptions suggests that it might be a
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good first approximation. We shall now investigate some of its conse-
quences.

The distribution (4.1) implies that the mean number of customers waiting
at queue j is a;/(¢; —a;) and that the average waiting time of a customer at
queue j is 1/(¢;—a;). Suppose now that we can choose the channel
capacities ¢4, @,, ..., ¢; subject to an overall cost constraint

; fd,=F 4.2)

How should we allocate the resource F between the competing channels in
order to minimize the average time spent in the network by a customer or,
equivalently, the mean number of customers in the network? To answer this
question we proceed just as in Section 2.4.

Theorem 4.1, The optimal allocation is

«/ﬁ F-Y. a.f,
& =a+ ili k Gicfk
A e Vaf, fi

Proof. The mean number of customers in the network is
3=
i di—a

and our task is to minimize this subject to the constraint (4.2). Introduce the
Lagrange multiplier y and let

L =;¢1Tai +y(‘Z fidy —F)

Setting dL/3¢; =0 we find that L is minimized by the choice

Substitution of this in constraint (4.2) shows that we should choose

i=F—Zk afi
vy Lvad,

which establishes the result.

There are various other situations where the model discussed in this section
and the optimal allocation obtained in Theorem 4.1 might prove helpful.
For example the model might be appropriate for a manufacturing job-shop,
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with customers representing items of work which require to be processed by
a number of machines, or a road traffic network, with queues representing
bottlenecks in the system.

Exercises 4.1

1.

Two cities are connected by two directed channels each of capacity ¢
(Fig. 4.2a). Each channel carries messages which are initiated at rate a. It
is proposed that the two channels be replaced by a single channel capable
of carrying messages in either direction (Fig. 4.2b). Show that the mean
waiting time of a message will be decreased if the capacity of the new
channel is greater than ¢ +a.

The two communication networks illustrated in Fig. 4.3 are being consi-
dered to link three cities. In the first each of the six channels has capacity
¢, while in the second each of the three channels has capacity 2¢. It is
anticipated that the rate at which messages will be sent from one city to
another city is a. Show that the mean time a message spends in the
system will be less for the first network if ¢ <3a.

. Suppose that the service requirements of a customer at successive queues

are not identical but are random variables which may depend upon each
other and upon the route of the customer. Show that if the queues are
symmetric then distribution (4.1) remains valid, with a; being the average
amount of service requirement arriving at queue j per unit time.

. Let the routes through the network be labelled and suppose that each

unit of time a customer on route i remains in the system costs g(i). Show
that the optimal allocation is now

_ ‘/Ef; F—Y aifi
MRS N

where b, =Y g(i)a;(i) and q,(i) is the average arrival rate at queue j of
customers on route i.

. If the queues are symmetric and if the service requirement of a customer

on route i may depend upon his type, as in Exercise 4.1.3, show that the
optimal allocation remains as in Exercise 4.1.4, but with a;(i) interpreted
as the average rate at which service requirement for customers on route i
arrives at queue j.
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Fig. 4.2 Alternative communication networks
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Fig. 4.3 Alternative communication networks

6. Suppose that service effort is supplied at queue j at rate

&, (n) =——

n+r—-1¢'

where r is a positive constant. The case r=1 corresponds to the model
discussed in this section. Show that if ¢,,¢,,...,¢; can be chosen
subject to the constraint (4.2) then the optimal allocation is that given in
Theorem 4.1.

7. Suppose that service effort is supplied at queue j at rate

d’i(n) =n¢;
This might be appropriate if any number of messages can be transmitted
at the same time by a channel. Show that if ¢, ¢,, ..., ¢, can be chosen

subject to the constraint (4.2) then the optimal allocation is

4, __Yaf, F
: Xk Vacfi fi

Show that if ¢,, ¢, ..., ¢, can be chosen subject to the constraint
2logd;=F
j

then in the optimal allocation ¢,/¢, = a/a,.

8. The model of a communication network discussed in this section is, of
course, not the only available model, and other models may lead to quite
different conclusions. For example suppose arrivals at the series of
queues illustrated in Fig. 2.2 form a Poisson process, and the service
requirements of customers at queues are all equal to the same fixed
value. The model of this section deals with the case where the queues are
symmetric, but is inadequate if each queue is a first come first served
single-server queue. Show that in this case there will never be more than
one customer in queue j,j=2,3,...,J.

4.2 MACHINE INTERFERENCE

The basic form of the machine interference problem is as follows. There are
N machines under the care of a single operative. From time to time a
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machine stops and requires the attention of the operative before it can
resume running. The operative can only attend one machine at a time, and
so if two or more machines are stopped the others must wait for attention.
Thus the machines interfere with one another, and a matter of interest is the
extent of this interference.

Suppose initially that the N machines are identical, that the running time
of a machine before it stops is exponentially distributed with mean R and
that the service time a machine requires from the operative before it can
resume running is exponentially distributed with mean S. All running times
and service times are assumed independent. The machines that are stopped
queue to receive the attention of the operative and the two most common
disciplines are for the operative to attend to them in the order of their
stopping or in a random order. We can regard the machines that are running
as forming a queue also, a queue with an infinite number of servers where a
machine remains until it next stops. Observe that service requirements in
this queue are in fact machine running times.

The system can thus be represented by the closed queueing network
shown in Fig. 4.4. Both queues are quasi-reversible: they would behave in
isolation as an M/M/1 queue and an M/MJ» queue respectively. If n, is the
number of stopped machines and n;=N-—n, the number of running
machines then in equilibrium

R™

n,!

1 (ng, ny) = BS™ (4.3)
and from this distribution it is possible to calculate quantities of interest such
as the proportion of time the operative or a machine is busy. The above
system is in fact a simple example of a closed migration process, and indeed
the equilibrium distribution could easily have been determined from the
observation that n, is a birth and death process. The reason for considering
the system as a closed network of quasi-reversible queues is that viewed in
this light it becomes readily apparent which of the assumptions underlying
the model are crucial in determining the distribution (4.3) and which are
unnecessary.

The assumption that running times are exponentially distributed is clearly
unnecessary. If running times have a general distribution then the queue
containing running machines is equivalent to one which would in isolation

Queue containing Queue containing
stopped machines running machines

Fig. 4.4 The basic machine interference model
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behave as an M/G/~ queue. Thus the queue remains quasi-reversible and
expression (4.3) remains the equilibrium distribution, with R the mean of
the running time distribution. The assumption that service times are expo-
nentially distributed cannot be so easily relaxed since the queue containing
stopped machines has just one server; with the queue disciplines of interest
a single-server will not be quasi-reversible unless service times are exponen-
tially distributed.

In terms of the closed queueing networks of Section 3.4 the present model
has just one type of customer whose route consists of two stages with
r(1,1)=0 and r(1,2) = 1. We shall now consider the effect on the model of
allowing longer routes. Suppose, for example, that the route consists of four
stages, with r(1,1)=0, r(1,2)=1, r(1,3)=0, and r(1,4)=1. Since queue 1
is a symmetric queue we can allow the service requirement there to have a
general distribution and to depend upon whether the customer has reached
stage 2 or stage 4 of his route. Let R’ and R” be the mean service
requirement at stage 2 and stage 4 respectively. Thus the mean running time
of a machine alternates between R’ and R”, changing after each service.
Since queue 0 is not a symmetric queue we must retain the condition that
service times be exponentially distributed, and they must not depend upon
the stage reached. Expression (4.3) remains valid, with R defined as the
overall mean running time (R’+ R")/2 (Exercise 3.4.4). Indeed the result
will remain true even if the service requirements at stages 2 and 4 are
dependent: in terms of Section 3.4 this corresponds to a customer being
allocated a random type each time he begins his route. By fully exploiting
the types and routes of the last chapter it is possible to allow a machine’s
running time to depend upon any number of its previous running times;
expression (4.3) will remain valid with R defined as the overall mean
running time,

Until now we have supposed that the N machines are identical. When the
machines differ it is helpful to view the system as the network shown in Fig.
4.5. Machine i (i=1,2,..., N) remains in queue i while it is running and
moves to queue 0 when it stops. After it has been serviced it returns to

Queue containing
stopped machines

Fig. 4.5 Machine interference with differing
machines
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queue i, Assume that service times are exponentially distributed with mean
S. Initially we shall also assume that the running time of machine i is
exponentially distributed with mean R,, with all running times and service
times independent. The state of the system can be written as
(X0, X1, X5, . . ., Xn) Where xo=(t(1), t(2), ..., t(ny)) is a listing in order of
the machines waiting for service, and x;=1 or 0 depending on whether
machine j is running or not. From Theorem 3.12 we can deduce that the
equilibrium distribution is

N
T (Xoy X1, X2y + . ., X;) = B'S™ [] R¥ (4.4)
i=1

Thus, given that machines t(1), #(2),..., t(ny) are stopped, each possible
ordering of them within queue 0 is equally likely. To obtain the probability
that, say, machines 1, 2, ..., n are stopped and machines n+1,n+2,...,N
are running we need to sum expression (4.4) over the n! different orderings
of machines 1,2, ..., n, giving
N
B'nis" [[ R (4.5)
i=n+1

Observe that queue i (i=1,2,..., N) is quasi-reversible even when service
requirements at this queue are not exponentially distributed: queue i can be
considered to be an example of any one of the four symmetric queues
described in Section 3.3, since at most one customer is ever present in it
Thus we can generalize the model to allow a machine’s running time to have
an arbitrary distribution and to depend upon its previous running times. The
state of the system will become more complicated since it will need to record
more information about each machine. Nevertheless, if the system is in
equilibrium the probability that machines 1,2,...,n are stopped and the
others running will still be given by expression (4.5), with R, the overall
mean running time of machine i (Exercise 3.4.2). If the overall mean
running times of the machines are equal, so that

=R,=+++=Ry=

then to obtain the probability that n machines are stopped we need to
multiply expression (4.5) by the number of different ways n machines can be

chosen from N, giving
N!
B nppN-n .

( Nom! S"R (4.6)
This is consistent with expression (4.3); the normalizing constants bear the
relation B = B'N! If the overall mean running times are not equal then it
might be hoped that distribution (4.6) would still hold with R taken as an
average of Ry, R,, ..., Ry. In fact this is not true except in the approximate
sense explored in Exercise 4.2.3.
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Queue for
operative 1
Queue containing
running machines
Queue for
operative 2

Fig. 4.6 Machine interference with two forms of stoppage

In our final example from the area of machine interference we shall
suppose there are N identical machines and that there are two possible
reasons for a machine stopping. We shall suppose there are two operatives,
one to deal with each form of stoppage. Figure 4.6 illustrates the system;
queues 1 and 2 contain machines awaiting service from operatives 1 and 2
respectively and queue 3 contains running machines. Assume that service
times at queues 1 and 2 are exponentially distributed with means S, and S,
respectively and that running times are arbitrarily distributed with mean R.
Initially we shall also assume that all running times and service times are
independent and that when a machine stops it requires attention from
operative 1 with probability p, and from operative 2 with probability p,
(=1-p,) independently of its past history. From Theorem 3.12 it is a
simple matter to deduce that in equilibrium

R™
n,!

w(ny, Ny, n3) = B(p,18,)"(p,S)™ 4.7)
As might be expected the above assumptions can be considerably relaxed. If
a machine alternately visits operatives 1 and 2 then expression (4.7) remains
valid with p, = p, =3. If a machine’s running time and its reason for stopping
at the end of that running time are dependent then we let R be the overall
mean running time of a machine. Indeed we can even allow a machine’s
running time and its reason for stopping to depend upon previous running
times and previous reasons for stopping for that machine. Expression (4.7)
remains valid with R the overall mean running time of a machine and p, the
overall proportion of stoppages that require operative 1.

In all of the examples discussed in this section it has been necessary to
assume that service times are exponentially distributed and independent of
each other and of running times, since the queue for a server is not a
symmetric queue. In the next section we shall consider a model closely
related to the model of this section, but where it is reasonable to suppose
that all the queues involved are symmetric.

Exercises 4.2

1. Deduce from expression (4.3) that n, has the same distribution as the
number of calls connected in the telephone exchange model of Section
1.3.
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2. Consider the basic machine interference model governed by Fig. 4.4 and
expression (4.3). Suppose now that the machines are arranged in a
priority order and that the operative always works on the machine with
the highest priority of those stopped, even if this involves interrupting the
service of another machine. Show that the probability that the machine
which is kth in the priority order is running is

fe -2] 1

[k—(k—l)]Tk—_—1 7

where f, is given by the recursion
Sk
fi=1 +'é‘ fre—1

with fo =1. !

3. Consider the machine interference model with differing machines gov-
erned by Fig. 4.5, in which the mean running times of the machines are
R, R,, ..., Ry. Show that if the mean service time § is small a good
approximation to the expected number of machines stopped and to the
probability that no machines are stopped can be obtained from the basic
machine interference model if in that model the mean running time of
each machine, R, is given by

l__l_(i+_1_+...+_1_)
R N\R, R, Ry

If S is large show that a good approximation to the expected number of
machines stopped can be obtained with

1
R='N—(R1+R2+' ¢ '+RN) 7

+

and to the probability that no machines are stopped with
R=(RiR;" - RN)UN

(A good approximation when S is small or large is one which is accurate
to within o(S) or 0(1/S) respectively.)

4. Consider the machine interference model illustrated in Fig. 4.5. Suppose
now that while the number of stopped machines is n the remaining N—n
machines work at a reduced rate y(n), and their remaining running times
decrease at rate (n) rather than unity. Use Exercise 3.5.8 to find the
equilibrium distribution for the system.

5. Consider the machine model with differing machines illustrated in Fig.
4.5. Suppose now that whenever the number of stopped machines
reaches M the remaining N — M machines pause, i.e. they cease running
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until the operative has finished serving one of the stopped machines and
they then resume running where they left off. Deduce from the previous
exercise that the equilibrium distribution for the system still takes the
form (4.4), but over a smaller state space. Observe that in the case M =1
queue 0 is a symmetric queue and so the equilibrium distribution will be
the same if the service time of a machine is arbitrarily distributed and
dependent on that machine’s earlier service and running times provided
its overall mean is still S. This system could be viewed as a model of a
complex device comprising N units which stops functioning if any one of
the units fails.

6. Outline how the machine interference models described can be
generalized to allow more than one or two operatives,

4.3 TIMESHARING COMPUTERS

Figure 4.7 illustrates how a queueing network may arise as a much simp-
lified model of a timesharing computer. Queue O represents the central
processing unit of the computer and queues 1,2, ..., N represent terminals.
The N customers in the queueing network correspond to jobs, and job
i(i=1,2,...,N) is either being dealt with by the central processing unit or
is with the computer user at terminal i. The model as described so far is
equivalent to the machine interference model illustrated in Fig. 4.5. The
models diverge when we consider the appropriate queue discipline for queue
0. For the present application the most natural assumption is that queue 0 is
a single-server queue operating with the server-sharing discipline described
in Section 3.3. Queue 0 will then be a symmetric queue and we can allow
service requirements at this queue as well as at queues 1,2,..., N to be
arbitrarily distributed. Let S; and R; be the mean service requirement of
customer i at queue O and at queue i respectively. Thus S, and R, could be

N\

|

Central
processing o
unit

% Terminals

Fig. 4.7 A timesharing computer
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called the mean processor requirement and the mean think time respectively
for job i. The equilibrium probability that, say, jobs 1,2, ..., n are with the
central processing unit and jobs n+1, n+2,..., N are at terminals is

Bn!S,S, SR, 1R,:2' " Ry

and is insensitive to the form of the distributions involved. This is true even
if the service requirements of customer i at queue 0 or i depend upon his
earlier service requirements at either or both queues. Note, however, that
service requirements of different customers must be independent. The above
equilibrium probability allows us to calculate quantities of interest such as
the probability that the central processing unit is idle or the proportion of
his time a user spends waiting for his job to return to the terminal.

We shall now consider an extension of the model which allows a user,
with his job, to leave the terminal. Suppose there is a finite source population
of potential users who may wish to use the computer. For simplicity assume
these users are identical. Let n, be the number of users not using the
computer, let n, be the number of users at terminals whose jobs are
awaiting a response from them, and let n, be the number of jobs being dealt
with by the central processing unit (Fig. 4.8). Thus if there are in total N
users and M terminals then

no+n,+n,=N
and (4.8)
notn, =M

If one of the users not using the computer attempts to find a terminal and
they are all occupied, that is no+n; = M, then he tries again later. If he finds
a free terminal then he occupies it for a period while his job oscillates
between the terminal and the central processing unit. During this period let
the total think time have mean R and let the total processor requirement
have mean S. Let the time between a user leaving a terminal and next
attempting to find one have mean T.

Regarding the system as a network of queues we see that queue 2,
containing potential users, behaves as an' infinite-server queue at which
service requirements are arbitrarily distributed with mean T. Note that there
is a capacity constraint on queues 0 and 1: if a customer leaves queue 2 to

R P.—-—-—’—-
No n N2
————y "] Pt
Central Terminals Potential
processing users

unit
Fig. 4.8 A timesharing computer and
its users
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find M customers already in queues O and 1 he immediately returns to
queue 2. Apart from this capacity constraint queue 1 behaves as an
infinite-server queue and queue 0 as a server-sharing queue. Hence even
with the capacity constraint queues 0 and 1 considered together behave as a
quasi-reversible system (Exercise 3.5.5). Thus we can deduce that the
equilibrium distribution is

RMT™
n1! n2!

m(ng, Ny, Ny) = By nS™ (4.9)
over triples (no, ny, n,) satisfying conditions (4.8). Observe that during the
period a user is at a terminal the precise pattern of the oscillations of his job
between the terminal and the central processing unit do not affect the result;
the distribution (4.9) depends only on the mean quantities R and S.
Although it is possible to allow dependencies between the service require-
ments of a customer at different queues it is not possible to allow the time a
user remains away from the terminals to depend upon whether or not he
was successful the last time he attempted to find a terminal. ‘This is because
a customer entering queue 2 carries with him an indication of his past
service requirements but no indication beyond this of his past experience;
essentially a customer leaving queue 2 to find M customers already in
queues 0 or 1 has his service requirements at these queues met, but
instantaneously.

The probability that a user attempting to find a terminal is successful can
be determined using part (iii) of Theorem 3.12. It is just the equilibrium
probability that queues 0 and 1 contain M customers when there are only
N —1 customers in the system altogether, and is hence

TN ~-M-1 M

BMN I(N M~ 1)' Z SM—“

n=0
Exercises 4.3

1. Extend the model just described to the case where users are not identical.
2. If in the model just described N, T — « with N/T held fixed at », check
that the equilibrium distribution for (n,, n,) becomes

(vR)™
!

1

m(no, ny) = B(vS)™

over pairs (no, n,) satisfying no+n, <M. Show directly that this is the
equilibrium distribution for an open system in which the points in time at
which users attempt to find a terminal form a Poisson process.

3. Deduce from Exercise 3.4.6 that for the model illustrated in Fig. 4.7 the
mean time a given user spends waiting before his job returns from the
central processing unit is proportional to its processor requirement.
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Observe that for the model illustrated in Fig. 4.8 the restriction to a
given user can be dropped; since the users are identical the mean time
taken by any job to pass through the central processing unit is propor-
tional to its processor requirement.

4. In the model illustrated in Fig. 4.8 it was assumed that a customer leaving
queue 2 to find M customers in queues 0 and 1 immediately returns to
queue 2. Suppose the model is amended in the following way: when the
number of customers present in queue 2 drops to N—M the service
effort provided at queue 2 becomes zero. Show that the equilibrium
distribution is unaltered. Observe that if the time a user spends away
from a terminal is exponentially distributed and independent of his
experience elsewhere then the two models are equivalent. Unless this
assumption is a reasonable one to make, it is unlikely that either model
adequately represents the real response of users when all terminals are in
use.

4.4 TELETRAFFIC MODELS

We have already discussed models of a telephone exchange in Sections 1.3,
2.1, and 3.3. We shall begin this section by showing how these models can
be viewed as special cases of the machine interference models described in
Section 4.2. We shall then discuss some further more complicated teletraffic
models.

In the simple telephone exchange model of Section 1.3 calls are initiated
as a Poisson process, the exchange has K lines, a call initiated when all the
lines are busy is lost, and a connected call lasts for an exponentially
distributed length of time. This corresponds to the basic machine interfer-
ence model illustrated in Fig. 4.4 with n, the number of busy lines and n,
the number of idle lines, where ny+ n, = K. Note how the assumptions that
calls are initiated as a Poisson process and that calls are lost when all lines
are busy correspond to the assumption of exponential service times in the
machine interference model, The more general telephone exchange model
of Section 3.3 in which call lengths are arbitrarily distributed corresponds to
the machine interference model in which running times are arbitrarily
distributed. This relationship between telephone exchange models and
machine interference models points the way to various generalizations, one
of which we will discuss now (others will be considered in Exercises 4.4).
Suppose that while a line is busy there is a possibility that it may develop a
fault. If this happens the call in progress is allowed to finish, but immediately
afterwards the line undergoes repair. We can represent the system by Fig.
4.9 where n, is the number of idle lines, n, the number of busy lines, and n,
the number of lines undergoing repair. Suppose that calls are initiated as a
Poisson process of rate v, are independent of each other, and are arbitrarily
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Fig. 4.9 A model of a telephone ex-
change with unreliable lines

distributed with mean pu~'. Allow the probability intensity that a line
develops a fault and the subsequent repair time to depend upon the total
time for which the line has been busy and the number of calls it has dealt
with since its last repair. Let the mean repair time be A~! and let m be the
mean number of calls a line can handle between successive repairs. Regard-
ing the system as a network of queues we see that queue 0 behaves as a
single-server queue at which service requirements are exponentially distri-
buted and queues 1 and 2 behave as infinite-server queues. Observe how the
dependence allowed between call lengths, fault occurrence, and repair times
is modelled by a dependence between the route and the service require-
ments at the two symmetric queues of a given customer. In equilibrium

"l V "2
w(n,, n2)=BK;l—11—!(i> ;12—' ()t_m_) O=n,+n,=sK

We shall now consider a teletraffic model which makes simple use of the
more general arrival rates discussed in Section 3.5. Suppose there are J
exchanges A, A,,..., A, connected to exchange C via a transit exchange B
(Fig. 4.10). Let there be R lines between A; and B and K lines between B
and C where R; =K and K<R,;+R,+" - - +R,. Suppose that calls requiring
a line between A, and C are initiated as a Poisson process of rate v, and that
such calls are lost when all the lines from A; to B or all the lines from B to C
are busy. If a call between A; and C is connected suppose that the call lasts
for an arbitrarily distributed length of time, with mean p; . Figure 4.10
includes a representation of the system as a network of queues. If n; is the
number of calls in progress between A; and C for j=1,2,...,J then the

A

A2

95

Fig. 4.10 Merging of teletraffic: the exchanges and their representation
as a network of queues

Ay
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probability intensity that a call is connected bétween A; and C can be
written as

’ Y(ny,ngy...,m+1,..., 1)
! q’(nl,nz,...,ni,...,nj)

where
1 ifn<R,j=1,2,...,];n,+n,+-+n,=<K
\I,(nl, Ry, ooy n,):{ 1 nl /] ] n, no ny

0 otherwise

Thus Theorem 3.14 shows that in equilibrium

J n
w(ny, na, ... n)=B]] (ﬁ) L

i=1 W/l
niSR],j=l,2,...,J; n1+n2+’ . '+nJSK

Note that in this application of Theorem 3.14 customers of class j visit only
queue J.

A more demanding use of Theorem 3.14 will be needed for the following
system. A call distributor consists of R, switches connected to a first group
of K, lines and R, switches connected to a second group of K, lines (see
Fig. 4.11), where R; =K, for j =1, 2. Calls are initiated as a Poisson process
of rate v. When a call is initiated it is allocated an idle switch at random, so
that if n; calls are in progress on group j then the probability that the call is
routed to group j is (R,—n)/(R;+R,—n;—n,). A call routed to group j
that finds all K; lines busy is lost. Connected calls last for a time which is
arbitrarily distributed with mean u~'. The probability intensity a call is
connected on group j is ¥(R; —n)/(R,+R;—n,—n,) is n; <K, and is zero
otherwise. This can be written in the form appropriate for an application of
Theorem 3.14, viz. form (3.27), with

(R;+R,—n,;—n,)!
¥(n,, ny) = (Ry—n)W(R;—n,)!

n =K, n,=K,

0 otherwise
[} —_——
2 i
2 E

Ry K

| |

2 2
Ra Lines

Switches

Fig. 4.11 A switching system and its representation as a
network of queues
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Thus in equilibrium

(R1+R2_n1—n2)! (1)”l+n1 1
(Ry—n)U(Ry—n)! \p nyln,!

mw(ny, ny)=B nm=K;,n=K,

Exercises 4.4

1. Consider a telephone exchange with K lines. Suppose the mean call
length online j is u;*. Show that if the rate at which calls are initiated, »,
is small then a good approximation to the probability a call is lost is
given by Erlang’s formula

(/KD u)*
Yo Ui Y

with g = (pyp, - - - )V, while if v is large a good approximation is
given by the same expression with p = (1/K)(py+ pa++ «  + pg).

2. A switchboard has K lines and one operator. Calls arrive at the
switchboard as a Poisson process of rate v, but calls arriving while all K
lines are in use are lost. A call finding a free line has to wait for the
operator to answer. The operator deals with waiting calls one at a time
and takes an exponentially distributed amount of time with mean A~! to
connect a call to the correct extension, after which the call lasts for an
arbitrarily distributed length of time with mean w~!. Show that the
probability k lines are busy is proportional to

ALECAYS R |
(X)Eo(ﬁ)ﬁ k=0,1,...,K

3. Consider the model of a telephone exchange with unreliable lines. Show
that the probability a call is lost is the same as in the simple telephone
exchange model of Section 1.3 if the mean call length in that model is
p - (Am)L

4. Consider the model of a telephone exchange with unreliable lines. How
will the equilibrium distribution be affected if when a fault occurs the
call in progress is lost?

5. Consider the model of a telephone exchange with unreliable lines.
Suppose that lines with faults must be repaired one at a time and that
the time taken to repair a line is exponentially distributed. Show that
the probability k lines are busy takes the same form as in Exercise 4.4.2
and discuss the relationship between the two models.

6. Extend the model of the merging of teletraffic to allow calls to be made
between exchanges B and C and between exchanges A, and B. Extend
the model to allow more than one transit exchange. Deal with the case
where there may be more than one possible route for a call and make
the assumption (familiar from the repair shop model of Section 3.5) that

(4.10)
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10.

a call is connected if calls already in progress can be reshuffled to make
room for it.

Extend the model of a switching system to allow J groups of lines. Show
that the probability a call is lost is less than in a system in which an
arriving call is allocated to group j with probability R/Y/.; R,. Show
that the probability a call is lost is greater than expression (4.10) with
K=%/_1K; unless R;=K, j=1,2,...,J.

. The models of this section have assumed that calls are initiated as a

Poisson process. Explain how the telephone exchange model considered
in Exercise 4.4.2 can be amended to deal with a finite source population
of potential callers, as described in Exercise 1.3.5, by allowing idle lines
to form a queue with ¢(n)=N—K +n rather then ¢(n)=1, for n>0,
where N is the total size of the source population.

In this section we have viewed lines as customers. If there is a finite
source population it may be more useful to regard the callers as
customers. For example consider a telephone exchange with K lines
serving a population of N distinguishable callers. Let u;* be the mean
length of a call from caller i, i=1,2,..., N, and let A;! be the mean
time between the end of his last call (whether connected or lost) and his
next attempt to call. Show that in equilibrium the probability callers
i1, 05, ...,1, are connected is

B2,
=1 M

Note that in this model intercall times and call lengths can be arbitrarily
distributed, but whether a caller is connected or lost must have no effect
on his future behaviour.

Although in this section we have viewed lines as customers the resulting
systems are sometimes quasi-reversible with calls viewed as customers.
Consider, for example, the basic telephone exchange model analogous
to the machine interference model illustrated in Fig. 4.4. In this model
the K lines are regarded as customers and so we can allow the
successive call lengths on a given line to be dependent. Suppose now
that we view the whole system as a single queue at which calls are the
customers. Show that, counting lost calls, this queue is quasi-reversible
provided the class of an arriving call does not affect its progress through
the queue. Suppose now that this queue and an infinite-server queue
form a closed network containing N callers. Since the infinite-server
queue is symmetric we can allow the intercall times of a given caller to
be dependent Let A;! be the mean intercall time for caller i, i=
1,2,...,N, and let p;' be the mean call length for line k, k=
1,2,..., K. Show that in equilibrium the probability callers i,, i,, ..., i,
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are connected and lines ky, k,, ..., k, are busy is

T A
B ;I:l1 My,
Contrast the patterns of dependence which can be allowed in this model
with those that can be allowed in the model of Exercise 4.4.9.

11. Show that in the models of the preceding two exercises the probability a
particular caller finds n lines busy when he attempts to make a call is
equal to the equilibrium probability that n lines would be busy were the
system to contain just the other N—1 callers.

4.5 COMPARTMENTAL MODELS

In this section we shall consider systems which have the property that after
customers (or particles or individuals) have entered the system they move
independently through it. Viewing the system as a network of queues, each
queue would in isolation behave as an M/Gj/o queue. The analysis of such
systems in equilibrium is fairly straightforward, and there are various
applications. We shall mention compartmental models in biology, birth—
illness-death processes, and models of manpower systems. Finally, we shall
show that in a special case the transient behaviour of the system can be
completely described.

In biology compartmental models are used to represent the movement of
particles through the various parts of an animal’s body. The system is
assumed to consist of J compartments with particles entering the system in a
Poisson stream and independently moving around between the various
compartments before leaving the system. Let v be the arrival rate of
particles at the system and let o; be the mean time a particle passing through
the system spends in compartment j. Then it is a simple consequence of
Theorgm 3.7 that in equilibrium the number of particles in compartment j is
independent of the number of particles in the other compartments and has a
Poisson distribution with mean va;. This is true no matter how complicated
the motion of the individual particles. For example a particle’s stay in a
particular compartment may be arbitrarily distributed and may depend upon
its past history, as may the compartment the particle chooses to visit next.
The essential assumption is that the movements of different particles are
independent.

Birth-illness—death processes have the same structure as the above model
but the interpretation is rather different. The idea is that an individual is
born and passes through various states of health before eventually dying.
Given their times of birth the individuals move independently through the J
states of the system. The life history of an individual (the states he will pass
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through and the length of time he will remain in each) is chosen at birth
from an arbitrary distribution over all such life histories. If there are N
individuals alive let the probability intensity of a birth be »(N). The previous
model thus corresponds to the case »(N)= v for all N. Let n; be the number
of individuals in state j and let ; be the mean time an individual spends in
state j throughout its lifetime. Theorem 3.14 shows that when an equilib-
rium distribution exists it is given by

m(ny, Ny, ey n,)=B(ll:!) v(l)) I1 ﬁ%‘

j=1 1t

Obvious consequences of this are that the equilibrium distribution for N is

aN N-1
7(N)=B .13) v(l)
where a =Y., «; is the average lifetime of an individual, and that given N
the distribution of (n,, n,, ..., n;) is multinomial.

The above model could also be used to represent the flow of individuals
through a manpower system, The various states would then correspond to
grades within the organizational hierarchy. The assumption that individuals
move independently of one another prevents the model from dealing with
systems in which promotions occur to fill vacancies, rather than when an
individual is ready (cf. Exercise 6.3.2). The rate of recruitment »(N) will
generally be a decreasing function of N, in contrast to the birth—illness—
death process where the birth rate »(N) will usually be an increasing
function of N. As an example of the sort of result which might be useful in
this particular application, suppose the distribution function for the total
time an individual spends in grade j is F(u). Then Theorems 3.10 and
3.14 show that in equilibrium the amount of experience in that grade
which a typical individual there has already acquired has distribution func-
tion

F*(x)= 1 Lx (1—-F(u))du
Q;

Until now we have concerned ourselves with the equilibrium behaviour of
compartmental models. If v(N) = », so that the arriving stream of individuals
is Poisson, it is possible to analyse the transient behaviour of the model. Let
p;(t) be the probability that an individual is, a time t after his arrival, in
compartment j.

Theorem 4.2, If the arrival stream is Poisson and if the system is empty at
time O then at time t the number of individuals in compartment j is indepen-
dent of the number in the other compartments and has a Poisson distribution
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with mean va,(t) where

o ()= L py(u) du

Proof. Let M be the number of arrivals in the interval (0, t). Conditional
on M, the instants of arrival ¢, t,, ..., ty, are independent random variables
uniformly distributed on (0, ¢); this follows from the assumption that the
arrival process is Poisson. The probability that the arrival at ¢ is in
compartment j at time ¢ is p;(t—t,). Because the individuals move indepen-
dently we can deduce that

M
E(zp®z50 o 20O | Mty 1y, ..., ) =] {Z [1 ~p,(t—t,)+zyp,(t—t,)]]

r=1 i
M
-T{1-Za-zmpe-0)
r=1 i
Averaging this over t,1,, ..., t;, conditional on M,
M ¢
E(z}®z3® . - 250 | My =[] {1—2 1=z L pi(t—u) du}
X r=1 i

= {1 =Y -z [ pi(t—u) du}M
i ‘o

Averaging over M, which has a Poisson distribution with mean »t,

t
B30z - 259) =exp| v T (1-2) [ pte-w) du]
' o

0
= l_-[1 exp[—(1 - z;)va,(t)]

Hence n,(t), ny(t),..., n,(t) are independent Poisson variables with means
vay(t), which proves the result.

Letting ¢t — « we obtain the previous equilibrium result, since {5 p,(u) du
is the mean time an individual spends in compartment j throughout its
lifetime.

Exercises 4.5

1. In the birth, death, and immigration process considered in Section 1.3 the
lifetimes of individuals were exponentially distributed with mean p™.
Show that the equilibrium distribution (1.14) remains the same if
lifetimes are arbitrarily distributed with mean p™'. Look now at the
family size process (ny, n,, . ..) introduced in Section 2.4. By considering
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the mean time for which a family has j members alive throughout its
entire existence show that the equilibrium distribution for the process
(ny, n,, . ..) also remains the same if lifetimes are arbitrarily distributed
with mean p™'. (An alternative proof of this result will be given in
Exercise 7.1.9.)

2. In this section we have supposed that individuals are all of the same type.
Theorem 3.14 shows that with more than one type of individual more
general arrival rates can be allowed. We shall give two examples.
Consider two birth—illness—death processes and let N(i) be the number of
individuals alive in process i, i =1, 2. Find the equilibrium distribution if
the birth rate in process i is altered to (N(i)+1)/(N(1)+N(2)+2),
i =1, 2, and show that although the overall birth rate is constant the total
number of individuals alive does not necessarily have a Poisson distribu-
tion. Find the equilibrium distribution if the birth rates in processes 1 and
2 are altered to xV® and x™® respectively (x<1) and show that
conditional on the number of individuals alive in one process the number
alive in the other process has a Poisson distribution.

3. Consider a birth—illness~death process with two states. Suppose individu-
als are born into state 1 where they remain for a mean time a, and then
move to state 2 where they remain for a mean time a, before dying.
Suppose the birth rate depends only on n,, the number of individuals in
state 1. Use Little’s result to find an expression for the mean number of
individuals in state 2. Show that it equals a,/(1 —va,) if the birth rate is
v(n,+1).

Patients arrive at a hospital in a Poisson stream of rate v, but the
hospital redirects them if its K beds are all occupied. An accepted patient
stays in the hospital for an average of a, days; after he leaves the
hospital he attends an outpatients’ department for an average of a, days.
Find the mean number of patients attending the outpatients’ department.

4. Cars arrive at the beginning of a long road in a Poisson stream of rate »
from time t=0 onwards. A car has a fixed velocity V>0 which is a
random variable. The velocities of different cars are independent. Show
that the number of cars on the first x miles of the road at time ¢ has a
Poisson distribution with mean vE[V ! min{x, Vt}]. What is the distribu-
tion of the number of cars between x and y miles along the road at time
t?

5. Show that the conclusions contained in Theorem 4.2 are not valid if at
time ¢t =0 there are already individuals within the system.

6. (Hard) A monkey attempts to climb a tree with a constant positive
velocity, but at the points in time of a Poisson process the monkey suffers
instantaneous negative displacements, the lengths of which are indepen-
dent of each other and of the Poisson process, and have a common
distribution. The expected net velocity of the monkey is positive. Let
n(s) be the number of times the monkey slips backwards past the point s
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on the tree, so that n(s)+1 is the number of the times the monkey climbs
past s in the forward direction. Show that the stochastic process n(s) is
identical to the number of individuals alive at time s in a birth, death,
and immigration process (Exercise 4.5.1) with the immigration rate equal
to the birth rate.

4.6 MISCELLANEOUS APPLICATIONS

Road traffic. Consider an infinitely long road on which there are two
kinds of vehicle travelling in the same direction (Fig. 4.12). Some of the
vehicles are lorries, travelling at a constant velocity u. The rest of the
vehicles are cars which travel at a constant velocity v(>u) unless they are
held up behind lorries. Suppose that the cars behind a lorry overtake it one
at a time, that the car immediately behind the lorry has to wait for an
exponentially distributed period of time before it can overtake, and that
these periods are independent with mean w™". If we apply a velocity —u to
all the vehicles, so that the lorries are reduced to rest, then the lorries can be
regarded as single-server queues and the cars as customers with exponential
service times at these queues. The gaps between lorries can similarly be
regarded as infinite-server queues. If we assume that the points in time at
which cars catch up with a given lorry form a Poisson process, then the
whole system will behave as an infinite series of quasi-reversible queues. At
any given time the positions of the cars not held up behind lorries will form
a Poisson process of rate A,, say. Let A;! be the mean distance between
successive lorries. Each lorry behaves as an M/M/1 queue with arrival rate
A1(v—u) and service rate p, so the mean queue size behind a lorry is

A(v—-u)
uw—A(v—u)

provided A(v—u)<p. The average time taken for a car to pass a lorry is
[w—A(v—u)]™" and to catch up with the next lorry is [A,(v —u)]™!. Thus
the average speed of a car is

L+ Az N Ul (Ol D)) Clad))
[ —A(o~w)] ' +[A(0—u)]™! p+@Az—A ) v—u)

Let v denote the average rate at which cars pass a given point on the road;
then

4.11)

Alkz(v - u)u

T ey w A (4.12)
v K1
—..] iz gl —Th

Fig. 4.12 Road traffic
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the first term coming from cars passing the point singly and the second from
cars passing the point in bunches behind lorries. Expressions (4.11) and
(4.12) can be used to explore the effect of varying the parameters of the
system. Suppose, for example, that v varies, with u, v, u, and A, held
constant, corresponding to an increase in the volume of car traffic. Expres-
sion (4.12) shows that as A, increases from zero to /(v — u) the parameter v
increases from zero to infinity. Thus for a given value of v there is a unique
solution for A,, and using expression (4.11) it can be shown that as v
increases from zero to infinity the average speed of a car decreases from v to
u. Other examples are given in Exercises 4.6.

Conveyor belt inspection. Consider a continuously moving conveyor belt
carrying items past a quality control office (Fig. 4.13). The office contains K
inspectors. When an item reaches the office it enters the office if any of the
K inspectors are free—otherwise it continues along the belt. The time taken
by an inspector to check an item is arbitrarily distributed with mean T
and after an item has been checked it is replaced on the belt. If items arrive
at the office in a Poisson stream at rate » then this model is equivalent to the
queue with no waiting room of Section 3.3, and so the equilibrium probabil-
ity that j inspectors are occupied is

11
a=be(L) 5 i=01,2,.. K
w/ gt

where by is the normalizing constant. Further, items pass a point on the
conveyer belt downstream from the office in a Poisson stream.

Suppose now that the inspectors are not concentrated in one office but are
spread along the conveyor belt as illustrated in Fig. 4.14. Suppose that an
item reaching the kth inspector is picked up for checking by that inspector if
he is free and if that item has not been checked already by an earlier
inspector. It is apparent that in equilibrium the gaps between the inspectors
will make no difference to whether or not a particular item is picked up by a
given inspector. The stream of items reaching the kth inspector will be the
same as if the first k —1 inspectors were positioned in a single office. Thus
items pass any point along the conveyor belt in a Poisson stream. Despite
this, the complete analysis of the system is difficult: for example the
probability that the first and third inspectors are both busy will depend on
more than just the first moment of the checking time. Exercise 4.6.4 obtains
the probability that the kth inspector is busy.

=N =] (=}
[ (]

Fig. 4.13 A quality control office
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Fig. 4.14 K separate offices

If we suppose an item reaching the kth inspector is picked up if he is free
and whether or not it has been checked by an earlier inspector, then the
stream of items passing any point on the conveyor belt is again Poisson; the
~ system is then a series of quasi-reversible queues.

Electronic counters. A source emits a stream of particles according to a
Poisson process of rate ». An electronic counter is exposed to the stream of
particles, but not all the particles are registered. When a particle is regis-
tered it causes an aftereffect which lasts for a mean time «. If the counter is
suffering from the aftereffects of n particles the probability that an arriving
particle will be registered is p(n). Thus n behaves as does the compartmen-
tal model of the previous section, and if the counter is in equilibrium the
probability that it is suffering from the aftereffects of n particles is

=) =BV ] poy 4.13)

n! 2o

where B is a normalizing constant. The long-run rate at which particles are
registered is

oo

v*=v ) w(n)p(n) o (4.14)
n=0 ,
which can thus be calculated as a function of v. It’is in fact an increasing
function of v (Exercise 4.6.5), and hence from an observed rate v* the true
rate v can be determined. For example if p(0)=1 and p(n)=0, n>0 (a type
I counter), then expressions (4.13) and-(4.14) imply that

V*

Yl v*a

Some counters may accept a particle and suffer its aftereffect without
registering it. Let p(n) be the probability that a counter accepts an arriving
particle when it is suffering from the aftereffects of n particles and let r(n)
be the probability that it registers it. Then expression (4.13) again gives the
equilibrium probability that the counter is suffering from the aftereffects of n
particles, but

v¥=yp i w(n)r(n) (4.15)

n=0
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gives the long-run rate at which particles are registered. Expression (4.15) is
not necessarily a monotonic function of » and so an observed rate »* may
not correspond to a unique value v. For example if r(0)=1, r(n)=0,n=1,
and p(n)=1, n=0 (a type II counter), then expressions (4.13) and (4.15)
imply that v is one of the two roots of the equation

v*=ype

A garage. A garage employs two mechanics and is fed by a Poisson
stream of cars at rate ». If when a car arrives both mechanics are free the car
is equally likely to be assigned to either of the two mechanics. If one
mechanic is free the car is assigned to him. If both mechanics are busy the
car is lost. The time taken by mechanic i to repair a car has an arbitrary
distribution with mean u[!, for i=1,2.

If we view the cars as customers we can obtain the equilibrium distribu-
tion for the system from Theorem 3.14. Alternatively, we can view the
mechanics as the customers in a closed queueing network. Either approach
shows that the equilibrium probability that mechanic i is busy is

v(v+w)
ORI TR r (4.16)

and is insensitive to the form of the repair time distributions. The second
approach additionally shows that if the times taken by mechanic i to repair
cars form a dependent sequence then this probability is unaltered, with g,
being the overall mean repair time for mechanic i.

Consider now the stream of cars leaving the garage, including lost cars.
Augmenting the state of the network with a flip-flop variable to signal when
cars are lost shows that this stream is Poisson and that if we now regard the
cars as customers, all of the same class, then the system is quasi-reversible.
If there are different classes of cars the system is still quasi-reversible
provided the class of a car does not affect its progress through the garage. In
this case the class of a car cannot affect its repair time, and hence if the
garage is part of a network of quasi-reversible queues a car’s repair time
cannot depend upon its route or its service requirements at the symmetric
queues in the network. In this respect the system is similar to the queues
considered in Section 3.1 rather than a symmetric queue, even though its
operation involves arbitrary distributions and its equilibrium distribution
exhibits a form of insensitivity.

Is it possible to allow the class of a car to affect its progress through the
garage? We shall now show that it is. Suppose there are J classes of car.
Consider the closed queueing network illustrated in Fig. 4.15; the customers
in this network are the two mechanics. The presence of a mechanic in queue
0 indicates that he is idle. The presence of mechanic 1 (respectively 2) in
queue jA (respectively jB) indicates that he is repairing a car of class j,
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1A 18

B\ =T

Fig. 4.15 Representation of a garage

i=1,2,...,J. Cars of class j arrive at the garage in a Poisson stream at rate
v, =1,2,...,J, and these streams are independent: the implications of this
for the queueing network illustrated in Fig. 4.15 are that queue 0 would in
isolation behave as an M/M/1 queue and that when mechanic 1 (respectively
2) leaves queue 0 he goes to queue jA (respectively jB) with probability v,/v,
where v =} v, independently of the previous history of the system. This
determines the routing behaviour of the mechanics. The assumption that if
both mechanics are idle an arriving car is equally likely to be assigned to
cither of them is compatible with the queue disciplines allowed in Section
3.1, as are the alternative assumptions that the car is assigned to the
mechanic who has been idle the longest, or the shortest, time. Note that
which mechanic is assigned the car cannot depend on the car’s class. Queues
iA, /B, j=1,2,...,J, are symmetric queues—they can each contain at most
one customer. The service requirement of mechanic 1 at queue jA can
depend upon j, upon his previous route, and upon his service requirements
at queues 1A, 2A, ..., JA. Thus the repair time of a car of class j assigned
to mechanic 1 can depend upon the class of the car, upon the classes of the
cars previously repaired by mechanic 1, and upon the repair times of these
cars. The equilibrium probability that mechanic i is busy is given by
expression (4.16) where u, is the overall mean repair time for mechanic i.

There is an important difference between the above process and the
process obtained from it by time reversal. In the original process the
probability that an arriving car is of class j is independent of the state of the
process, but the time taken to repair the car may depend upon the state of
the process, in particular upon the class of the car previously repaired by the
mechanic assigned to the car. Thus in the reversed process the probability
that on leaving queue 0 mechanic 1 goes to queue jA may depend upon the
state of the process, in particular upon the time spent by mechanic 1 on his
last excursion from queue 0. Hence the system will not in general be
quasi-reversible with respect to the J classes of cars.
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Let us now restrict the dependencies allowed in the queueing network
illustrated in Fig. 4.15. Suppose that each time a car is assigned to mechanic
i he is allocated a repair capability, where the successive values allocated to
him may be dependent upon each other but not upon the classes of the cars.
Let the time spent by a mechanic repairing a car (the repair time) have a
distribution determined by the repair capability of the mechanic and the
class of the car (we can imagine that a car of class j has a repair requirement
whose distribution depends on j and that the repair time is a function of the
car’s repair requirement and the mechanic’s repair capability). Queues jA,
jB, j=1,2,...,J, thus behave as symmetric queues at which the service
requirement of a customer has a distribution determined by the correspond-
ing repair capability of the mechanic. The system just described is a
restricted form of the system previously discussed, and so the equilibrium
probability that mechanic i is busy is still given by expression (4.16).
Observe, though, that while the time taken to repair a car may depend upon
previous repair times through the sequence of repair capabilities of a
mechanic it cannot depend on the classes of the cars previously repaired by
him. Hence the reversed process has the property that when mechanic 1
(respectively 2) leaves queue O the probability that he goes to queue iA
(respectively jB) is »/v, independently of his past experience and hence of
the state of the process. This is enough to show that the system, approp-
riately augmented to signal lost cars, is quasi-reversible with respect to the J
classes of car.

If the garage is part of a network of quasi-reversible queues then the
patterns of dependence which can emerge take an interesting form. The
time taken by a mechanic to repair a car can be dependent upon the
mechanic’s experience elsewhere because it can depend on his repair capa-
bility, and it can be dependent on the car’s experience elsewhere because it
can depend on the car’s class. However, the experience elsewhere of the car
(respectively the mechanic) can depend on that particular repair time only
through its class (respectively his repair capability).

Exercises 4.6

1. Consider the road traffic model discussed in this section. Allow » to
vary, with u, v, and u held fixed and with A, held equal to v/ku; this
corresponds to varying the overall volume of traffic with the ratio of cars
to lorries held fixed at k to 1. Show that as » increases from zero to
infinity the average speed of a car decreases from v to u and the mean
queue size behind a lorry increases from zero to k.

2. Suppose that in the road traffic model discussed in this section there are
only finitely many lorries. In this case the volume of car traffic will be
best measured by » = A,v. Investigate the effect of varying the velocity
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of the cars on T, the mean time taken by a car to pass the string of

lorries, with u, u, A,, and v held fixed. Show that

(a) If p.> v then as v tends to infinity the mean overtaking time T tends
to a finite limit.

(b) If w<wv then as v increases from u to vuf/(v — u) the mean overtak-
ing time T decreases from infinity to a minimum and then increases
back to infinity.

. Show how the model of road traffic discussed in this section can be

extended to allow cars to travel with different velocities, with cars

overtaking each other freely.

. Show that the probability the kth inspector in the sequence illustrated

in Fig. 4.14 is busy is equal to the probability calculated in Exercise

4.2.2, with R/S replaced by A/pn.

. Observe that the mean of the distribution (4.13) is an increasing

function of v. Deduce that the rate of registrations v* given by expres-

sion (4.14) is an increasing function of the rate of arrivals ».

. Consider a variant of the type I counter in which p(0)=p, p(n)=1,

n>0. Show that

pr=— P
p+(1—pe™

Consider a variant of the type II counter in which r(n)=r", n = 0. Show
that

3

v* =perld-n

. For the garage represented in Fig. 4.15 show that if mechanic i is busy
the probability he is repairing a car of class j is

Vil
Vi

where pj! is the overall mean repair time of a class j car with mechanic
i. Show that all the results obtained in this section for a garage with two
mechanics can be generalized to a garage with N mechanics.

. Generalize the model described in Exercise 4.4.10 to allow a call length
to depend upon the caller and the line, and discuss the extent to which it
can depend upon the previous experience of each of them.

. A garage employs two mechanics and is fed by two independent Poisson
streams of cars. If when a car from the ith stream arrives at the garage
the ith mechanic is free he repairs it; if he is busy and the other
mechanic is free then the other mechanic repairs it; if both are busy the
car is lost. The time taken to repair a car from the ith stream has an
arbitrary distribution, for i=1,2. Use Erlang’s formula and Little’s
result to find the probability the ith mechanic is busy. Observe that it is
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10.

11.

12.

insensitive to the form of the repair time distributions and depends only
on their means. Observe that the stream of cars leaving the garage,
counting lost cars, is Poisson,

Suppose the system of the previous exercise is represented by a Markov
process x(t). Show that if from x(t,) it is possible to deduce which
mechanics are busy at time ¢, then x(¢;) is not independent of the
departure process prior to time f,. Thus if information about which
mechanics are busy is included in the state then the system is not
quasi-reversible.

A number of trucks and excavators are involved in an earthmoving
operation. Trucks are loaded by the excavators at the site, after which
they travel to a dump, unload the earth, and return to the site. Describe
the various ways in which the operation could be modelled as a closed
network of quasi-reversible queues.

A fleet of vessels operates between a number of loading and discharge
ports. Describe the various ways in which the system could be modelled
as a closed network of quasi-reversible queues.
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